JP3126215B2 - Manufacturing method of corrosion resistant rare earth permanent magnet - Google Patents

Manufacturing method of corrosion resistant rare earth permanent magnet

Info

Publication number
JP3126215B2
JP3126215B2 JP04130029A JP13002992A JP3126215B2 JP 3126215 B2 JP3126215 B2 JP 3126215B2 JP 04130029 A JP04130029 A JP 04130029A JP 13002992 A JP13002992 A JP 13002992A JP 3126215 B2 JP3126215 B2 JP 3126215B2
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
brazing
earth permanent
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04130029A
Other languages
Japanese (ja)
Other versions
JPH05299281A (en
Inventor
伸二 江守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP04130029A priority Critical patent/JP3126215B2/en
Publication of JPH05299281A publication Critical patent/JPH05299281A/en
Application granted granted Critical
Publication of JP3126215B2 publication Critical patent/JP3126215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、治具式メッキによる高
耐食性希土類永久磁石の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a high corrosion resistant rare earth permanent magnet by jig plating.

【0002】[0002]

【従来の技術】希土類永久磁石は優れた磁気特性と経済
性のため、電気・電子機器の分野で多用されており、近
年ますますその高性能化が切望されている。これらのう
ち、特にNd系希土類永久磁石は、Sm系希土類永久磁
石と比べて原材料費が安価であり、しかも磁気特性が優
れているため、従来にもまして広い分野で応用されよう
としている。しかし、Nd系希土類合金は、一般に、湿
気の多い空気中で極めて短時間の内に容易に酸化すると
いう欠点を有している。この酸化は、磁石表面上に酸化
物が生成する表面酸化だけでなく、表面から内部へ酸化
が進行する粒界腐食現象も起こる。この現象はNd系磁
石で特に顕著であり、もし使用時に腐食が進行すれば磁
石を組み込んだ機器の性能を低下させ、機器周辺を汚染
させる等の問題が生じる。このような希土類永久磁石、
とりわけNd系磁石の欠点を克服するため各種の表面処
理方法が提案されているが、この中でもメッキ、特にN
iメッキが耐食性、生産性、コスト、安定性等の点で優
れており、現在Nd系磁石に対する表面処理の主流とな
ってきている。
2. Description of the Related Art Rare-earth permanent magnets are widely used in the field of electric and electronic equipment because of their excellent magnetic properties and economical efficiency. Of these, Nd-based rare earth permanent magnets are particularly inexpensive in raw material costs and excellent in magnetic properties as compared with Sm-based rare earth permanent magnets, and are therefore being applied to wider fields than ever before. However, Nd-based rare earth alloys generally have the disadvantage that they are easily oxidized in humid air in a very short time. This oxidation involves not only surface oxidation in which an oxide is formed on the magnet surface, but also intergranular corrosion, in which oxidation proceeds from the surface to the inside. This phenomenon is particularly remarkable in the case of Nd-based magnets. If corrosion proceeds during use, the performance of the device incorporating the magnet is degraded, and problems such as contamination of the periphery of the device occur. Such rare earth permanent magnets,
In particular, various surface treatment methods have been proposed to overcome the disadvantages of Nd-based magnets.
i-plating is excellent in corrosion resistance, productivity, cost, stability and the like, and is currently the mainstream of surface treatment for Nd-based magnets.

【0003】[0003]

【発明が解決しようとする課題】一般にNiメッキはその
手法によりバレル式と治具式に大別できる。バレル式メ
ッキとは、樽の形状をした籠の中に磁石を入れ、その籠
をメッキ液中で回転させながらメッキする方法であり、
治具式は磁石を1個づつ治具で固定してメッキする方法
である。バレル式は治具式と違って製品表面に治具接点
跡ないし電気接点跡(以下、本件発明においては両者を
合わせて接点跡という)が残らないという利点はある
が、籠の中で回転するときに磁石同士が接触、衝突しな
がらメッキされるので、接触、衝突しても割れたり欠け
たりしない小さな磁石にしか用いられていない。このた
め大きな磁石には接点跡が残る治具式メッキを採用して
いるが、その接点跡にはメッキが付いておらず、そのま
までは接点跡部より酸化腐食が進行してしまう。従っ
て、通常1製品当たり2〜数カ所残る直径 0.1〜1mmの
接点跡に耐食性をもたせるために塗料や接着剤等の樹脂
コーティングが行われてきた。磁石の使用環境が比較的
良いコンピュータ周辺機器等の場合には、樹脂コーティ
ングでも何ら問題はなかったが、Nd系磁石の用途拡大に
伴い最近では高温多湿という過酷な雰囲気で使用される
場合が増えてきており、治具式メッキ接点跡に少なくと
も樹脂コーティング以上好ましくはNiメッキと同等の耐
食性を有することが要望されてきた。本発明の目的は、
樹脂コーティングでは樹脂自体の吸湿性、透水性の問題
は避けきれず高耐食性が得られないため、樹脂コーティ
ング以外の高耐食性コーティングにより耐食性に優れた
治具式Niメッキ方法を提供することにある。
Generally, Ni plating can be roughly classified into a barrel type and a jig type according to the technique. Barrel plating is a method in which a magnet is placed in a barrel-shaped basket and plating is performed while rotating the basket in a plating solution.
The jig method is a method in which magnets are fixed one by one with a jig and plated. The barrel type has an advantage that, unlike the jig type, there is no trace of a jig contact or a trace of an electric contact (hereinafter, referred to as a contact trace collectively in the present invention) on the product surface, but it rotates in a basket. Since the magnets are sometimes plated while contacting and colliding with each other, they are used only for small magnets that do not crack or chip even when contacting or colliding. For this reason, jig-type plating that leaves traces of contacts is adopted for large magnets, but the traces of the contacts are not plated, and oxidation corrosion progresses from the traces of the contacts as they are. Therefore, in order to impart corrosion resistance to the contact marks having a diameter of 0.1 to 1 mm, which are usually left in two to several places per product, resin coating such as a paint or an adhesive has been performed. In the case of computer peripherals, etc., where magnets are used in a relatively good environment, there was no problem with resin coating.However, with the expanding use of Nd-based magnets, the use of magnets in harsh atmospheres of high temperature and humidity has recently increased. It has been demanded that jig-type plated contact marks have at least the same corrosion resistance as resin coating, preferably Ni plating. The purpose of the present invention is
In the resin coating, the problem of moisture absorption and water permeability of the resin itself cannot be avoided, and high corrosion resistance cannot be obtained. Therefore, an object of the present invention is to provide a jig-type Ni plating method which is excellent in corrosion resistance by high corrosion resistance coating other than resin coating.

【0004】[0004]

【問題を解決するための手段】本発明者等は、かかる課
題を解決するために、治具式メッキ後の接点跡の耐食性
改良法について吸水性の点から金属系による改良法を種
々検討した結果、比較的低温で作業性の良いろう付け法
が有効であることを見出し、本発明を完成させた。即
ち、本発明の要旨は、希土類−鉄−ボロン系焼結永久磁
石の製造方法において、該焼結磁石体表面に治具式メッ
キを行った後、接点跡を軟ろう付け処理することを特徴
とする耐食性希土類永久磁石の製造方法にある。軟ろう
は、Sn−Pbであることが好ましい。
Means for Solving the Problems In order to solve the above problems, the present inventors have studied various methods of improving the corrosion resistance of contact traces after jig plating by using a metal system from the viewpoint of water absorption. As a result, they have found that a brazing method with good workability at a relatively low temperature is effective, and have completed the present invention. That is, the gist of the present invention is characterized in that, in a method for manufacturing a rare earth-iron-boron-based sintered permanent magnet, a jig-type plating is performed on the surface of the sintered magnet body, and then a contact trace is soft-brazed. And a method for producing a corrosion-resistant rare earth permanent magnet. The soft solder is preferably Sn-Pb.

【0005】以下、本発明を詳細に説明する。先ず、成
形焼結した希土類焼結永久磁石を公知の治具式によりメ
ッキを行う。工程はアルカリ脱脂、活性化処理、
スマット除去、電気Niメッキ、溶剤脱脂の順に行
われ、最後に接点跡処理をして製品を得る。
Hereinafter, the present invention will be described in detail. First, a rare earth sintered permanent magnet formed and sintered is plated by a known jig method. The process is alkaline degreasing, activation,
Desmutting, electric Ni plating, and solvent degreasing are performed in this order. Finally, contact mark processing is performed to obtain a product.

【0006】本発明の最大の特徴は、以上の治具式メッ
キを施した磁石の接点跡をろう付けにより処理すること
にある。磁石を治具よりはずし、接点跡とその付近に付
着した油脂類または洗浄し切れなかった残メッキ液など
の汚れを除去するために溶剤脱脂を行う。溶剤としてト
リクロルエチレン、パークロルエチレン、トリクロルエ
タン、またはフロン等に浸漬または拭き取りにより行
う。次いで接点跡をコーティングするためにろう付けを
施す。
The most important feature of the present invention resides in that the contact marks of the jig-plated magnet are treated by brazing. The magnet is removed from the jig, and solvent degreasing is performed to remove stains such as oils and fats adhering to the contact traces and the vicinity thereof, and residual plating solution that cannot be completely cleaned. This is performed by immersion or wiping in a solvent such as trichloroethylene, perchlorethylene, trichloroethane, or chlorofluorocarbon. Brazing is then applied to coat the contact marks.

【0007】ろうの種類としては、軟ろうと硬ろうがあ
り、融点450℃を境として低融点のろうを軟ろう、高
融点のろうを硬ろうと称している。本発明においてはい
ずれを使用しても高耐食性が得られるが、硬ろうは磁石
特性及びメッキの耐食性に悪影響を及ぼす恐れがあるた
め、低融点の軟ろうを使用するのが好ましい。以下に軟
ろうを用いる例について説明する。軟ろうの種類として
は、通常半田と呼ばれているすず−鉛合金があり、すず
は鉄や銅と合金を作り易いので主として接着の役目をは
たし、鉛は融点を下げ、強度を上げるために用いられ
る。組成としてはSn19〜96重量%、Pb4〜81
重量%で、その他添加元素としてはSb、Cd、Bi、
As、Agのうち1種類又は2種類以上が30重量%以
下含まれ、融点としては180〜300℃である。ま
た、ろうの中にやにが入ったものの方がろうの伸びがよ
く、作業性も良くなるので好ましいが、ろう付け後、や
にが残存すると腐食する恐れもあるので、溶剤による洗
浄工程が必要となる。
[0007] There are two types of brazing: soft brazing and hard brazing. With a melting point of 450 ° C, a low melting brazing is called a soft brazing and a high melting brazing is called a hard brazing. In the present invention, high corrosion resistance can be obtained by using any of them, but it is preferable to use a soft solder having a low melting point because hard brazing may adversely affect the magnet properties and the corrosion resistance of plating. An example using a soft solder will be described below. As a kind of soft solder, there is a tin-lead alloy, which is usually called solder, and tin mainly plays a role of bonding because it is easy to form an alloy with iron and copper, and lead lowers melting point and increases strength Used for The composition is Sn 19 to 96% by weight, Pb 4 to 81
% By weight, and Sb, Cd, Bi,
One or more of As and Ag are contained in an amount of 30% by weight or less, and the melting point is 180 to 300 ° C. In addition, it is preferable that the brazing is contained in the brazing because the brazing has a good elongation and the workability is improved, but if the brazing remains after brazing, there is a possibility that the brazing may corrode. Required.

【0008】ろう付け作業は、ろう付け用こてにて18
0℃〜300℃に加熱したろうを接点跡及びその付近に
流し込む。磁石が大きい場合などには、ろうの流れをよ
くするために磁石本体を前もって40℃〜200℃に加
熱しておくのが好ましい。ろう付け後は、ろうの表面を
研磨して仕上げる。
[0008] The brazing operation is performed using a brazing iron.
A wax heated to 0 ° C. to 300 ° C. is poured into the contact mark and its vicinity. When the magnet is large, it is preferable to heat the magnet body to 40 ° C. to 200 ° C. in advance to improve the flow of the wax. After brazing, the surface of the braze is polished and finished.

【0009】[0009]

【実施例】以下、本願発明の具体的実施態様を実施例を
挙げて説明するが、本発明はこれらに限定されるもので
はない。 [実施例] Ar雰囲気の高周波溶解により、32.0Nd−2.0
Tb−1.1B−58.4Fe−5.0Co−1.0A
l−0.5Ga各重量%から成るインゴットを作製し
た。このインゴットをジョークラッシャーで粗粉砕し、
更にN2ガスによるジェットミルで微粉砕して平均粒径
が3.5μmの微粉末を得た。次にこの微粉末を10,
000Oeの磁界が印加された金型内に充填し、98.
07MPa(1.0t/cm2)の圧力で成形した。次
いで真空中1,090℃で2時間焼結し、更に550℃
で1時間時効処理を施して永久磁石とした。得られた永
久磁石から50mm×30mm×10mmtの試験片を
切り出し、磁化容易軸は厚さ方向に一致するようにし
た。この試験片に以下の表面処理を施す。 (1)アルカリ脱脂:下記組成のアルカリ脱脂液を50
℃×30分間浸漬する。液組成: 水酸化ナトリウム 30g/リットル、 炭酸ナトリウム 20g/リットル、 オルソケイ酸ナトリウム 50g/リットル、 界面活性剤 2g/リットル。 (2)活性化処理:下記組成の活性化処理液に1分間浸
漬する。 浴組成: 酢酸 2%(V/V)、 塩酸 2%(V/V)、 硫酸 2%(V/V)、 ラウリン酸ソーダ 1g/リットル。 (3)スマット除去:超音波水洗を30秒間施す。 (4)電気Niメッキ:下記組成のNiメッキ液中温度
50℃で治具式にて20μmメッキを行う。 液組成: 硫酸ニッケル 280g/リットル、 塩化ニッケル 45g/リットル、 ほう酸 40g/リットル、 光沢剤 3cc/リットル。 (5)溶剤脱脂:トリクロルエチレンにより接点跡部及
びその周辺部の有機性の油を除去する。 (6)ろう付け処理:メッキの接点跡に下記の組成の半
田を2.0mmφ×1.0mmt施す。 半田組成: すず 63重量%、 鉛 37重量%。
EXAMPLES Hereinafter, specific embodiments of the present invention will be described with reference to examples, but the present invention is not limited thereto. [Example] 32.0 Nd-2.0 by high frequency melting in an Ar atmosphere
Tb-1.1B-58.4Fe-5.0Co-1.0A
An ingot consisting of 1-0.5Ga in each weight% was prepared. This ingot is coarsely crushed with a jaw crusher,
The powder was further pulverized by a jet mill using N 2 gas to obtain a fine powder having an average particle size of 3.5 μm. Next, this fine powder was
98. Fill the mold with a magnetic field of 000 Oe applied.
Molding was performed under a pressure of 07 MPa (1.0 t / cm 2 ). Then, it is sintered at 1,090 ° C. for 2 hours in vacuum, and further 550 ° C.
For 1 hour to obtain a permanent magnet. A test piece of 50 mm × 30 mm × 10 mmt was cut out from the obtained permanent magnet, and the axis of easy magnetization was made to coincide with the thickness direction. This test piece is subjected to the following surface treatment. (1) Alkaline degreasing: An alkaline degreasing solution having the following composition was added to 50
Soak at 30 ° C for 30 minutes. Liquid composition: sodium hydroxide 30 g / l, sodium carbonate 20 g / l, sodium orthosilicate 50 g / l, surfactant 2 g / l. (2) Activation treatment: Immersion in an activation treatment solution having the following composition for 1 minute. Bath composition: acetic acid 2% (V / V), hydrochloric acid 2% (V / V), sulfuric acid 2% (V / V), sodium laurate 1 g / liter. (3) Smut removal: Ultrasonic washing is performed for 30 seconds. (4) Electric Ni plating: 20 μm plating is performed by a jig at a temperature of 50 ° C. in a Ni plating solution having the following composition. Liquid composition: nickel sulfate 280 g / l, nickel chloride 45 g / l, boric acid 40 g / l, brightener 3 cc / l. (5) Solvent degreasing: The organic oil at the contact trace and its surroundings is removed with trichloroethylene. (6) Brazing treatment: A solder having the following composition is applied to the contact trace of plating at 2.0 mmφ × 1.0 mmt. Solder composition: 63% by weight of tin, 37% by weight of lead.

【0010】以上のろう付け表面処理終了後、下記の条
件で耐食試験を実施し、その結果を表1に示した。 [耐食性試験] 120℃、202.6kPa(2atm)、100%R
Hのオートクレープ試験に掛け、発錆、ふくれ等外観上
異常の発生の有無を確認した。 評価: ○:異常なし。 ×:電極接点コーティング部より発錆。
After completion of the above brazing surface treatment, a corrosion resistance test was conducted under the following conditions, and the results are shown in Table 1. [Corrosion resistance test] 120 ° C, 202.6 kPa (2 atm), 100% R
H was subjected to an autoclave test to check for the appearance of abnormalities such as rusting and blistering. Evaluation: :: No abnormality. ×: rusting from the electrode contact coating.

【0011】[比較例] 比較のためにエポキシ樹脂により接点跡をコーティング
した以外は実施例と同様の磁石に電気Niメッキを施し、
耐食性試験をしてその結果を表1に併記した。
[Comparative Example] For comparison, a magnet similar to that of the embodiment except that the contact mark was coated with an epoxy resin was subjected to electric Ni plating.
Table 1 shows the results of the corrosion resistance test.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明によれば、希土類−鉄−ボロン系
永久磁石の治具式メッキ品の接点跡を軟ろうによりろう
付け処理することにより耐食性に優れ、経時的磁気特性
の劣化が少なく、長寿命で信頼性の高い希土類永久磁石
が得られ、産業上その利用価値は極めて高い。
According to the present invention, the trace of the contact point of a jig-type plated product of a rare earth-iron-boron permanent magnet is brazed with a soft solder so that the corrosion resistance is excellent and the deterioration of magnetic properties with time is small. Thus, a rare earth permanent magnet having a long life and high reliability is obtained, and its industrial value is extremely high.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類−鉄−ボロン系焼結永久磁石の製
造方法において、該焼結磁石体表面に治具式メッキを行
った後、接点跡を軟ろう付け処理することを特徴とする
耐食性希土類永久磁石の製造方法。
1. A rare earth - iron - The method of manufacturing a boron-based sintered permanent magnets, after the jig type plating sintered magnet body surface, characterized in that it 軟Ro cormorants with handle contact traces Manufacturing method of corrosion resistant rare earth permanent magnet.
【請求項2】 前記軟ろうがSn−Pbであることを特2. The method according to claim 1, wherein the soft solder is Sn-Pb.
徴とする請求項1に記載の耐食性希土類永久磁石の製造2. Production of a corrosion-resistant rare earth permanent magnet according to claim 1.
方法。Method.
JP04130029A 1992-04-23 1992-04-23 Manufacturing method of corrosion resistant rare earth permanent magnet Expired - Fee Related JP3126215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04130029A JP3126215B2 (en) 1992-04-23 1992-04-23 Manufacturing method of corrosion resistant rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04130029A JP3126215B2 (en) 1992-04-23 1992-04-23 Manufacturing method of corrosion resistant rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH05299281A JPH05299281A (en) 1993-11-12
JP3126215B2 true JP3126215B2 (en) 2001-01-22

Family

ID=15024394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04130029A Expired - Fee Related JP3126215B2 (en) 1992-04-23 1992-04-23 Manufacturing method of corrosion resistant rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP3126215B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696347B2 (en) * 2000-09-28 2011-06-08 日立金属株式会社 R-Fe-B permanent magnet electroplating method

Also Published As

Publication number Publication date
JPH05299281A (en) 1993-11-12

Similar Documents

Publication Publication Date Title
JP2520450B2 (en) Method for manufacturing corrosion resistant rare earth magnet
JP6611380B2 (en) COMPOSITE PLATING LAYER FORMED ON SURFACE OF Nd-Fe-B MAGNETIC MATERIAL AND METHOD FOR PRODUCING Nd-Fe-B MAGNETIC MATERIAL HAVING THE COMPOSITE PLATING LAYER
JP4821800B2 (en) Pre-plating method for coil ends
TWI447270B (en) Method for improving the adhesion between silver surfaces and resin materials
CN111590234B (en) High-melting-point environment-friendly superfine solder wire applied to automatic welding and preparation method thereof
WO2009139055A1 (en) Rare-earth-based permanent magnet
JP3126215B2 (en) Manufacturing method of corrosion resistant rare earth permanent magnet
JP3698308B2 (en) Magnet and manufacturing method thereof
JP2011009618A (en) Method of manufacturing winding-integrated mold coil
KR20190028363A (en) Copper alloy rolled material, its manufacturing method and electric and electronic parts
KR101418194B1 (en) SURFACE TREATMENT AGENT FOR Pd OR ALLOY MAINLY COMPOSED OF Pd, AND SURFACE COATING LAYER STRUCTURE OF COPPER SURFACE
JP4506965B2 (en) R-T-M-B rare earth permanent magnet and method for producing the same
JP2004154864A (en) Lead-free soldering alloy
JP2004039917A (en) Permanent magnet and manufacturing method therefor
EP0127857A1 (en) Solderable stainless steel article and method for making same
CN113604846A (en) Surface treatment process for integrated circuit lead frame
JPH09270310A (en) Rare earth permanent magnet
CN104475735B (en) Supplementing method for neodymium-iron-boron magnet
JPH0241588B2 (en)
JP3007561B2 (en) Method of joining R-Fe-B permanent magnet and yoke
JP3935092B2 (en) R-TM-B permanent magnet
JP4506964B2 (en) R-T-M-B rare earth permanent magnet and method for producing the same
CN105195923A (en) Environment-friendly brazing material having corrosion resistance
JP2001230106A (en) Permanent magnet material
JPH0756849B2 (en) Method for manufacturing corrosion resistant rare earth magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees