JP3124881U - Liquid level sensor - Google Patents

Liquid level sensor Download PDF

Info

Publication number
JP3124881U
JP3124881U JP2006004829U JP2006004829U JP3124881U JP 3124881 U JP3124881 U JP 3124881U JP 2006004829 U JP2006004829 U JP 2006004829U JP 2006004829 U JP2006004829 U JP 2006004829U JP 3124881 U JP3124881 U JP 3124881U
Authority
JP
Japan
Prior art keywords
liquid level
liquefied gas
tank
liquefied
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006004829U
Other languages
Japanese (ja)
Inventor
孝二 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006004829U priority Critical patent/JP3124881U/en
Application granted granted Critical
Publication of JP3124881U publication Critical patent/JP3124881U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

【課題】液化ガスを充填するタンクが密閉系でも開放系でも適用でき、液化ガスの種類に対する制約がなく、構造が単純で安価で耐久性に優れた連続液面センサ。
【解決手段】タンク1内の液化ガスの液面を計測する液面センサにおいて、一端が液化ガス中に挿入され、他の一端がタンク1外に配置された金属管2と、この金属管2の2箇所の温度差を検出する示差熱電対と、該示差熱電対が接続された温度測定器8と、この温度測定器8が出力する前記2箇所の温度差データから液化ガスの液面の深さを得るデータ処理部9を備える。
【選択図】 図1
A continuous liquid level sensor that can be applied to a tank filled with liquefied gas in either a closed system or an open system, has no restrictions on the type of liquefied gas, has a simple structure, is inexpensive, and has excellent durability.
In a liquid level sensor for measuring a liquid level of a liquefied gas in a tank, a metal pipe having one end inserted into the liquefied gas and the other end arranged outside the tank, and the metal pipe The differential thermocouple for detecting the temperature difference between the two locations, the temperature measuring device 8 to which the differential thermocouple is connected, and the temperature difference data of the liquefied gas from the temperature difference data output by the two temperature measuring devices 8. A data processing unit 9 for obtaining the depth is provided.
[Selection] Figure 1

Description

本考案は、タンク等の容器内部にある液化窒素、液化酸素、液化天然ガス等の液化ガスの液面の深さを高精度で検出することができる液面センサに関する。   The present invention relates to a liquid level sensor that can detect the depth of a liquid level of liquefied gas such as liquefied nitrogen, liquefied oxygen, and liquefied natural gas inside a container such as a tank with high accuracy.

従来、種々方式の液化ガスの液面レベルセンサが提案されている。温度センサを利用した液面センサにおいては、液化ガスが充填されるタンクの所定深さに、熱電対や白金測温抵抗体などの温度センサが配設される。該温度センサにより計測される温度が、液化ガスの温度の場合は液化ガスの液面レベルは前記所定深さより上にあり、液化ガスの温度より高い場合は液化ガスの液面レベルは前記所定深さより下にある。   Conventionally, various types of liquid level sensors for liquefied gas have been proposed. In a liquid level sensor using a temperature sensor, a temperature sensor such as a thermocouple or a platinum resistance thermometer is disposed at a predetermined depth of a tank filled with liquefied gas. When the temperature measured by the temperature sensor is the temperature of the liquefied gas, the liquid level of the liquefied gas is above the predetermined depth, and when the temperature is higher than the temperature of the liquefied gas, the liquid level of the liquefied gas is the predetermined depth. It is below.

屈折率センサを利用した液面センサにおいては、液化ガスが充填されるタンクの所定深さに、光ファイバとプリズムなどで構成される屈折率センサが配設され、タンクの外で屈折率センサを通過した光が検出される。屈折率センサは液化ガスに浸漬していないとき光を通過させ、液化ガスに浸漬しているときその屈折率の違いにより光を通過させないように調整されている。したがって、該屈折率センサの通過光が検出されないときは液化ガスの液面レベルは前記所定深さより上にあり、該屈折率センサの通過光が検出されるときは液化ガスの液面レベルは前記所定深さより下にある。   In a liquid level sensor using a refractive index sensor, a refractive index sensor composed of an optical fiber and a prism is disposed at a predetermined depth of a tank filled with liquefied gas, and the refractive index sensor is disposed outside the tank. Passed light is detected. The refractive index sensor is adjusted so as to allow light to pass through when not immersed in the liquefied gas, and to prevent light from passing through due to the difference in refractive index when immersed in the liquefied gas. Therefore, when the light passing through the refractive index sensor is not detected, the liquid level of the liquefied gas is above the predetermined depth, and when the light passing through the refractive index sensor is detected, the liquid level of the liquefied gas is Below a predetermined depth.

