JP3126578B2 - Purification method of modified enzyme - Google Patents

Purification method of modified enzyme

Info

Publication number
JP3126578B2
JP3126578B2 JP05339972A JP33997293A JP3126578B2 JP 3126578 B2 JP3126578 B2 JP 3126578B2 JP 05339972 A JP05339972 A JP 05339972A JP 33997293 A JP33997293 A JP 33997293A JP 3126578 B2 JP3126578 B2 JP 3126578B2
Authority
JP
Japan
Prior art keywords
enzyme
purification
solution
modified enzyme
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05339972A
Other languages
Japanese (ja)
Other versions
JPH07155178A (en
Inventor
博 中山
真一 福永
睦美 水野
Original Assignee
鐘紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鐘紡株式会社 filed Critical 鐘紡株式会社
Priority to JP05339972A priority Critical patent/JP3126578B2/en
Publication of JPH07155178A publication Critical patent/JPH07155178A/en
Application granted granted Critical
Publication of JP3126578B2 publication Critical patent/JP3126578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Detergent Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、修飾酵素の製造に於け
る修飾酵素の精製方法に関する。
The present invention relates to a method for purifying a modified enzyme in the production of the modified enzyme.

【0002】[0002]

【従来の技術】酵素は、洗剤、繊維製品の精練、油脂や
澱粉等の分解、食品加工、医薬品、臨床検査、バイオセ
ンサー、化粧品、更に有用物質の転換・製造など各種の
産業分野に広く用いられている。こうした利用を計る上
での一つの問題点は、酵素の安定性が一般的に低く、そ
の要求に対し満足でない場合が多いことである。即ち、
熱を加えられたり、極端に高いpH条件や逆に低いpH
条件下、界面活性剤や有機溶媒等の混合物の共存下、更
に長期保存によって殆どの酵素は容易に変性して失活す
る。また、利用される酵素は、人体にとって異種起源の
ものであるため、医薬品、化粧品、洗剤等に応用する場
合、その抗原性や皮膚感作性、刺激性が問題となる。
BACKGROUND ART Enzymes are widely used in various industrial fields such as detergents, scouring of textile products, decomposition of fats and oils, starch, etc., food processing, pharmaceuticals, clinical tests, biosensors, cosmetics, and conversion and production of useful substances. Have been. One problem in measuring such utilization is that the stability of enzymes is generally low and often unsatisfactory for their requirements. That is,
Heated or extremely high pH conditions or conversely low pH
Under the conditions, most enzymes are easily denatured and inactivated by coexistence of a mixture of a surfactant, an organic solvent, and the like, and further by long-term storage. In addition, since the enzymes used are of different origins for the human body, when applied to pharmaceuticals, cosmetics, detergents, etc., their antigenicity, skin sensitization and irritation become problems.

【0003】こうした問題に対処する方法として、酵素
の化学修飾が試みられている。例えば、治療用酵素とし
て用いられるウリカーゼ、アスパラギナーゼ、ストレプ
トキナーゼ等をポリエチレングリコールで修飾し、血中
でのクリアランスや抗原性を改善する方法(特公昭61
−42558号公報,特開昭57−118789号公
報)、スーパーオキシドジスムターゼを多糖類,ポリエ
チレングリコールで修飾し、抗原性抑制や熱安定性向上
を計る方法(特開昭58−16685号公報)、あるい
はキモトリプシンに分子内架橋を与えるような修飾を施
し、安定化を計る方法(Biochimica et Biophysica Act
a 522, 277〜283 (1978),ibd 485, 1〜12(1977) )等
が提案されている。
[0003] As a method for addressing these problems, chemical modification of enzymes has been attempted. For example, uricase, asparaginase, streptokinase, and the like used as therapeutic enzymes are modified with polyethylene glycol to improve clearance in blood and antigenicity (Japanese Patent Publication No. Sho 61).
JP-A-42558, JP-A-57-118789), a method of modifying superoxide dismutase with a polysaccharide and polyethylene glycol to suppress antigenicity and improve heat stability (JP-A-58-16885). Alternatively, chymotrypsin is modified to give intramolecular cross-links, and the stability is measured (Biochimica et Biophysica Act
a 522, 277-283 (1978), ibd 485, 1-12 (1977)) and the like.

【0004】このようにして得られた修飾酵素を配合利
用するに際しては、特に医薬品や化粧品、洗剤等に利用
する場合、人体に投与されたり、接触したりするもので
あるため、修飾酵素は完全に精製分離されていることが
要求される。すなわち、こうした修飾に於いては、結合
剤として反応性の高い試薬を用いるため、これらの試薬
誘導体や分解物等の人体に対して好ましくない影響を与
えるものが不純物として合成反応液中に共存している
他、反応助剤や緩衝塩も含まれており、これらを分離除
去する必要がある。また、多糖類やポリアルキレングリ
コール等の水溶性高分子は一般にはかなり広い分子量分
布を持っており、低い分子量のオリゴマーも含まれてい
る場合もあるが、酵素修飾に関与せずに反応系中に残っ
たこれらの誘導体も除去しておくことが望ましい。
When the modified enzyme thus obtained is incorporated and used, particularly when used in medicines, cosmetics, detergents, etc., the modified enzyme is completely administered to the human body or comes into contact with it. Must be purified and separated. In other words, in such modifications, since highly reactive reagents are used as binders, derivatives of these reagents and decomposed products that have an undesirable effect on the human body coexist in the synthesis reaction solution as impurities. In addition, it also contains a reaction aid and a buffer salt, which need to be separated and removed. In addition, water-soluble polymers such as polysaccharides and polyalkylene glycols generally have a fairly broad molecular weight distribution, and may contain low molecular weight oligomers. It is desirable to also remove these derivatives remaining in the above.

【0005】また、本発明者らも安定化や皮膚感作性抑
制を目的にして、多糖類やポリアルキレングリコール等
で修飾したスーパーオキシドジスムターゼやプロテアー
ゼ(特開昭63−245671号公報,特開平1−67
186号公報,特開平2−219571号公報,特開平
2−219572号公報,特開平4−27388号公
報,特開平4−88982号公報)等を提案しており、
適切な条件で酵素に化学修飾を施すと活性、安定性、安
全性及び水溶性等の物性面で優れた修飾酵素が得られる
ことを報告している。特にプロテアーゼの場合、デキス
トラン等の多糖類を修飾剤とし、各種条件を制御して修
飾を施すと、上記性能のほか自己消化性も抑制され、高
度に安定化された修飾酵素が得られることを見いだし
た。この修飾酵素の合成に際しては、多糖類に塩化シア
ヌルや臭化シアン等を反応させて活性化体とし、次いで
酵素と反応させる方法が用いられるが、反応後の溶液中
には塩化シアヌルや臭化シアン等の結合剤の分解物や誘
導体、反応時のpH調整に用いられるほう酸緩衝塩等が
含まれており、これらを効率よくかつ完全に除去する必
要がある。特に塩化シアヌルを用いた場合、塩化シアヌ
ルの3つのC−Cl部位は多糖類、酵素との結合反応に
関与する他、加水分解を受けたり、後処理剤として添加
されるグリシン等と反応したり、極く少量はそのまま残
存したりするため各種の誘導体が生成している。
[0005] The present inventors have also proposed superoxide dismutase or protease modified with polysaccharides or polyalkylene glycols for the purpose of stabilization and suppression of skin sensitization (JP-A-63-245671, JP-A-63-245661). 1-67
186, JP-A-2-219571, JP-A-2-219572, JP-A-4-27388, JP-A-4-88982), and the like.
It is reported that a chemical modification of an enzyme under appropriate conditions can provide a modified enzyme having excellent properties such as activity, stability, safety and water solubility. In particular, in the case of protease, when polysaccharides such as dextran are used as modifiers and modification is performed by controlling various conditions, in addition to the above-mentioned performance, autolysis is also suppressed, and a highly stabilized modified enzyme can be obtained. I found it. When synthesizing this modified enzyme, a method is used in which a polysaccharide is reacted with cyanuric chloride, cyanogen bromide, or the like to form an activated form, and then reacted with the enzyme.However, cyanuric chloride or bromide is contained in the solution after the reaction. It contains decomposition products and derivatives of a binder such as cyanide, borate buffer salts used for pH adjustment during the reaction, and the like, and these need to be efficiently and completely removed. In particular, when cyanuric chloride is used, the three C-Cl sites of cyanuric chloride participate in the binding reaction with polysaccharides and enzymes, undergo hydrolysis, and react with glycine added as a post-treatment agent. Since a very small amount remains as it is, various derivatives are formed.

【0006】こうした不純物を除去し修飾酵素を精製す
るには、活性基を導入した修飾剤を酵素と反応させる前
に精製しておくことが望ましい。また、結合後は有機溶
媒を用いて洗浄したり、分別沈澱させたりする方法や場
合によっては塩析法が精製法として考えられる。更に、
不純物の中には分子量が異なる他は修飾酵素自体と溶解
性状が類似しているものもあり、こうした場合は、透析
バッグを用いる方法、限外濾過あるいはゲル濾過原理に
基づくクロマトグラフィー分離によって不純物を除去す
る方法が考えられる。しかし、透析バッグを用いる方法
はバッチ処理となるため操作が煩雑になり、工業的に大
量処理するには不向きである他、液量が一般に膨張する
ため後処理工程の負担が大きくなる問題がある。また、
限外濾過による洗浄精製は多数回繰り返しての処理が必
要であり、処理能力を高めようとすると大型の設備が必
要となることや、その場合装置内に残存する液量が多く
製品収率が低くなる問題がある。また、クロマトグラフ
ィー精製する方法も大量の反応溶液を処理するには不向
きであるうえ、所要時間が大きいことから適用が限定さ
れる。
In order to remove such impurities and purify the modifying enzyme, it is desirable to purify the modifying agent into which the active group has been introduced before reacting with the enzyme. Further, after the binding, a method of washing with an organic solvent, or a method of separating and precipitating, and in some cases, a salting-out method can be considered as a purification method. Furthermore,
Some impurities have similar solubility properties to the modified enzyme itself except for the molecular weight.In such cases, the impurities are removed by a method using a dialysis bag, or by chromatographic separation based on the principle of ultrafiltration or gel filtration. There is a method of removing it. However, the method using a dialysis bag is a batch process, which complicates the operation, is unsuitable for industrial large-scale processing, and has a problem that the burden on the post-processing step increases because the liquid volume generally expands. . Also,
Washing and purification by ultrafiltration requires a number of repetitive treatments.In order to increase the processing capacity, large equipment is required, and in that case, the amount of liquid remaining in the apparatus is large and the product yield is high. There is a problem of lowering. Further, the method of chromatographic purification is not suitable for treating a large amount of reaction solution, and its application is limited due to the long required time.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは上述の事
情を踏まえ、修飾酵素を合成反応液から効率良く精製、
回収することを目的に鋭意検討の結果、本発明に到達し
たものであり、本発明の目的は、精製効果、収率、操作
性及び処理速度の点で優れており、かつ低コストの修飾
酵素の連続的精製方法を提供することにある。
SUMMARY OF THE INVENTION Based on the above circumstances, the present inventors efficiently purify a modified enzyme from a synthesis reaction solution,
As a result of intensive studies for the purpose of recovering, the present invention has been achieved, and an object of the present invention is to provide a modified enzyme which is excellent in purification effect, yield, operability and processing speed, and is low in cost. To provide a method for continuous purification of

【0008】[0008]

【課題を解決するための手段】本発明は、化学修飾され
た酵素を精製するに際し、a) ホローファイバー型の透析チューブを用い、b)ホローファイバー内部に被透析液を通し、 c) ホローファイバー外部に透析液を通し d)液流量および/または膜間圧を調整する ことを特徴と
する修飾酵素の連続的精製方法であり、前述の目的を達
成するものである。
The present invention provides a method for purifying a chemically modified enzyme comprising the steps of: a) using a hollow fiber type dialysis tube; b) passing a dialyzed liquid inside the hollow fiber; D) A method for continuously purifying a modified enzyme, characterized by adjusting a liquid flow rate and / or a transmembrane pressure by passing a dialysate to the outside, which achieves the above object.

【0009】本発明で用いられるホローファイバー型
(中空糸型)の透析チューブは、精製に供する修飾酵素
と共存する不純物との分子サイズあるいは分子量、更に
はその化学的性質に応じて、適宜、その材質、透析性能
等を選択する。本発明で用いられるホローファイバー型
の透析チューブの材質としては、クプロファン、セルロ
ースアセテート、ポリメチルメタクリレート、ポリアク
リロニトリル、ポリスルホン、エチレン−ポリビニルア
ルコール及びこれらの系列化合物から成るものが挙げら
れ、目的に応じて最適なものを使用すればよい。例え
ば、クプロファン製のものは分画分子量が小さく収率面
では良好であるが処理効率がやや低いのに対し、ポリス
ルホン製のものを用いると収率面では不利になる場合も
あるが精製効果、処理能力には優れている。
The hollow fiber type (hollow fiber type) dialysis tubing used in the present invention can be appropriately prepared according to the molecular size or molecular weight of the coexisting impurities with the modifying enzyme to be purified, and furthermore, its chemical properties. Select the material, dialysis performance, etc. Examples of the material of the hollow fiber type dialysis tube used in the present invention include those comprising cuprophan, cellulose acetate, polymethyl methacrylate, polyacrylonitrile, polysulfone, ethylene-polyvinyl alcohol and their series compounds, depending on the purpose. The best one may be used. For example, those made of cuprophan have a small molecular weight cut-off and are good in terms of yield, but the processing efficiency is rather low, whereas those made of polysulfone may be disadvantageous in terms of yield, but the purification effect, Excellent in processing capacity.

【0010】また、処理効率及び精製効果の点から後述
の方法で評価した場合の透水性が、好ましくは20ml/
(mmHg ・ m2・ h)以上、更に好ましくは50ml/(mmHg ・
m2・h)以上であり、かつ収率の点から血清アルブミンの
透過性が、好ましくは2%以下、更に好ましくは1%以
下の透析性能をもつものを好適に用いることが好適であ
る。
The water permeability as evaluated by the method described below from the viewpoint of the processing efficiency and the purification effect is preferably 20 ml / ml.
(mmHg · m 2 · h) or more, more preferably 50 ml / (mmHg · m
m 2 · h) or more, and from the viewpoint of the yield, it is preferable to use a dialysis agent having a permeability of serum albumin of preferably 2% or less, more preferably 1% or less.

【0011】透水性の評価法:排出口を閉じた透析チュ
ーブ(中空糸内部)に、生理食塩水を37℃で通液し、
ホローファイバーを透過して透析液側(中空糸外側)に
出てくる液量を計測する。膜間圧を替えて透過液量を求
め、100mmHg付近の膜間圧に対する透過液量の関係よ
り、圧力1mmHg、膜面積1m2、1時間当りの透過液量を
算出する。
Evaluation method of water permeability: A physiological saline solution was passed through a dialysis tube (inside the hollow fiber) having a discharge port at 37 ° C.
The amount of liquid passing through the hollow fiber and coming out of the dialysate (outside of the hollow fiber) is measured. The permeate volume is determined by changing the transmembrane pressure, and the permeate volume per hour is calculated based on the relationship between the permeate volume and the transmembrane pressure in the vicinity of 100 mmHg at a pressure of 1 mmHg, a membrane area of 1 m 2 , and one hour.

【0012】血清アルブミン透過性の評価法:透析チュ
ーブ(中空糸内部)に1%の血清アルブミンを含む生理
食塩水、透析液側(中空糸外側)に生理食塩水を各々充
填する。37℃で1時間放置後、透析液側に透過したア
ルブミン量を求め、最初に中空糸内側に存在したアルブ
ミン量に対する比率を算出する。
Evaluation method of serum albumin permeability: A dialysis tube (inside the hollow fiber) is filled with a physiological saline containing 1% serum albumin, and a dialysate side (the outside of the hollow fiber) is filled with physiological saline. After leaving at 37 ° C. for 1 hour, the amount of albumin permeated to the dialysate side is determined, and the ratio to the amount of albumin initially present inside the hollow fiber is calculated.

【0013】また、透析性能は透析チューブ自体の仕様
のほか通液流量、透析液流量、膜間圧、温度等の条件に
影響されるので、各々最適に設定すればよい。例えば、
透析処理による液量増加を抑制し修飾酵素の回収を容易
にすると共に高い精製効果を得るため、通液流量を好ま
しくは80ml/(min・ m2)以下とし、かつ膜間圧を与え
ることにより、透析チューブへの通液量に対する流出量
の比を好ましくは0.3〜1.2、更に好ましくは0.
4〜1.0とすることが好適である。
The dialysis performance is affected by conditions such as the flow rate of the dialysis tube itself, the flow rate of the dialysate, the flow rate of the dialysate, the transmembrane pressure, and the temperature. For example,
In order to suppress the increase in the liquid volume due to the dialysis treatment, to facilitate the recovery of the modified enzyme, and to obtain a high purification effect, the flow rate of the liquid is preferably 80 ml / (min · m 2 ) or less, and The ratio of the outflow to the flow through the dialysis tube is preferably 0.3 to 1.2, and more preferably 0.1 to 1.2.
It is preferable to set it to 4 to 1.0.

【0014】本発明の精製方法は、修飾酵素を適宜常法
により製造した後、上記ホローファイバー型の透析チュ
ーブを用い、上記条件により行えばよい。また、修飾反
応溶液が水溶性の低い不純物を沈澱や濁りとして含む場
合はこれを前もって濾過、遠心分離等により除去してお
くことが好ましい。
The purification method of the present invention may be carried out under the above-mentioned conditions using the hollow fiber type dialysis tube after the modified enzyme is appropriately produced by a conventional method. When the modification reaction solution contains low water-soluble impurities as precipitates or turbidity, it is preferable to remove them by filtration, centrifugation or the like in advance.

【0015】本発明に係る修飾酵素としては、例えば、
プロテアーゼ等の酵素と多糖類等の水溶性高分子とを結
合したものが挙げられ、より具体的には、酵素と多糖類
とがトリアジン環を介して結合したもの、臭化シアンで
活性化された多糖類と酵素とを反応させたもの等が挙げ
られる。特に、塩化シアヌルを結合剤として、デキスト
ラン等の多糖類で修飾したプロテアーゼや、臭化シアン
で活性化したデキストラン等の多糖類で修飾したプロテ
アーゼの精製には、上記各条件により好適に精製を行な
え、他の方法に較べ、処理効率、精製効果、収率、操作
性及び経済性の点で格段に優れた方法である。
Examples of the modifying enzyme according to the present invention include:
Examples include those in which an enzyme such as a protease is bound to a water-soluble polymer such as a polysaccharide, and more specifically, those in which an enzyme and a polysaccharide are bound via a triazine ring, and activated by cyanogen bromide. And those obtained by reacting a polysaccharide with an enzyme. In particular, when purifying a protease modified with a polysaccharide such as dextran or a protease modified with a polysaccharide such as dextran activated with cyanogen bromide using cyanuric chloride as a binding agent, purification can be suitably performed under the above conditions. Compared with other methods, the method is far superior in terms of processing efficiency, purification effect, yield, operability and economic efficiency.

【0016】塩化シアヌルを結合剤とする多糖類修飾酵
素の製造は、一般的には、塩化シアヌルと多糖類とを反
応させ、得られた活性化多糖類を酸性条件下で貧溶媒を
加えて分離した後、酵素と反応させることにより行われ
る。また、塩化シアヌルと多糖類との反応後、多糖類に
導入されたトリアジン環量を合成溶液中に存在するトリ
アジン環総量の50モル%以上となるようにすると、活
性化多糖類を合成溶液から一旦分離精製することなく、
該合成溶液中に直接酵素溶液を添加し結合反応を行うこ
とができる。この方法によれば、全工程の簡素化が計れ
ると共に、低コストで、安定、安全な修飾酵素を提供で
き、また、工業生産のためのスケールアップにも対応で
きるので好適である。この製造方法を実施する方法とし
ては、多糖類濃度を合成溶液中4.5重量%以上として
塩化シアヌルと反応させる方法や、活性化多糖類を含む
合成溶液を本発明の精製方法と同様にして一旦精製し、
未反応の塩化シアヌル誘導体を除去してから酵素と反応
させる方法等により行うことができる。
The production of a polysaccharide-modifying enzyme using cyanuric chloride as a binder is generally carried out by reacting cyanuric chloride with a polysaccharide and adding the resulting activated polysaccharide to a poor solvent under acidic conditions. After separation, the reaction is performed by reacting with an enzyme. Also, after the reaction of cyanuric chloride with the polysaccharide, if the amount of triazine rings introduced into the polysaccharide is adjusted to 50 mol% or more of the total amount of triazine rings present in the synthesis solution, the activated polysaccharide can be converted from the synthesis solution. Without separation and purification
A binding reaction can be performed by directly adding an enzyme solution to the synthesis solution. According to this method, the entire process can be simplified, a stable and safe modified enzyme can be provided at low cost, and the scale-up for industrial production can be supported, which is preferable. As a method for carrying out this production method, a polysaccharide concentration is adjusted to 4.5% by weight or more in the synthesis solution to react with cyanuric chloride, or a synthesis solution containing an activated polysaccharide is prepared in the same manner as the purification method of the present invention. Once purified,
The reaction can be carried out by, for example, removing unreacted cyanuric chloride derivative and then reacting with the enzyme.

【0017】塩化シアヌルを結合剤とした多糖類修飾酵
素の製造に本発明の精製方法を適用するに際し、上記方
法のように、活性化多糖類を合成溶液から一旦分離精製
することなく、該合成溶液中に直接酵素溶液を添加し結
合反応を行う方法で得られた修飾酵素溶液を精製する場
合、合成溶液中には多量の塩化シアヌル分解物あるいは
誘導体が共存するが、活性化多糖類を一旦分離してから
酵素と反応させる製造方法の場合の精製条件と同程度の
精製条件で精製が可能であり、全工程を簡素化できる。
また、活性化多糖類を含む合成溶液を本発明の精製方法
と同様にして一旦精製し、未反応の塩化シアヌル誘導体
を除いてから酵素と結合させる方法で調製された修飾酵
素溶液の精製に適用した場合は、より完全な精製が期待
できる。
When the purification method of the present invention is applied to the production of a polysaccharide-modifying enzyme using cyanuric chloride as a binder, the activated polysaccharide is not separated and purified from the synthesis solution once as described above. When purifying the modified enzyme solution obtained by directly adding the enzyme solution to the solution and performing the binding reaction, a large amount of the cyanuric chloride hydrolyzate or derivative coexists in the synthesis solution. Purification can be performed under the same purification conditions as in the case of the production method of reacting with an enzyme after separation, and the entire process can be simplified.
Further, the synthesis solution containing the activated polysaccharide is purified once in the same manner as the purification method of the present invention, and is applied to the purification of a modified enzyme solution prepared by a method in which unreacted cyanuric chloride derivative is removed and then bound to the enzyme. If so, more complete purification can be expected.

【0018】[0018]

【発明の効果】本発明の修飾酵素の精製方法によれば、
修飾反応を施した酵素水溶液から不純物として共存する
結合剤及びその誘導体、分解物、緩衝塩、その他の添加
物等を精製効率、収率よく、容易に、連続的に操作効率
よく除去することができ、その経済性も非常に有利なも
のである。また、得られる修飾酵素の活性、安定性、安
全性等も良好である。また、透析条件によっては同時に
濃縮も行うことができる。以下、実施例を挙げて本発明
を具体的に説明する。
According to the method for purifying a modified enzyme of the present invention,
It is possible to easily remove the binder and its derivatives, decomposed products, buffer salts, and other additives that coexist as impurities from the aqueous enzyme solution subjected to the modification reaction, with good purification efficiency, high yield, and continuously, with good operation efficiency. It is very economical. In addition, the activity, stability, safety and the like of the obtained modified enzyme are also good. Further, depending on the dialysis conditions, concentration can be performed at the same time. Hereinafter, the present invention will be described specifically with reference to examples.

【0019】[0019]

【実施例1】4重量%デキストラン水溶液(平均分子量
4×104 )25 lに、室温下、pHを7.5〜9.5
に保ちながら、塩化シアヌルを5%含有するアセトン溶
液7.5 lを添加した後、pH3に調整した。この溶液
をアセトン浴に加え、析出した活性化デキストランの沈
澱を濾別採取した。この活性化デキストラン450gを
溶解した0.1Mほう酸緩衝液(pH9.0)10 l
に、好アルカリ性のバチルス属菌由来のプロテアーゼ
(ノボ・ノルディスク社製,エスペラーゼTM)50gを
加え25℃で20時間反応させた後、グリシン50gを
添加し、更に60℃で35時間加熱処理を施し、デキス
トランによるプロテアーゼ修飾を行った。反応終了後の
水溶液をポリスルホン製のダイアライザー((株)クラ
レ製,PS-1.6UW,膜面積1.6m2)により透析精製し
た。処理条件として、透析液(イオン交換水を使用)流
量1 l/min,反応液の通液流量85ml/min,排出流量
(流出量)63ml/minで実施した。
Example 1 25 l of a 4 % by weight aqueous solution of dextran (average molecular weight 4 × 10 4 ) was added at room temperature to a pH of 7.5 to 9.5.
While maintaining the pH at 7.5, 7.5 l of an acetone solution containing 5% of cyanuric chloride was added, and the pH was adjusted to 3. This solution was added to an acetone bath, and the precipitate of activated dextran that precipitated was collected by filtration. 10 l of a 0.1 M borate buffer (pH 9.0) in which 450 g of the activated dextran was dissolved.
50 g of an alkaliphilic Bacillus-derived protease (Novo Nordisk, Esperase ) was added and reacted at 25 ° C. for 20 hours. Then, 50 g of glycine was added, and the mixture was further heated at 60 ° C. for 35 hours. And dextran-modified protease. After completion of the reaction, the aqueous solution was purified by dialysis using a polysulfone dialyzer (Kuraray Co., Ltd., PS-1.6UW, membrane area 1.6 m 2 ). The processing conditions were a dialysate (using ion-exchanged water) at a flow rate of 1 l / min, a flow rate of the reaction liquid of 85 ml / min, and a discharge flow rate (outflow rate) of 63 ml / min.

【0020】処理溶液を高速液体クロマトグラフィー
(東ソー株式会社製,G−3000SW)で分析したと
ころ反応溶液中の不純物である塩化シアヌル分解物及び
そのグリシン誘導体は全く検出されなかった。また緩衝
塩であるほう酸の残存量を溶媒を減圧溜去して採取した
修飾酵素について測定した結果、修飾酵素に対し0.0
17%であり、高い精製効果を認めた。この透析精製に
要した時間は約2時間であり、本発明の方法により極め
て簡便迅速に高度の精製を達成できることがわかる。な
お、本実施例で使用したダイアライザーの透水性は、1
05ml/(mmHg・ m2・h)、血清アルブミンの透過性は0.
6%であった。
When the treated solution was analyzed by high performance liquid chromatography (G-3000SW, manufactured by Tosoh Corporation), no decomposed cyanuric chloride and its glycine derivative were detected as impurities in the reaction solution. The residual amount of boric acid as a buffer salt was measured for the modified enzyme collected by evaporating the solvent under reduced pressure.
17%, indicating a high purification effect. The time required for this dialysis purification is about 2 hours, which indicates that a high degree of purification can be achieved very simply and quickly by the method of the present invention. Note that the water permeability of the dialyzer used in this example is 1
05 ml / (mmHg · m 2 · h), permeability of serum albumin is 0.
6%.

【0021】[0021]

【実施例2】5重量%デキストラン(平均分子量6×1
4 〜9×104 )水溶液20 lを2N−NaOHでp
H11に保ちながら、10℃下、10%臭化シアン水溶
液2.3 lを添加した。次いで、pHを9に調整し、好
アルカリ性バチルス属菌由来のプロテアーゼ(ノボ・ノ
ルディスク社製,エスペラーゼTM)125gを水に溶解
または懸濁した溶液1 lを添加混合し、10℃、pH9
の条件下で16時間反応させた後、グリシン100gを
添加し更に室温で5時間反応させる方法で、デキストラ
ン修飾プロテアーゼを調製した。得られた反応液を実施
例1と同様の方法で透析精製した。但し、透析条件を反
応液の通液流量63ml/min,排出流量55ml/minとし
た。溶媒を溜去して得た修飾酵素粉末について、混入臭
素イオンを蛍光X線分析により、また、グリシン量をア
ミノ酸分析により定量した結果、各々0.015%、
0.032%であり、極めて簡単に高度の精製を行うこ
とができた。
Example 2 5% by weight dextran (average molecular weight 6 × 1)
0 4 -9 × 10 4 ) 20 l of aqueous solution is p-poured with 2N-NaOH.
While maintaining H11, 2.3 l of a 10% aqueous solution of cyanogen bromide was added at 10 ° C. Then, the pH was adjusted to 9, and 1 liter of a solution in which 125 g of an alkaliphilic bacterium-derived protease (Novo Nordisk, Esperase ) was dissolved or suspended in water was added and mixed.
After 16 hours of reaction, dextran-modified protease was prepared by adding 100 g of glycine and further reacting at room temperature for 5 hours. The obtained reaction solution was purified by dialysis in the same manner as in Example 1. However, the dialysis conditions were a flow rate of the reaction solution of 63 ml / min and a discharge flow rate of 55 ml / min. As for the modified enzyme powder obtained by distilling off the solvent, the amount of bromide ion was determined by X-ray fluorescence analysis, and the amount of glycine was determined by amino acid analysis.
It was 0.032%, and a high degree of purification could be performed very easily.

【0022】[0022]

【実施例3】5重量%デキストラン水溶液(平均分子量
4×104 )10 lに、室温下、pHを8.0〜9.5
に保ちながら、塩化シアヌルを5%含有するアセトン溶
液2lを添加し、活性化デキストランを合成した。この
溶液についてデキストランに導入されたトリアジン環
の、溶液中に存在するトリアジン環総量に対する比率は
57モル%であった。続いて好アルカリ性のバチルス属
菌由来のプロテアーゼ(ノボ・ノルディスク社製,エス
ペラーゼTM)50gを溶解した0.5Mほう酸緩衝液
(pH9.2)3 lを加え、25℃で20時間反応させ
た後、グリシン50gを添加し、pHを8.3〜8.6
に調整しつつ、更に60℃で30時間加熱処理を施し、
デキストランによるプロテアーゼ修飾を行った。反応終
了後の水溶液を実施例1と同様の方法で透析精製した。
但し、処理条件を、透析液(イオン交換水を使用)流量
1.3 l/min,反応液の通液流量60ml/min,排出流量
43ml/minで実施した。処理溶液を高速液体クロマトグ
ラフィー(東ソー株式会社製,G−3000SW)で分
析したところ反応溶液中の不純物である塩化シアヌル分
解物及びそのグリシン誘導体は全く検出されなかった。
また、緩衝塩であるほう酸の残存量を溶媒を減圧溜去し
て採取した修飾酵素について測定した結果、修飾酵素に
対し0.022%であり、高い精製効果を認めた。この
透析精製に要した時間は約4時間であり、極めて簡便迅
速に高度の精製を達成できることがわかる。また、本実
施例においては、修飾酵素の製造から精製までの工程を
簡素化でき、良好であった。
EXAMPLE 3 10 l of a 5% by weight aqueous dextran solution (average molecular weight: 4 × 10 4 ) was added at room temperature to a pH of 8.0 to 9.5.
While maintaining the temperature, 2 l of an acetone solution containing 5% of cyanuric chloride was added to synthesize activated dextran. In this solution, the ratio of the triazine ring introduced into the dextran to the total amount of the triazine ring present in the solution was 57 mol%. Subsequently, 3 l of a 0.5 M borate buffer (pH 9.2) in which 50 g of an alkaliphilic Bacillus-derived protease (Esperase manufactured by Novo Nordisk) was dissolved, and the mixture was reacted at 25 ° C. for 20 hours. Thereafter, 50 g of glycine was added and the pH was adjusted to 8.3-8.6.
While further adjusting the heat treatment at 60 ℃ for 30 hours,
Dextran protease modification was performed. After completion of the reaction, the aqueous solution was purified by dialysis in the same manner as in Example 1.
However, the processing conditions were a dialysate (using ion-exchanged water) flow rate of 1.3 l / min, a reaction liquid flow rate of 60 ml / min, and a discharge flow rate of 43 ml / min. When the treated solution was analyzed by high performance liquid chromatography (G-3000SW, manufactured by Tosoh Corporation), no decomposed cyanuric chloride and its glycine derivative were detected as impurities in the reaction solution.
The residual amount of boric acid as a buffer salt was measured for the modified enzyme collected by distilling off the solvent under reduced pressure. As a result, it was 0.022% of the modified enzyme, indicating a high purification effect. The time required for this dialysis purification is about 4 hours, which indicates that a high degree of purification can be achieved very simply and quickly. In this example, the steps from production of the modified enzyme to purification were simplified, which was favorable.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C12N 9/00 101 A61K 7/00 A61K 38/46 B01D 61/28 C11D 3/386 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C12N 9/00 101 A61K 7/00 A61K 38/46 B01D 61/28 C11D 3/386

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 化学修飾された酵素を精製するに際し、a) ホローファイバー型の透析チューブを用いb)ホローファイバー内部に被透析液を通し c)ホローファイバー外部に透析液を通し d)液流量および/または膜間圧を調整する ことを特徴と
する修飾酵素の連続的精製方法。
When purifying a chemically modified enzyme, a) a hollow fiber type dialysis tube is used, b) a dialysate is passed through the hollow fiber, c) a dialysate is passed through the hollow fiber, and d) a liquid flow rate. And / or a method for continuously purifying a modified enzyme, which comprises adjusting the transmembrane pressure .
JP05339972A 1993-12-06 1993-12-06 Purification method of modified enzyme Expired - Fee Related JP3126578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05339972A JP3126578B2 (en) 1993-12-06 1993-12-06 Purification method of modified enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05339972A JP3126578B2 (en) 1993-12-06 1993-12-06 Purification method of modified enzyme

Publications (2)

Publication Number Publication Date
JPH07155178A JPH07155178A (en) 1995-06-20
JP3126578B2 true JP3126578B2 (en) 2001-01-22

Family

ID=18332519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05339972A Expired - Fee Related JP3126578B2 (en) 1993-12-06 1993-12-06 Purification method of modified enzyme

Country Status (1)

Country Link
JP (1) JP3126578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724575U (en) * 1993-10-05 1995-05-09 アルスコーポレーション株式会社 Foldable blade sheath case

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724575U (en) * 1993-10-05 1995-05-09 アルスコーポレーション株式会社 Foldable blade sheath case

Also Published As

Publication number Publication date
JPH07155178A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
EP1924345B1 (en) Process for cross-linking cellulose ester membranes
US4376707A (en) Process for the removal of urea from blood wash fluids and blood
JPH024427A (en) Membrane for dialysis of blood
EP0121468A2 (en) Process for the fractionation of blood plasma
JPH0466455B2 (en)
US4835265A (en) Substituted and crosslinked glucans, process and intermediates for preparing them and use thereof
JP2978187B2 (en) Method for producing modified superoxide dismutase
JPH02219571A (en) Modified protease and production thereof
JP3126578B2 (en) Purification method of modified enzyme
JP2792873B2 (en) Modified cellulose or modified chitin
JP3081749B2 (en) Method for producing modified protease
CN104497135A (en) Method for purifying ulinastatin by virtue of virus inactivation/removal technology and pharmaceutical composition containing ulinastatin
JP4606524B2 (en) Polylysine, polylysine production method, polylysine composition, and pharmaceutical production method for removing endotoxin
JPH01167301A (en) Purification of chitin or chitosan
JPH07265075A (en) Stable modified protease composition and stable enzyme-containing aqueous solution containing the same composition
JP2631469B2 (en) Purification method of hyaluronic acid
SU1690544A3 (en) Method preparation of immobilized nucleophilic compounds
CN102911928B (en) Immobilized method of creatine kinase
CN109836346A (en) A kind of purifying technique of isoleucine fermentation liquid
JPH0457801A (en) Purified hydroxyalkylated cyclodextrin and its production
CN111647634A (en) Method for asymmetric synthesis of (S) -1-Boc-3-aminopiperidine by continuous flow of packed bed
US5064758A (en) Method of preparing a mixture of ribonucleotides
JP2739232B2 (en) Method of using cellulose gel having biological affinity
KR20110056346A (en) Processing for medical hylaronic acid
JPH0147997B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees