JP3121969U - Heat and water vapor resistance measuring device - Google Patents

Heat and water vapor resistance measuring device Download PDF

Info

Publication number
JP3121969U
JP3121969U JP2006001769U JP2006001769U JP3121969U JP 3121969 U JP3121969 U JP 3121969U JP 2006001769 U JP2006001769 U JP 2006001769U JP 2006001769 U JP2006001769 U JP 2006001769U JP 3121969 U JP3121969 U JP 3121969U
Authority
JP
Japan
Prior art keywords
water
heat
water vapor
metal plate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006001769U
Other languages
Japanese (ja)
Inventor
寿叙 斉藤
Original Assignee
財団法人日本化学繊維検査協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人日本化学繊維検査協会 filed Critical 財団法人日本化学繊維検査協会
Priority to JP2006001769U priority Critical patent/JP3121969U/en
Application granted granted Critical
Publication of JP3121969U publication Critical patent/JP3121969U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

【課題】衣服等の繊維製品等を構成する材料の定常状態での熱及び水蒸気抵抗とを誤差少なく簡便に測定する装置を提供する。
【解決手段】測定部が水平に設けた多孔性金属板と、上方に開放した注水路を有しかつ上記多孔性金属板の下面に接して固定されかつ加熱手段を内蔵した金属ブロックと、この金属ブロックの温度制御装置と、金属ブロック加熱電力測定装置と、上記注水路に水を供給する注水装置とを備え、この注水装置は上記注水路に連通させた水位制御水槽と、この水位制御水槽に給水するための給水装置とを具備する。
【選択図】図1
An apparatus for simply measuring heat and water vapor resistance in a steady state of a material constituting a textile product such as clothes with little error.
A porous metal plate having a measuring part provided horizontally, a metal block having a water injection channel opened upward, fixed in contact with the lower surface of the porous metal plate, and incorporating heating means, A metal block temperature control device, a metal block heating power measuring device, and a water injection device for supplying water to the water injection channel, the water injection device being connected to the water injection channel, a water level control water tank, and the water level control water tank And a water supply device for supplying water.
[Selection] Figure 1

Description

本考案は、熱及び水蒸気抵抗を測定する装置に関し、詳しくは繊維製品等の定常状態での熱及び水蒸気の移動特性を測定する装置に関し、さらに詳しくは繊維製品等の定常状態での熱及び水蒸気抵抗を誤差少なく測定する装置に関するものである。   TECHNICAL FIELD The present invention relates to an apparatus for measuring heat and water vapor resistance, and more particularly to an apparatus for measuring the movement characteristics of heat and water vapor in a steady state of a textile product, and more specifically, heat and water vapor in a steady state of a textile product. The present invention relates to an apparatus for measuring resistance with little error.

一般に、衣服等の繊維製品等を設計する場合に、衣服等の快適性は重要な評価指標である。その快適性の中で最も基本的でかつ重要な特性は、熱と水分の移動に関係する特性である。衣服等を実際に着用した際の快適性は、人体の皮膚と衣服とで形成される空間内の温度と湿度とが大きく影響し、それぞれをいわゆる快適域内に制御することが重要である。これを達成するための測定技術を、衣服等の繊維製品等を構成する材料の設計から衣服等の試作まで段階的に大分類すると、まず第1ステップとして衣服等の繊維製品等を構成する材料の定常状態での熱及び水蒸気の移動特性を誤差少なく測定する技術、第2ステップとして模擬皮膚と衣服等の繊維製品等を構成する材料とで形成する空間内の熱及び水蒸気の移動特性を誤差少なく測定する技術、第3ステップとして模擬人体と衣服等の繊維製品等とで形成する空間内の熱及び水蒸気の移動特性を誤差少なく測定する技術が必要であり、またこれらの結果と実際に着用した際の熱及び水蒸気の移動特性または快適感とを対比させることが重要である。   In general, when designing textile products such as clothes, the comfort of clothes and the like is an important evaluation index. The most basic and important characteristics of comfort are those related to heat and moisture transfer. The comfort when the garment is actually worn is greatly influenced by the temperature and humidity in the space formed by the skin of the human body and the garment, and it is important to control each within the so-called comfort zone. The measurement technology to achieve this can be broadly classified in stages, from the design of materials that make up textile products such as clothes to the trial production of clothes, etc. First, the materials that make up textile products such as clothes as the first step Technology for measuring heat and water vapor transfer characteristics in steady state with less error, and as a second step, error in heat and water vapor transfer characteristics in the space formed by simulated skin and the material constituting textiles such as clothes It is necessary to have a technique to measure less, and as a third step, a technique to measure the movement characteristics of heat and water vapor in the space formed by the simulated human body and textiles such as clothes with less error, and these results and actual wear It is important to contrast the heat and water vapor transfer characteristics or comfort when doing so.

また一般に、熱の移動特性としては、例えば熱抵抗、クロー値、放散熱損失量、保温率、温度等がある。また水蒸気の移動特性としては、水蒸気抵抗、水蒸気通過量、透湿度、湿度等がある。これら熱及び水蒸気の移動特性は、例えば温度では℃、湿度では%RHなどというように、異なる測定単位系で測定することが簡便で、別々の測定装置で測定されることが多い。しかしながら、このように異なる測定単位系で測定した熱及び水蒸気の移動特性は、その各々が全体の系に及ぼす効果を相互に比較して材料を最適設計するのが困難であり、工夫が必要である。本考案者はその一つの解として、熱及び水蒸気の移動をエネルギーの移動と考え、熱及び水蒸気抵抗を特性として選ぶべきであると考えるに至った。   In general, the heat transfer characteristics include, for example, a thermal resistance, a claw value, a dissipated heat loss amount, a heat retention rate, and a temperature. Further, the water vapor transfer characteristics include water vapor resistance, water vapor passage amount, moisture permeability, humidity, and the like. These heat and water vapor transfer characteristics are easy to measure in different measurement units, such as ° C for temperature and% RH for humidity, and are often measured by separate measuring devices. However, the heat and water vapor transfer characteristics measured in different measurement unit systems are difficult to optimally design materials by comparing the effects of each on the overall system. is there. As one solution, the present inventors have considered that heat and water vapor transfer should be considered as energy transfer, and heat and water vapor resistance should be selected as characteristics.

これを具体的に説明すると、前記第1ステップに相当する従来法の定常状態での熱の移動特性に関係する試験方法としては、例えばJIS L 1096(一般織物試験方法、1999)の第8.28.1項に記載されている保温性A法(恒温法)が公知である。この技術は、上部が開放されたフード内の下部に設けられ、かつ周囲を熱ガードで囲まれた恒温発熱体の上部の金属板表面に試験片を取り付け、低温度の外気に向かって流れ出す熱量が一定となり、発熱体の表面温度が一定値を示すようになってから2時間後に試験片を透過して放散される熱損失を求め、これと試験片のない裸状のままで同様の温度差及び時間に放散される熱損失とから保温率を計算によって求めるものである。この方法は熱の移動特性を測定するには優れた技術であるが、水蒸気の移動特性を誤差少なく測定する技術は何ら開示も示唆もしていない。   Specifically, as a test method related to the heat transfer characteristics in the steady state of the conventional method corresponding to the first step, for example, the test method described in JIS L 1096 (General Textile Test Method, 1999), No.8. The heat retention A method (constant temperature method) described in 28.1 is known. In this technology, the amount of heat that flows toward the low-temperature outside air by attaching a test piece to the upper metal plate surface of the constant temperature heating element that is provided at the lower part of the hood with the upper part open and surrounded by a heat guard. 2 hours after the surface temperature of the heating element becomes a constant value, the heat loss that is transmitted through the test piece and dissipated is obtained, and this is the same temperature with no test piece remaining. The heat retention rate is obtained by calculation from the difference and the heat loss dissipated in time. This method is an excellent technique for measuring heat transfer characteristics, but does not disclose or suggest any technique for measuring water vapor transfer characteristics with a small error.

また前記第1ステップに相当する定常状態での水蒸気の移動特性に関係する試験方法としては、例えばJIS L 1099(繊維製品の透湿度試験方法、1993)に記載されている方法が公知である。その一例は、予め約40℃に温めた透湿カップに吸湿剤を入れ、試験片の表面を吸湿剤に向けて透湿カップに載せて固定してシールして試験体とし、この試験体を温度40±2℃、湿度(90±5)%RHの恒温恒湿装置内の試験片上約1cm上部の風速が0.8m/sを越えない位置に置き、1時間後に試験体を取り出して直ちに質量を測定し、測定後に再び試験体を恒温恒湿装置内の同位置に置き、1時間後に試験体を取り出して直ちに質量を測定し、繊維製品の試験片を通過した水蒸気の質量をその繊維製品1m・1時間当たりに換算するものである。この方法は繊維製品の試験片を通過した水蒸気の質量を測定するには優れた技術であるが、熱の移動特性を測定する技術は何ら開示も示唆もしていない。 Moreover, as a test method related to the water vapor movement characteristics in a steady state corresponding to the first step, for example, a method described in JIS L 1099 (a method for testing the moisture permeability of a textile product, 1993) is known. One example is that a moisture absorbent is placed in a moisture permeable cup that has been preheated to about 40 ° C., and the surface of the test piece is placed on the moisture permeable cup with the surface of the specimen facing the moisture absorbent and fixed and sealed to obtain a specimen. Place the test piece in a constant temperature and humidity device at a temperature of 40 ± 2 ° C. and humidity (90 ± 5)% RH at a position where the wind speed about 1 cm above the top does not exceed 0.8 m / s. Measure the mass, place the specimen again at the same position in the thermo-hygrostat after the measurement, take out the specimen one hour later, measure the mass immediately, and measure the mass of water vapor that passed through the test piece of the fiber product. The product is converted per 1m 2 · 1 hour. Although this method is an excellent technique for measuring the mass of water vapor that has passed through a test piece of textile, no technique for measuring heat transfer characteristics is disclosed or suggested.

上記2例で得られた熱損失や保温率と、通過水蒸気量とは測定装置も単位も異なるので、それら特性の相互比較はできず、相互に比較して材料を最適設計できる熱及び水蒸気抵抗を求めることはできない。   The heat loss and heat retention rate obtained in the above two examples and the amount of water vapor passed are different in measuring equipment and units, so the characteristics cannot be compared with each other, and the heat and water vapor resistance that can optimize the material design compared to each other. Cannot be asked.

一方、前記第2ステップに相当する、同一の測定装置を使用し、衣服等を構成する材料の熱及び水蒸気の移動特性を測定する装置や方法に関係する研究は従来から多数行われている。例えば函体の上面に模擬皮膚を設けると共に、この函体内に水を入れておき、ヒーターで加温することにより、発生蒸気を模擬皮膚の上面から放出させるように構成した人工的な発汗を行う装置が開示されている(特許文献1)。しかしながらこの装置では、発汗量の制御は函体内の水温を上げるしか他に方法はないので、この装置で透過水蒸気量と温度を別々に制御することは困難であり衣服等を着用した環境条件から大きく異なるとともに、前記第1ステップに相当する技術ではなく、かつ相互に比較できる熱及び水蒸気の移動特性や、相互に比較できる熱及び水蒸気抵抗を求めることは困難である。   On the other hand, many studies related to devices and methods for measuring heat and water vapor transfer characteristics of materials constituting clothes and the like using the same measuring device corresponding to the second step have been conducted. For example, artificial skin is constructed by providing simulated skin on the top surface of the box, putting water in the box, and heating it with a heater to release the generated vapor from the top surface of the simulated skin. An apparatus is disclosed (Patent Document 1). However, with this device, the only way to control the amount of sweat is to raise the water temperature in the box, so it is difficult to control the amount of permeated water vapor and the temperature separately with this device, and it is difficult to control the environmental conditions with clothes, etc. While greatly different, it is not a technique corresponding to the first step, and it is difficult to obtain heat and water vapor transfer characteristics that can be compared with each other and heat and water vapor resistance that can be compared with each other.

また前記第2ステップに相当する、外部から函体内に導入された水蒸気を函体の任意の面に設けられた水蒸気透過性膜または水蒸気透過性板から放出させるにあたり、函体内部の温度及び湿度の調節によって放散水蒸気の量及び温度を制御できる装置が提案されている(特許文献2)。しかしながらこの装置では、水蒸気透過性膜の孔から放散される水蒸気には空気の流れが伴うため、実際の人体の発汗作用と異なり、衣服等を着用した環境条件から大きく異なるとともに、前記第1ステップに相当する技術ではなく、相互に比較できる熱及び水蒸気の移動特性や、相互に比較できる熱及び水蒸気抵抗を求めることは困難である。   In addition, when the water vapor introduced into the box from the outside corresponding to the second step is released from the water vapor permeable film or the water vapor permeable plate provided on any surface of the box, the temperature and humidity inside the box An apparatus capable of controlling the amount and temperature of the diffused water vapor by adjusting the pressure has been proposed (Patent Document 2). However, in this apparatus, since the water vapor diffused from the pores of the water vapor permeable membrane is accompanied by an air flow, it differs greatly from the environmental conditions in which clothes are worn, unlike the actual sweating action of the human body. It is difficult to obtain heat and water vapor transfer characteristics that can be compared with each other and heat and water vapor resistance that can be compared with each other.

また近年では、前記第2ステップに相当する、改良された衣服内気候シミュレーション装置が開発されている。例えば、多孔質材料からなる模擬皮膚、発汗孔を有する基体及びこの基体に熱を供給する熱源部を備えた発汗手段と、前記発汗孔に水を供給する送水手段と、前記熱源部から前記基体に供給する熱量を制御する熱量制御手段と、前記模擬皮膚に近接した上面に試料を伸展固定する試料固定手段と、前記模擬皮膚と前記試料との間の空隙内の温度及び湿度を測定する空隙温湿度センサとを備え、前記送水手段から前記発汗孔への送水量を制御する送水量制御手段を有する装置を使用し、人体の運動状態を模擬して送水を間欠的に行う衣服内気候シミュレーション技術が開示されている(特許文献3)。この技術は非定常状態での人体の運動状態を模擬し、模擬皮膚と衣服等を構成する材料とで形成する空間内の熱及び水蒸気の移動の結果としての温度及び湿度を、衣服を実着用して運動した時の皮膚と衣服等を構成する材料とで形成する空間内の温度及び湿度とよく対応させて測定できるという点で優れている。さらに上記の各発汗孔と送水手段とをチューブで直結し、基体中の各発汗孔から約0.01cc/min程度(基体に供給される全発汗量として245g/(m×hr)程度)の微量の水を均一に吐出させ、多孔の模擬皮膚で水を拡散させ、均一な水蒸気として放出できる点でも優れている。しかしながらこの装置では各発汗孔とチューブとを接続部する必要から基体の構造が複雑になり、発汗孔の数にも上限が生じ、またチューブの内径が小のためスケールの沈着による圧力損失増大による吸水量の誤差が生じやすいので改良が望まれるほか、この技術は前記第1ステップに相当する技術ではなく、また模擬皮膚と試料との空間の温湿度を測定するので、相互に比較できる熱及び水蒸気の移動特性や、相互に比較できる熱及び水蒸気抵抗を求めることは困難である。 In recent years, an improved garment climate simulation apparatus corresponding to the second step has been developed. For example, simulated skin made of a porous material, a base having sweat holes, sweating means having a heat source part for supplying heat to the base, water supply means for supplying water to the sweat holes, and the base from the heat source part A heat amount control means for controlling the amount of heat supplied to the sample, a sample fixing means for extending and fixing the sample on the upper surface close to the simulated skin, and a gap for measuring the temperature and humidity in the gap between the simulated skin and the sample A climate simulation in clothes that includes a temperature / humidity sensor and that intermittently supplies water by simulating the motion state of a human body using a device having a water supply amount control means for controlling the amount of water supplied from the water supply means to the sweat hole. A technique is disclosed (Patent Document 3). This technology simulates the state of motion of the human body in an unsteady state, and the clothes and the temperature and humidity resulting from the movement of heat and water vapor in the space formed by the simulated skin and the materials that make up the clothes, etc. are actually worn Thus, it is excellent in that it can be measured in correspondence with the temperature and humidity in the space formed by the skin and the material constituting the clothes when exercising. Further, each sweat hole and water supply means are directly connected by a tube, and about 0.01 cc / min from each sweat hole in the substrate (about 245 g / (m 2 × hr) as the total sweat amount supplied to the substrate) It is also excellent in that a small amount of water can be uniformly discharged, water can be diffused with porous simulated skin, and discharged as uniform water vapor. However, in this device, the structure of the base is complicated because it is necessary to connect each sweat hole and the tube, and there is an upper limit on the number of sweat holes, and because the inner diameter of the tube is small, the pressure loss due to scale deposition increases. In addition to the fact that errors in water absorption are likely to occur, improvement is desired. In addition, this technique is not a technique corresponding to the first step, and the temperature and humidity of the space between the simulated skin and the sample are measured. It is difficult to determine the movement characteristics of water vapor and the heat and water vapor resistance that can be compared with each other.

これに類似の技術として、発熱性部材及び塩化ビニル樹脂、シリコーン、ゴム及びアクリル樹脂からなるグループから選択される低熱伝導性部材をこの順に積層してなる模擬皮膚からなり、例えば医療用プラスチックシリンジを使用して各発汗孔に独立して体温の水溶液を一定連続的かつ可変に供給可能な水溶液供給手段を付加した装置で、模擬皮膚の表面温度や衣服内環境を測定する技術が開示されている(特許文献4)。この技術は人間の発汗、発熱状態を人工的に発現させ、模擬皮膚の発汗孔からの気体状及び液状・玉状の発汗を安定的かつ容易に制御でき、皮膚からの放熱及び皮膚温度を精度良く再現でき、この装置を使用することにより人体が衣服を着用したときの衣服内環境を精度良く再現できる点で優れている。しかしながらこの装置では各発汗孔とチューブとを接続部する必要から基体の構造が複雑になり、発汗孔の数にも上限が生じ、またチューブの内径が小のためスケールの沈着による圧力損失増大による吸水量の誤差が生じやすいので改良が望まれるほか、この技術は前記第1ステップに相当する技術ではなく、また低熱伝導性部材を模擬皮膚として用いているので、衣服等の繊維製品等を構成する材料の熱抵抗を求めることはできず、水蒸気抵抗を求めることは困難である。   As a similar technique, a heat generating member and a simulated skin formed by laminating a low thermal conductivity member selected from the group consisting of vinyl chloride resin, silicone, rubber and acrylic resin in this order, for example, a medical plastic syringe A technique for measuring the surface temperature of the simulated skin and the environment in clothes is disclosed using an apparatus to which an aqueous solution supplying means capable of supplying a continuous and variable body temperature aqueous solution to each sweat hole is provided. (Patent Document 4). This technology artificially expresses human sweating and heat generation, and can stably and easily control the sweating of gas and liquid / ball from the sweating holes of the simulated skin, and accurately releases the heat from the skin and the skin temperature. It is excellent in that it can be reproduced well, and by using this apparatus, the environment in the clothes when the human body wears the clothes can be accurately reproduced. However, in this device, the structure of the base is complicated because it is necessary to connect each sweat hole and the tube, and there is an upper limit on the number of sweat holes, and because the inner diameter of the tube is small, the pressure loss due to scale deposition increases. In addition to the fact that errors in water absorption are likely to occur, improvements are desired, and this technique is not a technique equivalent to the first step, and uses a low thermal conductivity member as a simulated skin. The thermal resistance of the material to be obtained cannot be obtained, and it is difficult to obtain the water vapor resistance.

特開昭58−21164号公報JP 58-21164 A 特公平4−6012号公報Japanese Patent Publication No. 4-6012 特開2003−49311号公報JP 2003-49311 A 特開2003−167510号公報JP 2003-167510 A

本考案の目的は、衣服等の繊維製品等を構成する材料の設計を容易にするために、定常状態での熱の移動特性と水蒸気の移動特性とを相互に比較できる特性とし、それらを誤差少なく簡便に測定する装置を提供することである。より具体的には、熱の移動と水蒸気の移動の両者ともエネルギーの移動ととらえ、衣服等の繊維製品等を構成する材料の定常状態での熱及び水蒸気抵抗とを誤差少なく簡便に測定する装置を提供することである。   The purpose of the present invention is to make it possible to compare the heat transfer characteristics in the steady state and the water transfer characteristics in order to facilitate the design of the materials that make up the textile products such as clothes, and make them errors. An object of the present invention is to provide a device that performs measurement with little and simpleness. More specifically, both heat transfer and water vapor transfer are considered to be energy transfer, and a device that easily measures heat and water vapor resistance in the steady state of materials constituting textiles such as clothes without errors. Is to provide.

本考案は第1に、熱及び水蒸気抵抗を測定する装置であって、その測定部が水平に設けた多孔性金属板と、上方に開放した注水路を有しかつ上記多孔性金属板の下面に接して固定されかつ加熱手段を内蔵した金属ブロックと、この金属ブロックの温度制御装置と、金属ブロック加熱電力測定装置と、上記注水路に水を供給する注水装置とを備え、この注水装置は上記注水路に連通させた水位制御水槽と、水位制御水槽に給水するための給水装置とを具備する。   First, the present invention is an apparatus for measuring heat and water vapor resistance, the measuring part having a horizontally provided porous metal plate, and a water injection channel opened upward, and the lower surface of the porous metal plate. A metal block which is fixed in contact with the heater and has a built-in heating means, a temperature control device for the metal block, a metal block heating power measuring device, and a water injection device for supplying water to the water injection channel. A water level control water tank communicating with the water injection channel and a water supply device for supplying water to the water level control water tank are provided.

本考案は第2に、水平に設けた多孔性金属板と、上方に開放した注水路を有しかつ上記多孔性金属板の下面に接して固定されかつ加熱手段を内蔵した金属ブロックと、この金属ブロックの温度制御装置と、金属ブロック加熱電力測定装置と、上記注水路に水を供給する注水装置とを備え、この注水装置は上記注水路に連通させた水位制御水槽と、水位制御水槽に給水するための給水装置とを具備する熱及び水蒸気ガードを測定部の周囲に有する。   The present invention secondly, a porous metal plate provided horizontally, a metal block having a water injection channel open upward, fixed in contact with the lower surface of the porous metal plate, and incorporating heating means, A metal block temperature control device, a metal block heating power measuring device, and a water injection device for supplying water to the water injection channel. The water injection device is connected to the water level control water tank communicated with the water injection channel, and the water level control water tank. A heat and water vapor guard including a water supply device for supplying water is provided around the measurement unit.

好ましい態様において、本考案の装置は次の構成を有する。
(1)水位制御水槽が水路と水平関係にある位置に配されている。
(2)水位制御水槽に水位検出センサを設けて給水装置を制御する。
(3)水位制御水槽を傾斜させて設ける。
(4)試験用風洞の中に測定部と熱及び水蒸気ガードを組み込む。
(5)恒温恒湿槽の中に測定部、または測定部と熱及び水蒸気ガード、または試験用風洞の中に測定部と熱及び水蒸気ガードを組み込んだ試験用風洞を設ける。
In a preferred embodiment, the device of the present invention has the following configuration.
(1) The water level control water tank is arranged at a position in a horizontal relationship with the water channel.
(2) Water level control A water level detection sensor is provided in the water tank to control the water supply device.
(3) The water level control water tank is inclined.
(4) Incorporate a measurement unit and heat and water vapor guards in the test wind tunnel.
(5) A measurement unit or a measurement unit and a heat and water vapor guard are provided in the constant temperature and humidity chamber, or a test wind tunnel incorporating the measurement unit and the heat and water vapor guard is provided in the test wind tunnel.

本考案により、衣服等の繊維製品等を構成する材料の定常状態での熱及び水蒸気抵抗とを誤差少なく簡便に測定する装置を提供することができる。   According to the present invention, it is possible to provide an apparatus for simply measuring the heat and water vapor resistance in a steady state of a material constituting a textile product such as clothes with little error.

本考案において、被測定物質の典型例は衣服等の繊維製品等であり、例えば衣服、キルト、寝袋、室内装飾材、及びその他繊維製品や、繊維に似た製品に使用される多層複合材を含む生地、フィルム、コーティング、発泡材、及び皮革も包含される。   In the present invention, a typical example of a substance to be measured is a textile product such as clothes. For example, a multilayer composite material used for clothes, quilts, sleeping bags, upholstery materials, and other textile products or products similar to fibers. Also included are fabrics, films, coatings, foams, and leather.

熱抵抗Rctとは、試料の両面の温度差(即ち多孔金属板表面温度と雰囲気温度との差)を、温度勾配方向に合成された単位面積当たりの熱流速で除した値である。乾燥熱流速は、一つまたはそれ以上の電熱、対流及び放射の成分から構成されることがある。熱抵抗Rct(m・K/W)は、生地試料または複合試料に固有の値であり、この値から定常状態での温度に応じて所定の面積を通過する乾燥熱流速が決まる。 The thermal resistance Rct is a value obtained by dividing the temperature difference between both surfaces of the sample (that is, the difference between the surface temperature of the porous metal plate and the ambient temperature) by the heat flow rate per unit area synthesized in the temperature gradient direction. The drying heat flow rate may be composed of one or more electrothermal, convective and radiative components. The thermal resistance Rct (m 2 · K / W) is a value inherent to the dough sample or the composite sample, and the drying heat flow rate passing through a predetermined area is determined from this value according to the temperature in the steady state.

水蒸気抵抗Retは、試料両面の水蒸気圧差(即ち多孔金属板表面温度での飽和水蒸気圧と雰囲気の水蒸気圧との差)を温度勾配方向に合成された単位面積当たりの熱流速で除した値である。蒸発熱流速は、拡散と対流の両成分から構成されることがある。水蒸気抵抗Ret(m・Pa/W)は、生地試料または複合試料に固有の値であり、この値から定常状態での水上気圧差に応じて所定の面積を通過する潜在的な蒸発熱流速が決まる。 The water vapor resistance Ret is a value obtained by dividing the water vapor pressure difference on both surfaces of the sample (that is, the difference between the saturated water vapor pressure at the surface temperature of the porous metal plate and the water vapor pressure in the atmosphere) by the heat flow rate per unit area synthesized in the temperature gradient direction. is there. The evaporation heat flow rate may be composed of both diffusion and convection components. The water vapor resistance Ret (m 2 · Pa / W) is a value inherent to the dough sample or the composite sample, and from this value, a potential evaporation heat flow rate that passes through a predetermined area according to a difference in water pressure in a steady state. Is decided.

上記熱抵抗と水蒸気抵抗とから、水蒸気透過指数imtを求めることができる。水蒸気透過指数imtは、水蒸気抵抗に対する熱抵抗の割合で、以下の(1)式から求められる。
mt=S・Rct/Ret ・・・(1)
From the thermal resistance and water vapor resistance, the water vapor transmission index i mt can be obtained. The water vapor transmission index i mt is a ratio of the thermal resistance to the water vapor resistance, and is obtained from the following equation (1).
i mt = S · Rct / Ret (1)

ここに、S=60Pa/K、imtは無次元の数値で0〜1の間の値となる。この値が0であるということは、試料が水蒸気を通さない性質であることを意味し、換言すれば水蒸気抵抗が無限大である。この値が1となる試料は、同じ厚さの空気層と同じ熱抵抗及び水蒸気抵抗を持つことを意味する。 Here, S = 60 Pa / K, i mt is a dimensionless numerical value between 0 and 1. When this value is 0, it means that the sample does not allow water vapor to pass through. In other words, the water vapor resistance is infinite. A sample having this value of 1 means that it has the same thermal resistance and water vapor resistance as an air layer of the same thickness.

また上記水蒸気抵抗から、水蒸気透過性Wを求めることができる。水蒸気透過性Wは、水蒸気抵抗と温度に依存する生地試料または複合試料の特性であり、以下の(2)式から求められる。
=1/(Ret・φTm) ・・・(2)
ここに、φTmは測定部が温度Tmの時の水の蒸発に伴う潜熱で、例えばTm=35℃の時0.672W.h/gである。水蒸気透過性はg/m.h.Paで表される。
次に、本考案装置の構成の理解を助けるため、基本的な考え方を簡単に説明する。
Further, the water vapor permeability W d can be determined from the water vapor resistance. The water vapor permeability W d is a characteristic of the dough sample or the composite sample depending on the water vapor resistance and temperature, and is obtained from the following equation (2).
W d = 1 / ( Ret · φ Tm ) (2)
Here, φ Tm is the latent heat accompanying the evaporation of water when the measuring section is at the temperature Tm, for example, 0.672 W. at Tm = 35 ° C. h / g. The water vapor permeability is g / m 2 . h. Expressed as Pa.
Next, in order to help understanding of the configuration of the device of the present invention, a basic concept will be briefly described.

試験に供する試験片は皮膚温度近傍の例えば30〜40℃、好ましくは33〜37℃、より好ましくは35℃に電気的に加熱された多孔性金属板上に載せる。空調された空気を試験片上面を横切って試験片上面と平行方向に流れるよう送風する。熱抵抗を測定するためには、例えば温度20〜25℃、相対湿度65%RHの空調された空気を送風し、系が定常状態に達した後に試験片を通過する熱流束を測定する。本考案装置を用いた試験方法では、試験片+境界面における空気層の熱抵抗から裸の多孔性金属板上面の空気層の熱抵抗を引き算することによって、試料の熱抵抗Rctが求められる。ただし、両者の抵抗はいずれも同じ試験条件下で測定された抵抗値を用いる。 The test piece to be used for the test is placed on a porous metal plate electrically heated to, for example, 30 to 40 ° C., preferably 33 to 37 ° C., more preferably 35 ° C. near the skin temperature. The conditioned air is blown so as to flow across the upper surface of the test piece in a direction parallel to the upper surface of the test piece. In order to measure the thermal resistance, for example, air conditioned at a temperature of 20 to 25 ° C. and a relative humidity of 65% RH is blown, and the heat flux passing through the test piece is measured after the system reaches a steady state. In the test method using the present invention apparatus, by subtracting the thermal resistance of the air layer of the porous metal plate upper surface of the bare from the heat resistance of the air layer in the test piece + interface, it is required thermal resistance R ct sample . However, the resistance values measured under the same test conditions are used for both resistances.

水蒸気抵抗を測定するために、皮膚温度近傍の例えば30〜40℃、好ましくは33〜37℃、より好ましくは35℃に電気的に加熱された多孔性金属板は水蒸気は透過するが液体の水は透過しない膜(以下、透湿防水膜という)で覆う。加熱多孔性金属板に供給された水分は蒸発して、蒸気として膜を透過する。従って液体の水は試験片に接触しない。試験片が膜上に設置された状態で、多孔性金属板と同じ温度例えば温度25〜35℃、相対湿度例えば40〜65%RHの空調された空気を送風する。板上の温度が一定に保たれている時の熱流束は、水分の蒸発割合の目安で、この割合から試験片の水蒸気抵抗が測定される。本考案装置を用いた試験方法では、試験片+境界面の空気層の水蒸気抵抗から裸の多孔性金属板上面の空気層の水蒸気抵抗を引き算することによって試料の水蒸気抵抗Retが求められる。ただし、両者の抵抗はいずれも同じ試験条件下で測定された抵抗値を用いる。 In order to measure the water vapor resistance, a porous metal plate electrically heated to, for example, 30 to 40 ° C., preferably 33 to 37 ° C., more preferably 35 ° C. near the skin temperature allows water vapor to permeate but liquid water. Is covered with a non-permeable membrane (hereinafter referred to as a moisture permeable waterproof membrane). Moisture supplied to the heated porous metal plate evaporates and passes through the membrane as vapor. Thus, liquid water does not contact the specimen. In a state where the test piece is placed on the membrane, air conditioned air having the same temperature as the porous metal plate, for example, a temperature of 25 to 35 ° C. and a relative humidity of 40 to 65% RH is blown. The heat flux when the temperature on the plate is kept constant is a measure of the moisture evaporation rate, and the water vapor resistance of the test piece is measured from this rate. In the test method using the present invention apparatus, the water vapor resistance R et sample is determined by subtracting the water vapor resistance of bare porous metal plate upper surface of the air layer from water vapor resistance of the air layer of the test piece + interface. However, the resistance values measured under the same test conditions are used for both resistances.

以下に図面を参照しながら本考案の測定装置の最良の形態について詳細に説明する。
図1は、本考案に係わる温度及び注水量を制御可能な測定装置の一構成例を示す概念図である。図中の温度及び注水量を制御可能な測定部7の構成要素である1は多孔性金属板である。この多孔性金属板1は、その上面から熱及び水蒸気を均一に放散させて測定誤差を小とするために水平に設置する必要があり、その下面に接して固定されかつ加熱手段を内蔵した金属ブロック6により加熱されるとともに、この金属ブロック6の上面に開口した注水路12から水を供給される。
The best mode of the measuring device of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a conceptual diagram showing a configuration example of a measuring apparatus capable of controlling the temperature and the amount of water injection according to the present invention. In the figure, reference numeral 1 is a porous metal plate which is a component of the measuring unit 7 capable of controlling the temperature and the amount of water to be injected. The porous metal plate 1 needs to be installed horizontally in order to dissipate heat and water vapor uniformly from its upper surface to reduce measurement errors, and is fixed in contact with its lower surface and has a built-in heating means. While being heated by the block 6, water is supplied from the water injection path 12 opened on the upper surface of the metal block 6.

多孔性金属板1としては、多孔質の焼結金属板、多数の小孔を上下方向に穿った金属板等がある。多孔質の焼結金属板の場合は、ポアサイズが5〜40μm、特に10〜20μmが好ましい。孔を多数穿った金属板の場合は、孔径が0.5〜2mm、特に1.0〜1.5mmが好ましい。多孔性金属板1の各部位の温度と水蒸気の放散を更に均一にするために、その厚さは1〜5mm、特に約3mmが好ましく、その面積は0.04m以上(例えば200mm×200mm)が好ましい。また多孔性金属板1の表面の赤外線放射率は、20℃、波長8μm〜14μmで測定した場合、0.35よりより大きいものが用いられる。 Examples of the porous metal plate 1 include a porous sintered metal plate and a metal plate having a large number of small holes formed in the vertical direction. In the case of a porous sintered metal plate, the pore size is preferably 5 to 40 μm, more preferably 10 to 20 μm. In the case of a metal plate having a large number of holes, the hole diameter is preferably 0.5 to 2 mm, particularly preferably 1.0 to 1.5 mm. In order to make the temperature of each part of the porous metal plate 1 and the diffusion of water vapor more uniform, the thickness is preferably 1 to 5 mm, particularly about 3 mm, and the area is 0.04 m 2 or more (for example, 200 mm × 200 mm). Is preferred. The infrared emissivity of the surface of the porous metal plate 1 is greater than 0.35 when measured at 20 ° C. and a wavelength of 8 μm to 14 μm.

温度制御装置3は温度センサ2を含み、加熱手段13を制御することにより、測定部7の温度Tを±0.1K以内の誤差で一定に保つようにする。加熱電力は、適切な加熱電力測定装置4によって、その使用範囲の全体にわたって±2%で測定するようにする。 Temperature control device 3 comprises a temperature sensor 2, by controlling the heating means 13, the temperature T m of a measuring unit 7 to keep constant to within ± 0.1 K. The heating power is measured by ± 2% over the entire use range by an appropriate heating power measuring device 4.

注水路12は多孔金属板1と接触している金属ブロック6に上方が開放されて内蔵されている。注水路を上方からみた一例を図2に示す。図2では、金属ブロック上面に格子状に連続する凹部を設けて注水路が形成されている。   The water injection channel 12 is built in the metal block 6 that is in contact with the porous metal plate 1 so that the upper side is opened. An example of the water injection channel seen from above is shown in FIG. In FIG. 2, the water injection channel is formed by providing concave portions that are continuous in a lattice shape on the upper surface of the metal block.

図1にもどり、注水装置5はポンプなどの給水装置14と水位制御水槽15をもち、水は給水源16から管19を通って水位制御水槽15に供給され、そこから連通管17を通って注水路12に供給される。そして水は注水路12から多孔金属板1に供給され、蒸発させて水蒸気として放散させる。水位制御水槽15は少なくともその一部が注水路12に対し水平位置に配され、両者の下部が連通管17で連通している。連通管17は注水路12の下部の少なくとも1個所、好ましくは2個所以上に水が供給できるように配置することが好ましい。   Returning to FIG. 1, the water injection device 5 has a water supply device 14 such as a pump and a water level control water tank 15, and water is supplied from the water supply source 16 through the pipe 19 to the water level control water tank 15, and from there through the communication pipe 17. It is supplied to the water injection channel 12. Then, water is supplied from the water injection channel 12 to the porous metal plate 1 and evaporated to be diffused as water vapor. At least a part of the water level control water tank 15 is arranged in a horizontal position with respect to the water injection path 12, and the lower part of both is in communication with a communication pipe 17. It is preferable that the communication pipe 17 is arranged so that water can be supplied to at least one, preferably two or more locations below the water injection channel 12.

ここで多孔金属板1への給水量に関連した制約条件について説明すると、不感蒸泄に相当する発汗量は約23g/hr.m、ランニング時に相当する発汗量は約130g/hr.mと一般にいわれている。これを例えば400cm(例えば20cm×20cm)の多孔金属板より1分当たりに換算すると、それぞれ15mg/min、87mg/minの極微量となる。本考案者の実験によると、例えばチューブ式微量定量ポンプやシリンダー押出微量定量ポンプを使用しての送水を試みた場合、吸水量が極微量なため、脈動による給水量の変動や、シリンダー内径やピストン外径の僅かな変動による給水量の変動が無視できないほど大きくなってしまうという問題が発生しうることが判明した。また供給された水の多孔金属板中の水位が多孔金属板の上部表面から1mmより下になると、前述した多孔性金属板を覆う透湿防水膜(後述)からの水蒸気の放散量が少なくなりかつ部位による放散量の差が生じ、さらに水蒸気の放散量が経時的に低下してしまい、水蒸気抵抗を求めるのに必要な定常状態をつくりだすことができないという問題が発生しうることが判明した。 Here, the restriction conditions related to the amount of water supplied to the porous metal plate 1 will be described. The amount of sweating corresponding to insensitive steaming is about 23 g / hr. m 2 , the amount of sweating corresponding to running is about 130 g / hr. Generally referred to as m 2 . When this is converted per minute from a porous metal plate of 400 cm 2 (for example, 20 cm × 20 cm), for example, the trace amounts are 15 mg / min and 87 mg / min, respectively. According to the experiment of the present inventors, for example, when trying to feed water using a tube-type micro metering pump or a cylinder extrusion micro metering pump, the amount of water absorption is extremely small. It has been found that the problem of fluctuations in the amount of water supply due to slight fluctuations in the outer diameter of the piston can become so large that it cannot be ignored. Further, when the water level in the porous metal plate supplied is below 1 mm from the upper surface of the porous metal plate, the amount of water vapor diffused from the moisture-permeable waterproof membrane (described later) covering the porous metal plate described above decreases. In addition, it has been found that there is a difference in the amount of diffusion depending on the part, and further, the amount of water vapor diffusion decreases with time, and a problem that the steady state necessary for obtaining the water vapor resistance cannot be created may occur.

研究の結果、この問題は、多孔金属板1の表面が水平になるように水準器等を使用して厳密に設置し、金属ブロック6中の注水路12に連通させた水位制御水槽15に水位検出センサ18を設け、水位制御水槽15の水位を多孔金属板1の上表面とほぼ同等か鉛直方向で少し上方になるように予め設置しておき、多孔金属板1内の水位が例えば板表面下約1.0mmになると水位検出センサ18がそれを感知し、給水源16から給水ポンプなどの給水装置14を作動させ、水位制御水槽15の水位を必要なだけ回復させることで解決でき、蒸発速度を一定に保つことができることが判明した。なお水位制御水槽を傾斜させることにより、水位の検出感度をさらに高めることもできる。   As a result of research, this problem has been confirmed that the water level is controlled in a water level control water tank 15 that is strictly installed using a level or the like so that the surface of the porous metal plate 1 is horizontal and communicated with the water injection channel 12 in the metal block 6. A detection sensor 18 is provided, and the water level of the water level control water tank 15 is set in advance so that it is almost equal to the upper surface of the porous metal plate 1 or slightly above in the vertical direction, and the water level in the porous metal plate 1 is, for example, the plate surface The water level detection sensor 18 senses when it is about 1.0 mm below, and can be solved by operating the water supply device 14 such as a water supply pump from the water supply source 16 to restore the water level in the water level control water tank 15 as much as necessary. It has been found that the speed can be kept constant. The water level control sensitivity can be further increased by inclining the water level control water tank.

水位検出センサ18は、静電容量式や光学式のように、非接触で水位を検出できることが必要である。従来以上に厳密に水位を検出して制御することが必要なため、接触式センサでは水の表面張力による僅かな水位検出誤差が大きな蒸発速度の誤差を生ずる。   The water level detection sensor 18 needs to be able to detect the water level in a non-contact manner, such as a capacitance type or an optical type. Since it is necessary to detect and control the water level more strictly than before, in a contact sensor, a slight water level detection error due to the surface tension of water causes a large evaporation rate error.

多孔金属板1に入る前に、水は多孔金属板1の温度に予熱される。蒸発量が僅かであるため、これは水が多孔金属板1へ入る前に金属ブロック6中の注水路12に通すことによって可能で、水の蒸発量を一定温下で定常状態にすることができる。   Before entering the porous metal plate 1, the water is preheated to the temperature of the porous metal plate 1. Since the amount of evaporation is small, this is possible by passing water through the water injection path 12 in the metal block 6 before the water enters the porous metal plate 1, and the amount of water evaporation can be made steady at a constant temperature. it can.

図3は、本考案に係わる温度制御が可能な熱及び水蒸気ガードを備えた装置の一構成例を示す概念図である。ただし図3の態様では、熱ガードのみを備えた例を示す(この場合も熱及び水蒸気ガードという)。熱及び水蒸気抵抗をより誤差少なく測定するためには、多孔金属板1は、その周囲を熱及び水蒸気ガード8で囲むことが望ましい。その構成は、上記した測定部7と同様に注水路を備えた構成とすることが望ましい。しかしながら事情が許さない場合は、蒸気ガードを除いた熱ガードのみの構造とすることもできる。9は温度制御装置、10は温度センサである。この熱及び水蒸気ガード8は、測定テーブル11の開口部に納められている。   FIG. 3 is a conceptual diagram showing a configuration example of an apparatus including a heat and water vapor guard capable of temperature control according to the present invention. However, the embodiment of FIG. 3 shows an example in which only a heat guard is provided (also referred to as heat and water vapor guard in this case). In order to measure the heat and water vapor resistance with less error, it is desirable to surround the perforated metal plate 1 with a heat and water vapor guard 8. As for the structure, it is desirable to set it as the structure provided with the water injection channel similarly to the above-mentioned measurement part 7. FIG. However, if circumstances do not allow, a structure with only a heat guard excluding the steam guard can be used. Reference numeral 9 is a temperature control device, and 10 is a temperature sensor. The heat and water vapor guard 8 is stored in the opening of the measurement table 11.

測定誤差を小とするため、測定テーブルにおける測定部の位置は、調節可能で、測定部の上に設置された試験片表面が測定テーブルと同一平面になるようにしなければならない。例えば5mm以下程度の薄い試料の場合、それぞれの試料から最低3枚の試験片を採取し試験するのが好ましい。試験を行う前に試験片は適切な温湿度下で最低12時間調湿するのが好ましい。試験片は測定部と熱ガードを完全に覆うようにする。また例えば、出来るだけ多くの配線を熱及び水蒸気ガード8の内側表面に沿わせるなどして、配線から測定部またはその温度測定装置への熱損失は最小にすべきである。   In order to reduce the measurement error, the position of the measurement unit on the measurement table must be adjustable, and the surface of the test piece installed on the measurement unit must be flush with the measurement table. For example, in the case of a thin sample of about 5 mm or less, it is preferable to collect and test at least three test pieces from each sample. Before performing the test, the test piece is preferably conditioned under a suitable temperature and humidity for a minimum of 12 hours. The specimen should completely cover the measurement part and the heat guard. Further, for example, heat loss from the wiring to the measuring unit or its temperature measuring device should be minimized by, for example, placing as many wirings as possible along the inner surface of the heat and water vapor guard 8.

温度制御機能を有する熱及び水蒸気ガード8は金属のように高い熱伝導性を持つ材質から成り、電気的な加熱手段を内蔵する。この目的は、測定部7の側面及び底面からの熱の漏洩を防ぐためである。熱及び水蒸気ガードガードの幅bは、15mm以上であるべきである。熱ガードの上部表面と測定部の金属板の表面の段差は1.5mmを超えてはならない。温度センサ10により測定された熱ガードの温度Tは、温度制御装置9によって測定部の温度Tmと±0.1Kの精度で一定に維持される。 The heat and water vapor guard 8 having a temperature control function is made of a material having high thermal conductivity such as metal, and incorporates an electric heating means. The purpose is to prevent heat leakage from the side and bottom surfaces of the measurement unit 7. The width b of the heat and water vapor guard guard should be 15 mm or more. The level difference between the upper surface of the heat guard and the surface of the metal plate of the measuring part must not exceed 1.5 mm. The temperature T S of the heat guard measured by the temperature sensor 10 is kept constant by the temperature control device 9 with a temperature Tm of the measuring unit and an accuracy of ± 0.1K.

これら測定部7と熱及び水蒸気ガード8を備えた装置は、必要な環境条件を備えた恒温恒湿室に設置してそのまま試験に供しても良いが、これらへの送風条件を一定に維持して測定誤差を小とするために、試験用風洞の中に測定部と熱ガードが組み込むことが好ましい。また風洞内の環境温度及び湿度は管理されている必要がある。空調された空気は送風されており、測定部7と熱及び水蒸気ガード8の表面上を横切って平行に流れるようにする。このため測定テーブル11上方を囲むように測定部7と熱及び水蒸気ガード8の表面に平行な面をもつ送風管(図示せず)を設けることが望ましいが、この送風管の高さは50mm以上が好ましい。試験中の気流温度Tの変動は±0.1Kを超えないようにする。なお熱抵抗及び100m・Pa/W以下の水蒸気抵抗の測定の場合、±0.5Kの精度があれば十分である。試験中の気流の相対湿度の変動は±3%R.H.を超えないことが望ましい。この気流の測定は測定テーブル11の上方15mmの覆われていない測定部の中央で、空気温度20℃の時に行うとよい。この地点で測定された試験中の風速Vは平均1m/sで、変動は±0.05m/sを超えてないことが望ましい。この地点の気流はS/Vで表される風速変動係数が0.05〜0.1程度の乱流であることが重要である。風速変化は1秒以下の時定数を持つ器機で測定して10分間にわたって6秒間隔で測定するのがよい。 The apparatus equipped with these measuring unit 7 and heat and water vapor guard 8 may be installed in a constant temperature and humidity chamber having necessary environmental conditions and used for the test as it is, but the air blowing condition to these devices is kept constant. In order to reduce the measurement error, it is preferable to incorporate a measurement unit and a thermal guard in the test wind tunnel. The environmental temperature and humidity in the wind tunnel must be controlled. The conditioned air is blown and flows in parallel across the measurement unit 7 and the surface of the heat and water vapor guard 8. For this reason, it is desirable to provide a measuring pipe 7 and a blower pipe (not shown) having a surface parallel to the surface of the heat and water vapor guard 8 so as to surround the measurement table 11, but the height of the blow pipe is 50 mm or more. Is preferred. Variation of airflow temperature T a during the test should not exceed ± 0.1 K. In the case of measurement of thermal resistance and water vapor resistance of 100 m 2 · Pa / W or less, an accuracy of ± 0.5 K is sufficient. The variation in relative humidity of the airflow during the test is ± 3% R.D. H. It is desirable not to exceed. The measurement of the airflow may be performed at the center of the uncovered measurement portion 15 mm above the measurement table 11 and at an air temperature of 20 ° C. In wind speed V a is the average 1 m / s in the measured test at this point, the variation is preferably not exceed ± 0.05 m / s. It is important that the airflow at this point is a turbulent flow having a wind speed variation coefficient represented by S v / V a of about 0.05 to 0.1. The change in wind speed should be measured with a device having a time constant of 1 second or less and measured at intervals of 6 seconds over 10 minutes.

このように構成した測定部、または測定部と熱及び水蒸気ガード、または試験用風洞の中に測定部と熱及び水蒸気ガードを組み込んだ試験用風洞を設けた装置は、雰囲気の温度及び湿度の変更を容易にしかつ一定に維持して測定誤差を小とするために、恒温恒湿槽の中に組み込むことが好ましい。   The measurement unit configured in this way, or the measurement unit and the heat and water vapor guard, or the device provided with the test wind tunnel incorporating the measurement unit and the heat and water vapor guard in the test wind tunnel can change the temperature and humidity of the atmosphere. In order to make the measurement easier and to be constant and to reduce the measurement error, it is preferable to incorporate it in a constant temperature and humidity chamber.

以上に述べた本考案の構成とすることにより、衣服等の繊維製品等を構成する材料の定常状態での熱及び水蒸気抵抗とを誤差少なく簡便に測定することができる。
以下に実施例により、本考案をさらに詳細に説明する。
By adopting the configuration of the present invention described above, it is possible to easily measure the heat and water vapor resistance in a steady state of materials constituting textiles such as clothes and the like with little error.
Hereinafter, the present invention will be described in more detail with reference to examples.

裸板の熱抵抗の測定
図1と図3に示した構成の測定装置を試作した。多孔性金属板は、厚さ3mm、一辺の長さ20cmの正方形(400cm)の銅板に、直径1.2mmの円柱状の発汗孔169個を格子状に15mm間隔で配置し、その表面は放射率0.95の黒体塗装を施して作製した。金属ブロックは、その表面の一辺の長さ20cmの正方形(400cm)のアルミ製で、下部にヒータを鋳込んだ。ヒータの消費電力は、加熱電力測定器により測定した。金属ブロックには温度センサを挿入し、温度制御装置によりその温度を35℃に制御した。金属ブロックの上部には、上方に開口した幅9mm、深さ9mmの注水路を9mm間隔で縦横に12本設けた。この金属ブロックには、上記注水路に給水するための給水路を設けた。多孔性金属板と金属ブロックとは、ボルトで相互を固定し、測定テーブルに水平に設置した。
Measurement of Thermal Resistance of Bare Plate A measuring device having the configuration shown in FIGS. 1 and 3 was prototyped. A porous metal plate is a square (400 cm 2 ) copper plate with a thickness of 3 mm and a side length of 20 cm, and 169 columnar sweat holes with a diameter of 1.2 mm are arranged in a grid at 15 mm intervals, and the surface is It was produced by applying a black body coating with an emissivity of 0.95. The metal block was made of a square (400 cm 2 ) aluminum with a length of 20 cm on one side of the surface, and a heater was cast in the lower part. The power consumption of the heater was measured with a heating power meter. A temperature sensor was inserted into the metal block, and the temperature was controlled at 35 ° C. by a temperature control device. In the upper part of the metal block, 12 water injection channels having a width of 9 mm and a depth of 9 mm opened upward were provided vertically and horizontally at intervals of 9 mm. The metal block was provided with a water supply channel for supplying water to the water injection channel. The porous metal plate and the metal block were fixed to each other with bolts and installed horizontally on the measurement table.

上記注水路に水を供給する注水装置は、上記注水路に連通させた内径18mm、高さ120mmの水位制御水槽と、チューブ式給水ポンプと、この水位制御水槽に給水ポンプより給水するための内径2.5mmの製チューブ(管)とで構成した。水位制御水槽には静電容量式水位検出センサを取り付けて給水ポンプをON、OFF制御できるようにした。ただし熱抵抗の測定の場合は給水と注水とは行わなかった。   The water injection device for supplying water to the water injection channel has an inner diameter of 18 mm and a height of 120 mm, which is communicated with the water injection channel, a tubular water supply pump, and an inner diameter for supplying water to the water level control water tank from the water supply pump. A 2.5 mm tube (tube) was used. An electrostatic capacity type water level detection sensor is attached to the water level control water tank so that the water supply pump can be controlled on and off. However, in the measurement of thermal resistance, water supply and water injection were not performed.

この測定部と同じ構成とした幅50mmの熱及び水蒸気ガードで測定部を囲み、測定テーブルに水平に設置した。
測定テーブルに設置した測定部と熱及び水蒸気ガードの上方には、高さ5cm、幅35cm、長さ50cmの覆いを設け、側面の一方から回転円柱型送風機で送風し、側面の反対側の一方から排気し、かつその覆いの上部中央に風速センサを取り付けた構造の風洞を設け、風速を1m/sに制御した。
The measurement unit was surrounded by a 50 mm wide heat and water vapor guard having the same configuration as the measurement unit, and was placed horizontally on the measurement table.
A 5 cm high, 35 cm wide, and 50 cm long cover is provided above the measurement unit and the heat and water vapor guard installed on the measurement table, and air is blown from one of the side surfaces by a rotating cylindrical blower. A wind tunnel having a structure in which a wind speed sensor is attached to the upper center of the cover is provided, and the wind speed is controlled to 1 m / s.

この測定部と熱及び水蒸気ガードとを組み込んだ風洞を、温度25℃、相対湿度65%RHの恒温恒湿槽の中に設置した。ただし制御系の装置、給水ポンプは、恒温恒湿槽の外に設置した。   A wind tunnel incorporating this measuring section and heat and water vapor guard was installed in a constant temperature and humidity chamber at a temperature of 25 ° C. and a relative humidity of 65% RH. However, the control system and the water supply pump were installed outside the thermostatic chamber.

温度、相対湿度、風速、加熱電力が定常状態に達してからそれらを計測し、裸板の熱抵抗を算出したところ、0.0855m・K/Wであった。 When the temperature, relative humidity, wind speed, and heating power reached a steady state, they were measured, and the thermal resistance of the bare plate was calculated to be 0.0855 m 2 · K / W.

裸板の水蒸気抵抗の測定
実施例1において、(1)測定部の多孔性金属板と熱及び水蒸気ガードの多孔性金属板の表面に、蒸留水で湿らせた厚さ0.01mmのセロファン膜をかぶせ、しわが生じないように密着させたこと、(2)多孔性金属板の発汗孔中の水位と水位制御水槽中の水位とが略同一水平面上の高さになるように調整したこと以外は実施例と同一の装置と条件とで計測を行った。その計測結果から裸板の水蒸気抵抗を算出したところ、0.0065m・Pa/Wであった。
Measurement of Water Vapor Resistance of Bare Plate In Example 1, (1) a cellophane film having a thickness of 0.01 mm wetted with distilled water on the porous metal plate of the measurement part and the porous metal plate of the heat and water vapor guard (2) The water level in the perspiration hole of the porous metal plate and the water level in the water level control water tank were adjusted so that they were on the same horizontal plane. The measurement was performed with the same apparatus and conditions as in the example except for the above. It was 0.0065 m < 2 > * Pa / W when the water vapor resistance of the bare board was computed from the measurement result.

試料の熱抵抗の測定
試料として30cm×30cm、目付204g/mの撥水防汚加工した黄色のアラミド製平織物(商品名ノメックスIIIAアラミド)を用い、この試料1枚で測定部と熱及び水蒸気ガードの多孔性金属板の表面を覆った以外は実施例1と同一の装置と条件とで計測を行った。その計測結果から産出した全熱抵抗は、0.1093m・K/Wであった。この値から裸板の熱抵抗を減じて試料の熱抵抗を算出したところ、0.0238m・K/Wであった。
また試料を4枚としたところ、熱抵抗は0.0811m・K/Wであった。
Measurement of thermal resistance of sample Using a yellow aramid plain fabric (trade name: Nomex IIIA aramid) having a water-repellent antifouling finish of 30 cm × 30 cm and a basis weight of 204 g / m 2 as a sample, the measurement part, heat and water vapor are measured with one sample. The measurement was performed with the same apparatus and conditions as in Example 1 except that the surface of the porous metal plate of the guard was covered. The total thermal resistance produced from the measurement result was 0.1093 m 2 · K / W. When the thermal resistance of the sample was calculated by subtracting the thermal resistance of the bare plate from this value, it was 0.0238 m 2 · K / W.
When four samples were used, the thermal resistance was 0.0811 m 2 · K / W.

試料の水蒸気抵抗の測定
試料として30cm×30cm、目付204g/mの撥水防汚加工した黄色のアラミド製平織物(商品名ノメックスIIIAアラミド)を用い、この試料1枚で測定部と熱及び水蒸気ガードの多孔性金属板の表面を覆ったセロファン膜の表面をさらに覆った以外は実施例2と同一の装置と条件とで計測を行った。その計測結果から産出した全水蒸気抵抗は、0.0141m・Pa/Wであった。この値から裸板の熱抵抗を減じて試料の熱抵抗を算出したところ、0.0076m・Pa/Wであった。
また試料を4枚としたところ、水蒸気抵抗は0.0181m・K/Wであった。
Measurement of water vapor resistance of sample Using a yellow aramid plain fabric (trade name: Nomex IIIA aramid) having a water repellent and antifouling finish of 30 cm × 30 cm and a basis weight of 204 g / m 2 as a sample, the measurement part, heat and water vapor are measured with one sample. The measurement was performed with the same apparatus and conditions as in Example 2 except that the surface of the cellophane film covering the surface of the porous metal plate of the guard was further covered. The total water vapor resistance produced from the measurement result was 0.0141 m 2 · Pa / W. When the thermal resistance of the sample was calculated by subtracting the thermal resistance of the bare plate from this value, it was 0.0076 m 2 · Pa / W.
When four samples were used, the water vapor resistance was 0.0181 m 2 · K / W.

本考案の装置の一例を示す概念図。The conceptual diagram which shows an example of the apparatus of this invention. 注水路の一例を示す概念図。The conceptual diagram which shows an example of a water injection channel. 本考案の装置の一例を示す概略図。Schematic which shows an example of the apparatus of this invention.

符号の説明Explanation of symbols

1: 多孔性金属板
2: 温度センサ
3: 温度制御装置
4: 加熱電力測定装置
5: 注水装置
6: 金属ブロック
7: 測定部
8: 側面熱及び水蒸気ガード
9: 温度制御装置
10: 温度センサ
11: 測定テーブル
12: 注水路
13: 加熱手段
14: 給水装置
15: 水位制御水槽
16: 給水源
17: 連通管
18: 水位検出センサ
19: 管
20: 底面熱ガード
1: Porous metal plate 2: Temperature sensor 3: Temperature control device 4: Heating power measurement device 5: Water injection device 6: Metal block 7: Measuring unit 8: Side heat and water vapor guard 9: Temperature control device 10: Temperature sensor 11 : Measurement table 12: Water injection path 13: Heating means 14: Water supply device 15: Water level control water tank 16: Water supply source 17: Communication pipe 18: Water level detection sensor 19: Pipe 20: Bottom heat guard

Claims (8)

測定部が水平に設けた多孔性金属板と、上方に開放した注水路を有しかつ上記多孔性金属板の下面に接して固定されかつ加熱手段を内蔵した金属ブロックと、この金属ブロックの温度制御装置と、金属ブロック加熱電力測定装置と、上記注水路に水を供給する注水装置とを備え、この注水装置は上記注水路に連通させた水位制御水槽と、この水位制御水槽に給水するための給水装置とを具備することを特徴とする熱及び水蒸気抵抗測定装置。   A porous metal plate provided with a horizontal measuring unit, a metal block having a water injection channel opened upward, fixed in contact with the lower surface of the porous metal plate, and having heating means built therein, and the temperature of the metal block A control device, a metal block heating power measuring device, and a water injection device for supplying water to the water injection channel, the water injection device for supplying water to the water level control water tank communicated with the water injection channel, and the water level control water tank And a water and water resistance measuring apparatus. 水平に設けた多孔性金属板と、上方に開放した注水路を有しかつ上記多孔性金属板の下面に接して固定されかつ加熱手段を内蔵した金属ブロックと、この金属ブロックの温度制御装置と、金属ブロック加熱電力測定装置と、上記注水路に水を供給する注水装置とを備え、この注水装置は上記注水路に連通させた水位制御水槽と、この水位制御水槽に給水するための給水装置とを具備する熱及び水蒸気ガードを測定部の周囲に設けたことを特徴とする請求項1記載の熱及び水蒸気抵抗測定装置。   A horizontally provided porous metal plate, a metal block having a water injection channel opened upward, fixed in contact with the lower surface of the porous metal plate, and including a heating means; and a temperature control device for the metal block; A water supply device for supplying water to the water level control water tank, comprising a metal block heating power measuring device and a water injection device for supplying water to the water injection channel, the water injection device communicating with the water injection channel The heat and water vapor resistance measuring apparatus according to claim 1, wherein a heat and water vapor guard comprising: 水位制御水槽が注水路と水平関係にある位置にある請求項1または2記載の熱及び水蒸気抵抗測定装置。   The heat and water vapor resistance measuring device according to claim 1 or 2, wherein the water level control water tank is in a position in a horizontal relationship with the water injection channel. 水位制御水槽に水位検出センサを設けたことを特徴とする請求項1〜3のいずれか1項記載の熱及び水蒸気抵抗測定装置。   4. The heat and water vapor resistance measuring device according to claim 1, wherein a water level detection sensor is provided in the water level control water tank. 水位制御水槽が傾斜させて設けられていることを特徴とする請求項1〜4のいずれか1項記載の熱及び水蒸気抵抗測定装置。   5. The heat and water vapor resistance measuring device according to claim 1, wherein the water level control water tank is provided to be inclined. 試験用風洞の中に測定部、または測定部と熱及び水蒸気ガードを組み込んだことを特徴とする請求項1〜5のいずれか1項記載の熱及び水蒸気抵抗測定装置。   6. The heat and water vapor resistance measuring device according to claim 1, wherein a measuring unit or a measuring unit and a heat and water vapor guard are incorporated in the test wind tunnel. 恒温恒湿槽の中に測定部、または測定部と熱及び水蒸気ガード、または試験用風洞の中に測定部と熱及び水蒸気ガードを組み込んだ試験用風洞を設けたことを特徴とする請求項1〜6のいずれか1項記載の熱及び水蒸気抵抗測定装置。   2. A measuring unit, a measuring unit and a heat and water vapor guard in a constant temperature and humidity chamber, or a test wind tunnel incorporating a measuring unit and a heat and water vapor guard in a test wind tunnel are provided. The heat and water vapor resistance measuring device according to any one of -6. 繊維製品の定常状態での熱及び水蒸気抵抗を測定するための請求項1〜7のいずれか1項記載の熱及び水蒸気抵抗測定装置。   The heat and water vapor resistance measuring device according to any one of claims 1 to 7 for measuring heat and water vapor resistance in a steady state of a textile product.
JP2006001769U 2006-03-13 2006-03-13 Heat and water vapor resistance measuring device Expired - Lifetime JP3121969U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001769U JP3121969U (en) 2006-03-13 2006-03-13 Heat and water vapor resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001769U JP3121969U (en) 2006-03-13 2006-03-13 Heat and water vapor resistance measuring device

Publications (1)

Publication Number Publication Date
JP3121969U true JP3121969U (en) 2006-06-01

Family

ID=43472051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001769U Expired - Lifetime JP3121969U (en) 2006-03-13 2006-03-13 Heat and water vapor resistance measuring device

Country Status (1)

Country Link
JP (1) JP3121969U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203568A (en) * 2014-04-10 2015-11-16 株式会社ゴールドウイン Clothing internal environment simulated measurement device
JP5955487B1 (en) * 2015-01-29 2016-07-20 一般財団法人カケンテストセンター Sweating simulator and sweat simulation method
CN107153080A (en) * 2017-07-03 2017-09-12 四川省皮革研究所 It is a kind of into footwear thermal resistance, the test device of dampness and method of testing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203568A (en) * 2014-04-10 2015-11-16 株式会社ゴールドウイン Clothing internal environment simulated measurement device
JP5955487B1 (en) * 2015-01-29 2016-07-20 一般財団法人カケンテストセンター Sweating simulator and sweat simulation method
WO2016121061A1 (en) * 2015-01-29 2016-08-04 一般財団法人カケンテストセンター Sweat simulator and sweat simulation method
KR20170109549A (en) 2015-01-29 2017-09-29 잇빤자이단호진 카켄테스트센터 Sweating simulator and sweating simulation method
CN107153080A (en) * 2017-07-03 2017-09-12 四川省皮革研究所 It is a kind of into footwear thermal resistance, the test device of dampness and method of testing
CN107153080B (en) * 2017-07-03 2023-07-21 四川省皮革研究所 Testing device and testing method for thermal resistance and wet resistance of finished shoe

Similar Documents

Publication Publication Date Title
JP4869833B2 (en) Thermal resistance and moisture resistance measurement device
McCullough et al. A comparison of standard methods for measuring water vapour permeability of fabrics
Huang Sweating guarded hot plate test method
Fan et al. Measurement of clothing thermal insulation and moisture vapour resistance using a novel perspiring fabric thermal manikin
JP5100102B2 (en) A device for simulating human sweating and evaluating the vapor permeability and comfort of clothing
KR100841722B1 (en) Method and apparatus for measuring drying time of quick wet and dried fabrics
Bhatia et al. Thermophysiological wear comfort of clothing: an overview
KR100752776B1 (en) Measuring device of insulating and moisture transpirating proterty for dressing system
JP3121969U (en) Heat and water vapor resistance measuring device
Bajzik et al. Changes in thermal comfort properties of sports wear and underwear due to their wetting
Yoo et al. Effects of multilayer clothing system array on water vapor transfer and condensation in cold weather clothing ensemble
Venkataraman et al. Comparative analysis of high performance thermal insulation materials
Baczek et al. The effect of moisture on thermal resistance and water vapour permeability of Nomex fabrics
Kim et al. Performance of selected clothing systems under subzero conditions: determination of performance by a human-clothing-environment simulator
EP3252466B1 (en) Sweat simulator and sweat simulation method
Schneider Heat transfer through moist fabrics
Mazari et al. Comparative Study on the Water Vapour Permeability of Textile by a Standard and Novel device
CN107153080A (en) It is a kind of into footwear thermal resistance, the test device of dampness and method of testing
Reljic et al. Study of water vapor resistance of Co/PES fabrics properties during maintenance
Liu et al. Facile and Scalable Fabrication of Hydrophilic/Hydrophobic Janus Fabric for Personal Sweat Monitoring and Perspiration Management
Fung et al. Thermal and evaporative resistance measured in a vertically and a horizontally oriented air gap by Permetest skin model
CN206892015U (en) It is a kind of into footwear thermal resistance, the test device of dampness
TWI397685B (en) Apparatus of micro-climate measurement
JPS5821164A (en) Method and device for simulation of weather in clothes
Jamalabadi Parameter study of porosity effects on surface temperature for a porous block under wind, water source and thermal radiation

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R323533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term