液化ガスが充填されるタンクが密閉系の場合は、圧力センサを利用した液面センサが構成できる。該タンクの液面より上の圧力を計測し、その計測結果より連続した任意の液面のレベルを知ることがでる、すなわち連続液面センサが構成される。   When the tank filled with the liquefied gas is a closed system, a liquid level sensor using a pressure sensor can be configured. A pressure above the liquid level in the tank is measured, and an arbitrary continuous liquid level can be known from the measurement result, that is, a continuous liquid level sensor is configured.

液化ガス中に挿入した超伝導線材に臨界電流より小さい電流を流したときの電圧値を測定することにより液化ガスの液面を計測する連続液面センサが構成される。液化ガスが液化窒素、液化酸素または液化天然ガスであるときは、超伝導線材として酸化物超伝導体を用いる。前記酸化物超伝導体は、Ti系酸化物超伝導体、Hg系酸化物超伝導体、Ag合金シースされたBi系酸化物超伝導体あるいは熱伝導率の低い金属上にBi系酸化物超伝導体を被覆してなるもので構成される。(例えば特許文献1参照)
特開2002−202175号公報
A continuous liquid level sensor that measures the liquid level of the liquefied gas is configured by measuring a voltage value when a current smaller than the critical current is passed through the superconducting wire inserted in the liquefied gas. When the liquefied gas is liquefied nitrogen, liquefied oxygen or liquefied natural gas, an oxide superconductor is used as the superconducting wire. The oxide superconductor may be a Ti-based oxide superconductor, a Hg-based oxide superconductor, a Bi-based oxide superconductor with an Ag alloy sheath, or a Bi-based oxide superconductor on a metal having low thermal conductivity. It is composed of a conductor. (For example, see Patent Document 1)
JP 2002-202175 A

従来の温度センサや屈折率センサによる液面レベルセンサで連続液面センサを構成するには、温度センサや屈折率センサを多数連続して配設する必要があり、実施が困難である。
また、タンク内の圧力を計測する場合は、連続液面センサを構成できるが、タンクが密閉系でなければならないという制約がある。
液化ガス中に挿入した超伝導線材に電流を流し、その電圧を測定することにより液化ガスの液面を計測する連続液面センサでは、液化ガスの種類に制約がある。
本考案は、タンクが密閉系でなければならないという制約のない、また液化ガスの種類に対する制約のない連続液面センサを構成することを課題とする。
In order to construct a continuous liquid level sensor with a liquid level sensor using a conventional temperature sensor or refractive index sensor, it is necessary to continuously arrange a large number of temperature sensors and refractive index sensors, which is difficult to implement.
Moreover, when measuring the pressure in a tank, although a continuous liquid level sensor can be comprised, there exists a restriction | limiting that the tank must be a closed system.
In a continuous liquid level sensor that measures the liquid level of a liquefied gas by passing a current through a superconducting wire inserted in the liquefied gas and measuring the voltage, the type of the liquefied gas is limited.
It is an object of the present invention to configure a continuous liquid level sensor that does not have a restriction that the tank must be a closed system and does not have a restriction on the type of liquefied gas.

タンク内の液化ガスの液面を計測する液面センサにおいて、一端が液化ガス中に挿入され、他の一端がタンク外に配置された熱伝導体と、この熱伝導体の2箇所に配設された温度センサと、この2箇所の温度差から液化ガスの液面の深さを得る手段とを備える。   In the liquid level sensor that measures the liquid level of the liquefied gas in the tank, one end is inserted into the liquefied gas, and the other end is disposed outside the tank, and the heat conductor is disposed at two locations. And a means for obtaining the liquid surface depth of the liquefied gas from the temperature difference between the two locations.

本考案の連続液面センサは、液化ガスを充填するタンクが密閉系でも開放系でも適用でき、液化ガスの種類に対する制約がない。また、熱伝導体と温度センサで構成され、構造が単純で安価であり、極低温にさらされるのは熱伝導体のみであり耐久性に優れる。   The continuous liquid level sensor of the present invention can be applied regardless of whether the tank filled with liquefied gas is a closed system or an open system, and there is no restriction on the type of liquefied gas. Further, it is composed of a heat conductor and a temperature sensor, has a simple structure and is inexpensive, and only the heat conductor is exposed to an extremely low temperature and has excellent durability.

熱伝導体は、中心が空洞の金属管で構成され、材質は熱伝導の良好な銅又は銀などである。金属管の外周は、断熱材で覆われ、該金属管の液化ガスから露出した部分での放熱と着霜を抑える。   The heat conductor is composed of a metal tube having a hollow center, and the material is copper or silver having good heat conductivity. The outer periphery of the metal tube is covered with a heat insulating material to suppress heat dissipation and frost formation at the portion exposed from the liquefied gas of the metal tube.

熱伝導体のタンク外の一端には、放熱フィンが形成され、該放熱フィンはファンで室温の空気を吹き付けられ、室温に保持される。   A heat radiating fin is formed at one end outside the tank of the heat conductor, and the heat radiating fin is blown with air at room temperature by a fan and kept at room temperature.

以下、本考案の実施例を説明する。図1は本考案の構成を概略的に示す図である。図1において、1はタンクであり、液化窒素を充填するための容器として機能する。2は金属管であり、中心軸が空洞で、材質は銅又は銀などで構成され、熱伝導体として機能する。金属管2の一端には放熱フィンが形成され、タンク1の外部に配設される。該放熱フィンはファン4で室温の空気を吹き付けられ、室温に保持される。金属管2の他の一端は液化窒素に浸漬し、その浸漬部分は−196℃に保持される。3は断熱材であり、金属管2の液化窒素から露出した部分での放熱と着霜を抑える機能を有する。   Embodiments of the present invention will be described below. FIG. 1 is a diagram schematically showing the configuration of the present invention. In FIG. 1, 1 is a tank, which functions as a container for filling liquefied nitrogen. Reference numeral 2 denotes a metal tube having a hollow central axis and made of copper, silver, or the like, and functions as a heat conductor. A heat radiating fin is formed at one end of the metal tube 2 and disposed outside the tank 1. The radiating fin is blown with air at room temperature by the fan 4 and is kept at room temperature. The other end of the metal tube 2 is immersed in liquefied nitrogen, and the immersed part is maintained at -196 ° C. Reference numeral 3 denotes a heat insulating material having a function of suppressing heat radiation and frost formation in a portion exposed from the liquefied nitrogen of the metal tube 2.

クロメル線5の一端とコンスタンタン線6の一端が溶接され、コンスタンタン線6の他の一端とクロメル線7の一端が溶接されて示差熱電対が形成される。クロメル線5とコンスタンタン線6の溶接点は、金属管2中のX点に絶縁材を介して埋設され、コンスタンタン線6とクロメル線7の溶接点は、金属管2中のY点に絶縁材を介して埋設される。前記示差熱電対は温度測定器8に接続され、金属管2中のX点とY点の温度差が測定され、表示される。前記温度差は液化窒素の液面の深さに応じて変化する。温度測定器8で得られた前記温度差のデータはデータ処理部9に入力される。データ処理部9は、あらかじめ格納されている前記温度差と液化窒素の液面の深さとの関係から液化窒素の液面の深さを求め、これを表示する。   One end of the chromel wire 5 and one end of the constantan wire 6 are welded, and the other end of the constantan wire 6 and one end of the chromel wire 7 are welded to form a differential thermocouple. The welding point between the chromel wire 5 and the constantan wire 6 is embedded via an insulating material at the point X in the metal tube 2, and the welding point between the constantan wire 6 and the chromel wire 7 is insulated at the point Y in the metal tube 2. It is buried through. The differential thermocouple is connected to a temperature measuring device 8, and the temperature difference between the X point and the Y point in the metal tube 2 is measured and displayed. The temperature difference changes depending on the depth of the liquid level of liquefied nitrogen. The temperature difference data obtained by the temperature measuring device 8 is input to the data processing unit 9. The data processing unit 9 obtains the liquid surface depth of the liquefied nitrogen from the relationship between the temperature difference stored in advance and the liquid surface depth of the liquefied nitrogen, and displays this.

図1において、液化窒素の液面の深さが、説明を容易にするため、レベルAとレベルBの2つ記載されている。
図2は本考案の動作原理を示すグラフである。図2において、曲線Aは液化窒素の液面の深さがレベルA(d=dA)にある時の金属管2内軸方向の温度分布を示し、曲線Bは液化窒素の液面の深さがレベルB(d=dB)にある時の金属管2内軸方向の温度分布を示す。
In FIG. 1, the depth of the liquid surface of liquefied nitrogen is shown in two levels, level A and level B, for ease of explanation.
FIG. 2 is a graph showing the operating principle of the present invention. In FIG. 2, curve A shows the temperature distribution in the axial direction of the metal tube 2 when the liquid level of liquefied nitrogen is at level A (d = dA), and curve B shows the depth of the liquid level of liquefied nitrogen. Shows the temperature distribution in the axial direction of the metal tube 2 when is at the level B (d = dB).

金属管2中のX点とY点の温度差は、液化窒素の液面の深さがレベルA(d=dA)にある時は曲線Aと点線の交点より得られ、△TAとなる。同様に、液面の深さがレベルB(d=dB)にある時は、前記温度差は曲線Bと点線の交点より得られ、△TBとなる。このように、液化窒素の液面の深さに対応して前記温度差が決定する。
図3は液化窒素の液面の深さと温度差の関係を示すグラフである。図3において、d−△T曲線は液化窒素の液面の深さと温度測定器8で測定された温度差の関係を示し、データ処理部9に格納される。
The temperature difference between the point X and the point Y in the metal tube 2 is obtained from the intersection of the curve A and the dotted line when the liquid level of the liquefied nitrogen is at level A (d = dA), and becomes ΔTA. Similarly, when the liquid surface depth is at level B (d = dB), the temperature difference is obtained from the intersection of the curve B and the dotted line and becomes ΔTB. Thus, the temperature difference is determined in accordance with the liquid level depth of liquefied nitrogen.
FIG. 3 is a graph showing the relationship between the liquid level of liquefied nitrogen and the temperature difference. In FIG. 3, a d−ΔT curve shows the relationship between the liquid level of liquefied nitrogen and the temperature difference measured by the temperature measuring device 8, and is stored in the data processing unit 9.

本考案は以上の構成であるから、図1の実施例に示す液面センサは、連続液面センサとして機能し、液化窒素を充填するタンク1が密閉系でも開放系でも適用でき、熱伝導体と温度センサで構成され構造が単純で安価であり、極低温にさらされるのは熱伝導体のみであり耐久性に優れる。   Since the present invention has the above-described configuration, the liquid level sensor shown in the embodiment of FIG. 1 functions as a continuous liquid level sensor, and the tank 1 filled with liquefied nitrogen can be applied to either a closed system or an open system. The temperature sensor is simple and inexpensive, and only the heat conductor is exposed to extremely low temperatures and has excellent durability.

図1の実施例においては、タンク1に充填されている液化ガスは液化窒素であるが、液化窒素以外の液化ガスについても、その液化ガスの前記d−△T曲線をデータ処理部9に格納することにより、本考案は適用可能であり装置は図示例に限定されない。
実施例においては、示差熱電対はクロメル線5と、コンスタンタン線6と、クロメル線7で構成されているが、コンスタンタン線6の代わりにアルメル線でもよい。あるいは、これらの金属線とは全く別の金属線で構成される示差熱電対でも本考案は適用可能である。
また、実施例においては、示差熱電対でX点とY点の温度差を検出しているが、別の温度センサ、例えば白金測温抵抗体をX点とY点に埋設し、それぞれの温度を測定し、その差からX点とY点の温度差を求めてもよい。このように装置は種々の構成とすることができ、本考案はこれら変形例を包含する。
In the embodiment of FIG. 1, the liquefied gas filled in the tank 1 is liquefied nitrogen, but the liquefied gas other than liquefied nitrogen is also stored in the data processing unit 9 for the liquefied gas. Thus, the present invention is applicable, and the apparatus is not limited to the illustrated example.
In the embodiment, the differential thermocouple includes a chromel wire 5, a constantan wire 6, and a chromel wire 7, but an alumel wire may be used instead of the constantan wire 6. Alternatively, the present invention can also be applied to a differential thermocouple composed of a metal wire completely different from these metal wires.
In the embodiment, the temperature difference between the X point and the Y point is detected by a differential thermocouple. However, another temperature sensor, for example, a platinum resistance thermometer is embedded in the X point and the Y point, and the respective temperatures are detected. And the temperature difference between the X point and the Y point may be obtained from the difference. Thus, the apparatus can have various configurations, and the present invention includes these modifications.

本考案は、タンク等の容器内部にある液化窒素、液化酸素、液化天然ガス等の液化ガスの液面の深さを高精度で検出することができる液面センサに関する。   The present invention relates to a liquid level sensor that can detect the depth of a liquid level of liquefied gas such as liquefied nitrogen, liquefied oxygen, and liquefied natural gas inside a container such as a tank with high accuracy.

本考案の構成を概略的に示す図である。It is a figure which shows the structure of this invention roughly. 本考案の動作原理を示すグラフである。It is a graph which shows the operation principle of this invention. 液化窒素の液面の深さと温度差の関係を示すグラフである。It is a graph which shows the relationship between the depth of the liquid level of liquefied nitrogen, and a temperature difference.

符号の説明Explanation of symbols

1 タンク
2 金属管
3 断熱材
4 ファン
5 クロメル線
6 コンスタンタン線
7 クロメル線
8 温度測定器
9 データ処理部
DESCRIPTION OF SYMBOLS 1 Tank 2 Metal pipe 3 Thermal insulation material 4 Fan 5 Chromel wire 6 Constantan wire 7 Chromel wire 8 Temperature measuring instrument 9 Data processing part

Claims (1)

タンク内の液化ガスの液面を計測する液面センサにおいて、一端が液化ガス中に挿入され、他の一端がタンク外に配置された熱伝導体と、この熱伝導体の2箇所に配設された温度センサと、この2箇所の温度差から液化ガスの液面の深さを得る手段とを備えたことを特徴とする液面センサ。   In the liquid level sensor that measures the liquid level of the liquefied gas in the tank, one end is inserted into the liquefied gas, and the other end is disposed outside the tank, and the heat conductor is disposed at two locations. A liquid level sensor comprising: a temperature sensor that is configured to obtain the depth of the liquid level of the liquefied gas from the temperature difference between the two locations.
JP2006004829U 2006-06-20 2006-06-20 Liquid level sensor Expired - Fee Related JP3124881U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004829U JP3124881U (en) 2006-06-20 2006-06-20 Liquid level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004829U JP3124881U (en) 2006-06-20 2006-06-20 Liquid level sensor

Publications (1)

Publication Number Publication Date
JP3124881U true JP3124881U (en) 2006-08-31

Family

ID=43474784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004829U Expired - Fee Related JP3124881U (en) 2006-06-20 2006-06-20 Liquid level sensor

Country Status (1)

Country Link
JP (1) JP3124881U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040822A (en) * 2011-08-12 2013-02-28 Toshiba Corp Water level measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040822A (en) * 2011-08-12 2013-02-28 Toshiba Corp Water level measuring apparatus

Similar Documents

Publication Publication Date Title
US5887978A (en) Self-verifying temperature sensor
US3321974A (en) Surface temperature measuring device
JP2011522261A (en) High vibration resistance temperature sensor
US6202486B1 (en) Analog liquid level sensor
JP5583153B2 (en) Liquid level detection device and method
JPH11183265A (en) Temperature measuring instrument with thermocouple
NO813234L (en) PROCEDURE AND APPARATUS FOR REGULATING ENERGY BALANCE IN A DEVICE WITH HEAT LOSS
US3956936A (en) Temperature-measuring system
JP3124881U (en) Liquid level sensor
CN107063493B (en) Dual-purpose temperature-measuring and heating sensor
EP1434041A1 (en) Method and apparatus for inferring a temperature
US4682898A (en) Method and apparatus for measuring a varying parameter
JP3028941B2 (en) Multi-sheath type sodium leak detection device
US20220307915A1 (en) Temperature-Measuring Device
JP3177887U (en) Sheath type temperature measuring device
JP2003057120A (en) Multiple points temperature measurement device
EP0989393A2 (en) Thermocouple and method of manufacture
JP3380023B2 (en) Temperature reference device
CZ294088B6 (en) Device for detecting heat carrier level in a reactor
JP6663799B2 (en) Liquid level sensor
RU2289107C2 (en) Thermocouple
JPH04313028A (en) Liquid level measuring method
CN220019442U (en) Freezing point tester for crystal substance
JPS58151532A (en) Detecting sensor of temperature distribution
JPH06174561A (en) Fiber-optic sensor

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees