JP3120716U - Large-capacity hydrogen / oxygen mixed gas generator - Google Patents

Large-capacity hydrogen / oxygen mixed gas generator Download PDF

Info

Publication number
JP3120716U
JP3120716U JP2006000926U JP2006000926U JP3120716U JP 3120716 U JP3120716 U JP 3120716U JP 2006000926 U JP2006000926 U JP 2006000926U JP 2006000926 U JP2006000926 U JP 2006000926U JP 3120716 U JP3120716 U JP 3120716U
Authority
JP
Japan
Prior art keywords
water
mixed gas
oxygen
hydrogen
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006000926U
Other languages
Japanese (ja)
Inventor
スンチョル キム
Original Assignee
天野 惣吉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野 惣吉 filed Critical 天野 惣吉
Priority to JP2006000926U priority Critical patent/JP3120716U/en
Application granted granted Critical
Publication of JP3120716U publication Critical patent/JP3120716U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】大量の酸素との混合ガスを安全で効率的に発生できる大容量の水素と酸素との混合ガス発生装置を提供する。
【解決手段】水素と酸素との混合ガスを生成して出力する多数の電解槽100a、100b、100c、100d、100e、100fと、電解槽に直流電源を供給して電解ができるようにする電源供給部300と、電気分解によって消費される水を適正量供給するための自動給水タンク400a、400bと、電解槽の過熱防止のための冷却手段500と、出力された水素・酸素混合ガスの圧力を一定に制御する圧力調節部700と、内部に水を充填し、電解槽から生成出力された水素と酸素との混合ガスを、水中を通過させて送出することによって外部からの火炎が電解槽へ逆流することを遮断する水封式逆火防止器800と、電圧と電流の制御及び各種計器やセンサー等の本装置の構成要素を総合的に制御する制御部900とを有する。
【選択図】図1
A large-capacity hydrogen and oxygen mixed gas generator capable of generating a mixed gas with a large amount of oxygen safely and efficiently is provided.
SOLUTION: A large number of electrolytic cells 100a, 100b, 100c, 100d, 100e, and 100f that generate and output a mixed gas of hydrogen and oxygen, and a power source that enables electrolysis by supplying DC power to the electrolytic cell Supply unit 300, automatic water supply tanks 400a and 400b for supplying an appropriate amount of water consumed by electrolysis, cooling means 500 for preventing overheating of the electrolytic cell, and pressure of the output hydrogen / oxygen mixed gas The pressure adjusting unit 700 that controls the pressure constant, and water is filled inside, and a mixed gas of hydrogen and oxygen generated and output from the electrolytic cell is passed through the water and sent out, so that an external flame is generated in the electrolytic cell. A water-sealed backfire preventer 800 that blocks backflow to the back, and a control unit 900 that comprehensively controls the components of the apparatus such as voltage and current control and various instruments and sensors.
[Selection] Figure 1

Description

本考案は、水を電気分解し、水素と酸素との混合ガスを発生させる装置に関するもので、もっと詳しくは、対向する二つの半円筒体を合体させ、円筒体の電解槽を構成し、これらの半円筒体にそれぞれ陽極と陰極を連結して電源を供給する構造で、二つの半円筒体の電解槽ケース自体が電極板の役割をすることによって、構造を簡素化しながらも大量の水素と酸素との混合ガスが得られるようにした大容量水素・酸素混合ガス発生装置に関するものである。The present invention relates to an apparatus for electrolyzing water and generating a mixed gas of hydrogen and oxygen. More specifically, two opposing semi-cylindrical bodies are combined to form a cylindrical electrolytic cell. In this structure, the anode and cathode are connected to each half cylinder to supply power, and the two half-cylinder electrolytic cell cases themselves act as electrode plates, simplifying the structure, but with a large amount of hydrogen. The present invention relates to a large-capacity hydrogen / oxygen mixed gas generator capable of obtaining a mixed gas with oxygen.

水を電気分解すると、水素と酸素が発生するという電気分解の理論は約200年前からのことである。その理論に基づいて様々な研究が現在まで続いているが、水を電気分解してガスを発生させるには、水素と酸素を分離して発生させる方法と、水素と酸素を混合状態で発生させる方法がある。本考案は、後者の水素と酸素を混合状態で発生させる装置に関するものである。The electrolysis theory that hydrogen and oxygen are generated when water is electrolyzed has been around 200 years ago. Various researches have been continued based on the theory, but in order to electrolyze water and generate gas, hydrogen and oxygen are separated and generated, and hydrogen and oxygen are generated in a mixed state. There is a way. The present invention relates to the latter apparatus for generating hydrogen and oxygen in a mixed state.

水素と酸素との混合ガス発生装置は約35年前から現在まで研究開発されており、この装置の核心は水を電気分解する電解槽の構造にある。電解槽の構造を大別すると、円筒形電解槽と四角形電解槽に分けられる。An apparatus for generating a mixed gas of hydrogen and oxygen has been researched and developed from about 35 years ago until now, and the core of this apparatus is an electrolytic cell structure for electrolyzing water. The structure of the electrolytic cell is roughly classified into a cylindrical electrolytic cell and a rectangular electrolytic cell.

前者の円筒形電解槽は円筒形ケースに陰極電源を印加し、円筒形ケースの中にニッケル板を装着して陽極電源を印加する構造がある。この構造においては円筒形ケースが陰極板として機能し、ニッケル板が陽極板として機能するが、陰極板と陽極板の面積が異なり、不要な電力消耗が多く、その結果、電解槽の過熱によって長時間運転が困難である。他の構造としては、円筒形ケースの中に2枚のニッケル板を装着し、2枚のニッケル板にそれぞれ陰極電源と陽極電源を印加する構造がある。この構造の場合、2枚のニッケル板はぞれぞれ陰極板と陽極板として機能し、陰極板と陽極板の面積は同一であるので、水素と酸素との混合ガスを多少安定的に発生できる。しかし、上記で説明した円筒形電解槽はいずれも円筒形ケースの中にニッケル板を装着し、電線と連結する部位を円形にシーリング(Sealing)して絶縁する過程において気密性の維持が困難となり、気密部位が圧力に弱くて大容量の水素と酸素との混合ガス発生装置には不適当である。The former cylindrical electrolytic cell has a structure in which a cathode power source is applied to a cylindrical case, and a nickel plate is mounted in the cylindrical case to apply an anode power source. In this structure, the cylindrical case functions as the cathode plate, and the nickel plate functions as the anode plate. However, the areas of the cathode plate and the anode plate are different, and there is a lot of unnecessary power consumption. Time driving is difficult. As another structure, there is a structure in which two nickel plates are mounted in a cylindrical case and a cathode power source and an anode power source are applied to the two nickel plates, respectively. In this structure, the two nickel plates function as a cathode plate and an anode plate, respectively. Since the areas of the cathode plate and the anode plate are the same, a mixed gas of hydrogen and oxygen is generated somewhat stably. it can. However, in any of the cylindrical electrolytic cells described above, it is difficult to maintain hermeticity in the process of mounting the nickel plate in the cylindrical case and sealing the part to be connected to the electric wire in a circular seal. The hermetic portion is weak to pressure and is not suitable for a large-capacity mixed gas generator of hydrogen and oxygen.

一方、後者の四角形電解槽としては面積の狭い多数の電極板を一定間隔に配置し、その間にゴム材質の絶縁部材を介在して電解室を設け、両端に陽極電源と陰極電源を印加する構造がある。この様な電解槽の構造においては、電極板と電極板との間を絶縁させるコム類の絶縁部材を多く使用することによって時間が経過すると、熱によって絶縁部材が溶け、電解液が漏出されたりしてショートが発生する恐れがあり、長時間運転は勿論、大容量の水素と酸素との混合ガス発生装置には不適当である。上記の構造的問題点を多少でも解消するために、左右の四角ケースを絶縁させ、陽極電源と陰極電源をそれぞれ印加する構造として、この四角ケースの中に面積の広い複数の電極板を積層し、その間に絶縁部材を挿入介在する構造がある。しかし、この構造においても四角形電解槽の特性上、圧力に弱い短所があり、運転の際、圧力によって電解槽が変形される恐れやそれによって電極板が乱れ、ショートが発生する等の恐れもある。On the other hand, the latter square electrolytic cell has a structure in which a large number of electrode plates with a small area are arranged at regular intervals, an electrolytic chamber is provided with a rubber insulating member interposed therebetween, and an anode power source and a cathode power source are applied to both ends. There is. In such an electrolytic cell structure, if a long time elapses by using a large number of comb insulating members that insulate the electrode plate from each other, the insulating member melts due to heat and the electrolyte solution leaks out. As a result, a short circuit may occur, and it is not suitable for a mixed gas generator of a large volume of hydrogen and oxygen as well as operating for a long time. In order to eliminate the above structural problems, the left and right square cases are insulated and the anode power supply and the cathode power supply are applied respectively, and a plurality of electrode plates with a large area are laminated in the square case. There is a structure in which an insulating member is inserted between them. However, even in this structure, due to the characteristics of the square electrolytic cell, there is a weakness in pressure, and during operation, there is a risk that the electrolytic cell may be deformed by the pressure, and thereby the electrode plate may be disturbed and a short circuit may occur. .

また、以上で説明した円筒形電解槽おいても四角形電解槽においても電気分解の際、電解槽内部で電解液がだぶだぶして電解液の一部が水素と酸素との混合ガスと共に出てくる問題がある。In addition, in the cylindrical electrolytic cell described above and in the rectangular electrolytic cell, the electrolytic solution is spilled in the electrolytic cell and a part of the electrolytic solution comes out together with the mixed gas of hydrogen and oxygen during the electrolysis. There's a problem.

さらに、水素と酸素との混合ガスが水封式逆火防止器を通過して出てくる時、水素と酸素との混合ガスの吐出し力によってふつふつとわき上がるような現象によって水封式逆火防止器の中の水が水素と酸素との混合ガスと共に出てくる問題もある。In addition, when the mixed gas of hydrogen and oxygen comes out through the water-sealed backfire preventer, the water-sealed reverse is caused by a phenomenon that the gas and the mixed gas of hydrogen and oxygen are lifted up. There is also a problem that water in the fire arrester comes out with a mixed gas of hydrogen and oxygen.

本考案は、従来の水素と酸素との混合ガス発生装置における問題を解消して、大量の水素と酸素との混合ガスを安全で効率的に発生させることができる大容量水素・酸素混合ガス発生装置を提供するものである。The present invention eliminates the problems of conventional hydrogen and oxygen mixed gas generators and can generate a large volume of hydrogen and oxygen mixed gas that can generate a large amount of hydrogen and oxygen mixed gas safely and efficiently. A device is provided.

上記の課題を解決するための本考案の全体的な構成は、絶縁された左右の半円筒体を合体させ、円筒体を成し、左右の半円筒体に陽極電源と陰極電源をそれぞれ印加して内部において水を電気分解して水素と酸素との混合ガスを生成して出力する電解槽と、電解槽に直流電源を供給して電解ができるようにする電源供給部と、電気分解によって消費される水を適正量供給するための自動給水タンクと、電解槽の過熱防止のための冷却手段と、出力された水素と酸素との混合ガスの圧力を一定に制御する圧力調節部と、内部に水を充填し、電解槽から生成出力された水素と酸素との混合ガスを、水中を通過させて送り出すことによって外部からの火炎が電解槽へ逆流することを遮断する水封式逆火防止器と、電圧と電流の制御及び各種計器やセンサー等の本装置の構成要素を総合的に制御する制御部と、さらに、出力された水素と酸素との混合ガスを集合させ、送り出すガス集合手段を有することを特徴とする。The overall configuration of the present invention for solving the above-mentioned problems is that the left and right semi-cylindrical bodies are combined to form a cylindrical body, and an anode power source and a cathode power source are respectively applied to the left and right semi-cylindrical bodies. An electrolytic cell that electrolyzes water to generate and output a mixed gas of hydrogen and oxygen, a power supply unit that enables direct electrolysis of the electrolytic cell and electrolysis, and consumption by electrolysis An automatic water tank for supplying an appropriate amount of water to be supplied, a cooling means for preventing overheating of the electrolytic cell, a pressure adjusting unit for controlling the pressure of the output mixed gas of hydrogen and oxygen to be constant, and an internal Water-sealed backfire prevention that blocks the external flame from flowing back to the electrolytic cell by filling the water with water and sending the mixed gas of hydrogen and oxygen generated and output from the electrolytic cell through the water Instruments, voltage and current control and various instruments and And a control unit which comprehensively controls the components of the device such as a server, further to set the mixed gas of the output hydrogen and oxygen, and having a gas collection means to feed.

また、本考案の水を電気分解して水素と酸素との混合ガスを発生させるための電解槽の基本構成は、縁に結合孔が形成されている結合板を持ち、その自体が電極板の役割をする半径同一の対向する半円筒体の左右の電解槽ケースと、絶縁板を介在して半径同一の対向する半円筒体の左右の電解槽ケースを密着合体することによって内部に電極板を持たない電解室を形成し、その電解室の一定高さまでに電解液を注水して半円筒体の左右の電解槽ケースに設けられている電源入力端子にそれぞれ陽・陰直流電源を印加して水素と酸素との混合ガスを生成して出力することを特徴とする。In addition, the basic structure of the electrolytic cell for electrolyzing water of the present invention to generate a mixed gas of hydrogen and oxygen has a coupling plate with a coupling hole formed at the edge, which itself is the electrode plate. The left and right electrolytic cell cases of the opposite semi-cylindrical bodies having the same radius and the left and right electrolytic cell cases of the opposite semi-cylindrical bodies having the same radius are intimately joined by interposing an insulating plate. An electrolysis chamber is formed, and the electrolyte is poured up to a certain height of the electrolysis chamber, and positive and negative DC power supplies are applied to the power input terminals provided on the left and right electrolytic cell cases of the semi-cylindrical body, respectively. A mixed gas of hydrogen and oxygen is generated and output.

本考案は、対向する二つの半円筒体を合体させ、円筒体の電解槽を構成し、これらの半円筒体にそれぞれ陽極と陰極を連結して電源を供給する構造で、二つの半円筒体の電解槽ケース自体が電極板の役割をすることによって、構造を簡素化しながらも大量の水素と酸素との混合ガスが得られる効果がある。The present invention is a structure in which two semi-cylindrical bodies facing each other are combined to form a cylindrical electrolytic cell, and an anode and a cathode are connected to each of these semi-cylindrical bodies to supply power. The electrolytic cell case itself serves as an electrode plate, so that it is possible to obtain a large amount of mixed gas of hydrogen and oxygen while simplifying the structure.

特に、同一形状である左右の電解槽ケースをそれぞれ陽極板と陰極板として使用することによって電解槽内部に電極板を持たない電解室が形成されるので、電極板設置による諸問題も解消される。In particular, the left and right electrolytic cell cases having the same shape are used as an anode plate and a cathode plate, respectively, so that an electrolytic chamber having no electrode plate is formed inside the electrolytic cell, so that various problems due to the installation of the electrode plate are also eliminated. .

また、電解槽を円筒形に設計することによって圧力に強い装置の構築が可能であり、電圧と電流を考慮して円筒形電解槽の直径と高さを調整することにより、水素と酸素との混合ガスの発生量を調節するこができる。In addition, it is possible to construct a pressure-resistant device by designing the electrolytic cell into a cylindrical shape, and by adjusting the diameter and height of the cylindrical electrolytic cell in consideration of voltage and current, The generation amount of the mixed gas can be adjusted.

さらに、多数の電解槽をそれぞれ電線で直列と並列を組み合わせて連結することによって短時間で莫大な量の水素と酸素との混合ガスが安全で効率的に得られる。Furthermore, a huge amount of mixed gas of hydrogen and oxygen can be obtained safely and efficiently in a short time by connecting a large number of electrolytic cells in series and in parallel with electric wires.

また、電気分解の際、電解槽内部の水面から電解液が跳ね上がり、電解液の一部が水素と酸素との混合ガスと共に出てくる現象を防ぐために、電解槽内部のガス排出口と隣接した内面に設けられた電解液流出防止板を設置することによって電解液のガス排出口への流入を遮断することができる。In addition, in order to prevent the phenomenon that the electrolytic solution jumps up from the water surface inside the electrolytic cell and part of the electrolytic solution comes out with the mixed gas of hydrogen and oxygen during the electrolysis, it is adjacent to the gas discharge port inside the electrolytic cell. By installing the electrolytic solution outflow prevention plate provided on the inner surface, the electrolytic solution can be blocked from flowing into the gas outlet.

さらに、水素と酸素との混合ガスが水封式逆火防止器を通過して出てくる時、水素と酸素との混合ガスの吐出し力によって水封式逆火防止器の中の水が水素と酸素との混合ガスと共に出てくる現象を防ぐために、水封式逆火防止器の内部に水上昇阻止板と水流出防止板とを設置することによって水がガス排出口を通じて排出される現象を防止することができる。Furthermore, when the mixed gas of hydrogen and oxygen comes out through the water-sealed backfire preventer, the water in the water-sealed backfire preventer is caused by the discharge force of the mixed gas of hydrogen and oxygen. In order to prevent the phenomenon that occurs with the mixed gas of hydrogen and oxygen, water is discharged through the gas outlet by installing a water rise prevention plate and a water outflow prevention plate inside the water-sealed backfire preventer. The phenomenon can be prevented.

以下、本考案の実施の形態を添付した図面に示す実施例に基づいて説明すれば、下記のとおりである。Hereinafter, embodiments of the present invention will be described based on examples shown in the accompanying drawings.

図1は本考案の大容量水素・酸素混合ガス発生装置の分解斜視図であり、図2は図1の組立斜視図を示す。FIG. 1 is an exploded perspective view of the large-capacity hydrogen / oxygen mixed gas generator of the present invention, and FIG. 2 is an assembled perspective view of FIG.

図示したとおり、本装置は内部において水を電気分解して水素と酸素との混合ガスを生成して出力する多数の電解槽100a〜100fを具備している。これらの電解槽100a〜100fは絶縁された左右一対の半円筒体100a、100bが合体されて円筒体を成す。As shown in the figure, the apparatus includes a large number of electrolytic cells 100a to 100f that electrolyze water to generate and output a mixed gas of hydrogen and oxygen. These electrolytic cells 100a to 100f are formed by combining a pair of left and right insulated semi-cylindrical bodies 100a and 100b.

これらの左右の半円筒体100a、100bは絶縁されてそれぞれに陽極電源及び陰極電源が印加され、電極板の役割をする。These left and right semi-cylindrical bodies 100a and 100b are insulated and applied with an anode power source and a cathode power source, respectively, and serve as electrode plates.

本実施例においては、電解槽装着フレーム200に3基ずつの電解槽100a〜100fが二列に配列され、装着されており、各列の3基ずつの電解槽100a〜100c、100d〜100fは電気的に直列に連結され、二列は互いに並列に連結されている。In this embodiment, three electrolytic cells 100a to 100f are arranged and mounted in two rows on the electrolytic cell mounting frame 200, and three electrolytic cells 100a to 100c and 100d to 100f in each row are Electrically connected in series, the two rows are connected in parallel with each other.

電解槽100a〜100fは、それぞれその上段において両側面に装着掛け112a、112bが突き出てこれらの装着掛け112a、112bの下にそれぞれ絶縁材片202を介在させた状態で電解槽装着フレーム200に安着させて固定することにより、フレーム200と絶縁されることになり、電解槽100a〜100fの下段部は、本装置の床板12から離隔させて設置することにより、絶縁されることになる。このような電解槽の構造については後でより詳しく説明することにする。The electrolyzers 100a to 100f are respectively mounted on the electrolyzer mounting frame 200 in a state where mounting hooks 112a and 112b protrude from both side surfaces in the upper stage and the insulating material pieces 202 are respectively interposed under the mounting hooks 112a and 112b. By attaching and fixing, it will be insulated from the flame | frame 200, and the lower step part of the electrolytic cells 100a-100f will be insulated by installing it apart from the floor board 12 of this apparatus. The structure of such an electrolytic cell will be described in detail later.

これらの電解槽100a〜100fに直流電源を供給して電解ができるようにする電源供給部300と、電解槽100a〜100fに、その分解消費に伴って、適正量の水を自動供給する自動給水タンク400a、400bを具備している。A power supply unit 300 that allows direct electrolysis to be supplied to these electrolytic cells 100a to 100f to perform electrolysis, and automatic water supply that automatically supplies an appropriate amount of water to the electrolytic cells 100a to 100f along with their decomposition and consumption Tanks 400a and 400b are provided.

自動給水タンク400a、400bは、円筒形態で2基が設けられ、各列の3基ずつの電解槽100a〜100c、100d〜100fにそれぞれ1基ずつ割り当てられて水を供給する。これらの自動給水タンク400a、400bは、タンク装着フレーム210に電解槽と同じ構造で安着される。Two automatic water supply tanks 400a and 400b are provided in a cylindrical shape, and one is assigned to each of the three electrolytic cells 100a to 100c and 100d to 100f in each row to supply water. These automatic water supply tanks 400a and 400b are seated on the tank mounting frame 210 with the same structure as the electrolytic cell.

また、電気分解の際、電解槽100a〜100fの過熱を防止するための冷却手段500が設けられている。Moreover, the cooling means 500 for preventing the overheating of the electrolytic cells 100a to 100f is provided during the electrolysis.

この冷却手段500は、電解槽100a〜100fに隣接して配置された冷却ファン510、520によって構成される。こららの冷却ファン510、520は、電解槽100a〜100fの温度が一定温度以上に上昇すると、自動的に作動して電解槽100a〜100fを冷却させることになる。The cooling means 500 includes cooling fans 510 and 520 disposed adjacent to the electrolytic cells 100a to 100f. These cooling fans 510 and 520 automatically operate to cool the electrolytic cells 100a to 100f when the temperature of the electrolytic cells 100a to 100f rises above a certain temperature.

また、本装置にはそれぞれの電解槽100a〜100fにおいて発生した水素と酸素との混合ガスを集合して送り出すガス集合手段600が具備されている。Further, this apparatus is provided with a gas collecting means 600 that collects and sends out a mixed gas of hydrogen and oxygen generated in each of the electrolytic cells 100a to 100f.

このガス集合手段600は、それぞれの電解槽100a〜100fのガス排出口を連結バルブ610とホース620によって一つに連結し、それぞれの電解槽100a〜100fにおいて生成された水素と酸素との混合ガスを一つに集め、送り出すことになる。In this gas collecting means 600, the gas discharge ports of the respective electrolytic cells 100a to 100f are connected together by a connection valve 610 and a hose 620, and a mixed gas of hydrogen and oxygen generated in each of the electrolytic cells 100a to 100f. Will be collected and sent out.

ガス集合手段600の後端には、このように集合され、送り出される水素と酸素との混合ガスの圧力を一定に制御する圧力調節部700が具備されている。At the rear end of the gas collecting means 600, there is provided a pressure adjusting unit 700 that controls the pressure of the mixed gas of hydrogen and oxygen collected and sent out in this way.

この圧力調節部700は1次圧力調節スイッチ710と2次圧力調節スイッチ720によって構成される。1次圧力調節スイッチ710は、生成ガス圧力が一定圧力になると、電解槽100a〜100fにおいてガス生産を中断させ、また、一定圧力までに降下すると、再び生産を再開するようにする。2次圧力調節スイッチ720は、1次圧力調節スイッチ710の故障の際、ガス圧力が一定圧力になると、ガス生産を中断させる2次安全装置の機能を有する。The pressure adjustment unit 700 includes a primary pressure adjustment switch 710 and a secondary pressure adjustment switch 720. The primary pressure adjustment switch 710 interrupts gas production in the electrolyzers 100a to 100f when the generated gas pressure becomes constant, and resumes production again when the pressure decreases to the constant pressure. The secondary pressure adjustment switch 720 has a function of a secondary safety device that interrupts gas production when the gas pressure becomes constant when the primary pressure adjustment switch 710 fails.

圧力調節部700の後端には、発生した水素と酸素との混合ガスが水中を通過することによって逆火を防止する水封式逆火防止器800が設けられている。A water-sealed backfire preventer 800 is provided at the rear end of the pressure adjusting unit 700 to prevent backfire by the generated mixed gas of hydrogen and oxygen passing through the water.

この水封式逆火防止器800の後端には、排出された水素と酸素との混合ガスを使用する時、点火火炎の温度を使用目的に適当な温度に調節するための火炎調節器850を選択的に連結して使用することができる。従って、火炎調節器850は、本装置の本体10の内部に装着せず、必要によって本体10の外部から水封式逆火防止器800とホースで連結して使用することができる。At the rear end of the water-sealed backfire preventer 800, when using a mixed gas of discharged hydrogen and oxygen, a flame adjuster 850 for adjusting the temperature of the ignition flame to an appropriate temperature for the intended use. Can be selectively connected and used. Therefore, the flame regulator 850 is not attached to the inside of the main body 10 of the present apparatus, and can be used by being connected to the water-sealed backfire preventer 800 and the hose from the outside of the main body 10 if necessary.

また、電圧と電流の制御及び各種計器やセンサー等の本装置の構成要素を総合的に制御する制御部900を具備している。Moreover, the control part 900 which controls the component of this apparatus, such as control of a voltage and an electric current, and various instruments and sensors, is provided.

前述した電源供給部300は、AC200V〜400Vの3相電源を変圧器によって一定電圧に変圧し、さらに、AC/DC変換器によって直流に変換した後、電解槽100a〜100fに供給する。The power supply unit 300 described above transforms a three-phase power source of AC 200V to 400V to a constant voltage by a transformer, and further converts the direct current to a direct current by an AC / DC converter, and then supplies the direct current to the electrolytic cells 100a to 100f.

特に、電源供給部300によって電解槽100a〜100fに電源が供給される時、電解槽100a〜100fが安着される電解槽装着フレーム200への漏電を防ぐために、電解槽100a〜100fと電解槽装着フレーム200との間には絶縁材片202を介在させた状態でボルト204に絶縁ブッシング206を挿入し、反対側では絶縁ワッシャー207を介在させた状態でナット208を締結する。In particular, when power is supplied to the electrolytic cells 100a to 100f by the power supply unit 300, the electrolytic cells 100a to 100f and the electrolytic cell may be used in order to prevent leakage to the electrolytic cell mounting frame 200 on which the electrolytic cells 100a to 100f are seated. The insulating bushing 206 is inserted into the bolt 204 with the insulating piece 202 interposed between the mounting frame 200 and the nut 208 is fastened with the insulating washer 207 interposed on the opposite side.

図3〜8は、上記図1〜図2に示すそれぞれの構成部材の詳細を示す。3-8 shows the detail of each structural member shown in the said FIGS. 1-2.

図3は、図1に示された電解槽100a〜100fの中の1基の組立斜視図であり、図4はその分解斜視図を示し、図5は図3のA−A線の断面図である。3 is an assembly perspective view of one of the electrolytic cells 100a to 100f shown in FIG. 1, FIG. 4 is an exploded perspective view thereof, and FIG. 5 is a sectional view taken along line AA of FIG. It is.

これらの図に示すとおり、電解槽100は、左右一対の半円筒体110a、110bを合体させて内圧に強い円筒体のケース110を形成する。As shown in these drawings, the electrolytic cell 100 combines a pair of left and right semi-cylindrical bodies 110a and 110b to form a cylindrical case 110 that is resistant to internal pressure.

左右の半円筒体110a、110bを合体させる際には、それぞれの間に絶縁板120が介在され、円筒体のケース110の左側と右側を電気的に絶縁させる。When the left and right semi-cylindrical bodies 110a and 110b are combined, an insulating plate 120 is interposed therebetween to electrically insulate the left and right sides of the cylindrical case 110 from each other.

このような絶縁は、左右の半円筒体110a、110bにそれぞれ陽極電源と陰極電源を印加することによって、左右の半円筒体110a、110b自体がそれぞれ陽極電極板と陰極電極板として機能するようにするためである。Such insulation is achieved by applying anode power and cathode power to the left and right half cylinders 110a and 110b, respectively, so that the left and right half cylinders 110a and 110b themselves function as anode and cathode electrode plates, respectively. It is to do.

左右の半円筒体110a、110bを結合するために、これらの半円筒体110a、110bの縁にはそれぞれ結合板114a、114bが延長されており、結合板114a、114bにはそれぞれの対応部位に結合孔116a、116bが形成されている。In order to connect the left and right semi-cylindrical bodies 110a and 110b, coupling plates 114a and 114b are extended to the edges of the semi-cylindrical bodies 110a and 110b, respectively. Coupling holes 116a and 116b are formed.

円筒体のケース110は、左側の半円筒体110aの左側結合板114aと右側の半円筒体110bの右側結合板114bを密着させて結合するが、この時、絶縁板120を左側結合板114aと右側結合板114bの間に介在させて両側の半円筒体110a、110bを絶縁することになる。In the cylindrical case 110, the left coupling plate 114a of the left semi-cylindrical body 110a and the right coupling plate 114b of the right semi-cylindrical body 110b are brought into close contact with each other. At this time, the insulating plate 120 is connected to the left coupling plate 114a. The semi-cylindrical bodies 110a and 110b on both sides are insulated by being interposed between the right coupling plates 114b.

絶縁板120は、接触面積が左右の結合板114a、114bと同一面積と形状を持つようになる。即ち、絶縁板120は、左右の結合板114a、114bと同じ形状の四角形の中空が形成されており、結合板114a、114bの結合孔116a、116bとの対応部位に貫通孔122が形成され、連通されるようになっている。
また、この絶縁板120は、絶縁性は勿論、弾力性と気密性に優れた材質が好適である。
The insulating plate 120 has the same contact area and shape as the left and right coupling plates 114a and 114b. That is, the insulating plate 120 is formed with a rectangular hollow having the same shape as the left and right coupling plates 114a and 114b, and a through hole 122 is formed at a portion corresponding to the coupling holes 116a and 116b of the coupling plates 114a and 114b. It is designed to communicate.
The insulating plate 120 is preferably made of a material excellent in elasticity and airtightness as well as insulative.

従って、電解槽100は、絶縁板120を介在し、左右から半円筒体110a、110bを合体させた後、結合孔116a、116bと貫通孔122にボルト130を進入させ、反対側でナット132を締結して結合する。Accordingly, in the electrolytic cell 100, the insulating plates 120 are interposed, and the semi-cylindrical bodies 110a and 110b are combined from the left and right, and then the bolts 130 are inserted into the coupling holes 116a and 116b and the through holes 122, and the nuts 132 are inserted on the opposite side. Fasten and join.

この時、金属製ボルト130とナット132によって左右の半円筒体110a、110bの絶縁が破壊されるのを防ぐために、ボルト130側においては連通する結合孔116a、116bと貫通孔122に耐熱絶縁性の絶縁ブッシング134を挿入した状態でボルト130を進入させて貫通させ、ナット132側においては耐熱絶縁性の絶縁ワッシャーを介在した状態でナット132を締結する。At this time, in order to prevent the insulation of the left and right semi-cylindrical bodies 110a and 110b from being broken by the metal bolt 130 and the nut 132, the connecting holes 116a and 116b and the through hole 122 communicating with each other on the bolt 130 side have a heat-resistant insulating property. With the insulation bushing 134 inserted, the bolt 130 is inserted and penetrated, and on the nut 132 side, the nut 132 is fastened with a heat-resistant insulating washer interposed.

このように、左右の半円筒体110a、110bの間に絶縁板120を介在させ、合体されて円筒体を成す電解槽100の上部には、内部において発生した水素と酸素との混合ガスを排出するためのガス排出口140と、手動で給水する場合や電解槽掃除の場合に使われる手動給水口兼電解槽掃除口150及び電解槽内部において異常圧力が発生した時、作動する安全弁160が設けられている。As described above, the insulating plate 120 is interposed between the left and right semi-cylindrical bodies 110a and 110b, and the mixed gas of hydrogen and oxygen generated inside is discharged to the upper part of the electrolytic cell 100 which is united to form a cylindrical body. There are provided a gas discharge port 140 for manual operation, a manual water supply / electrolyzer cleaning port 150 used for manual water supply or electrolytic cell cleaning, and a safety valve 160 that operates when abnormal pressure occurs inside the electrolytic cell. It has been.

この安全弁160は、一定圧力で作動するように設定されており、電解槽内部の圧力が動作範囲を超過して危険水位に到達すると、開放され、水素と酸素との混合ガスを外部へ排出して圧力を降下させる役割をする。The safety valve 160 is set to operate at a constant pressure. When the pressure inside the electrolytic cell exceeds the operating range and reaches a dangerous water level, the safety valve 160 is opened and discharges a mixed gas of hydrogen and oxygen to the outside. To reduce pressure.

また、前述したガス排出口140と隣接した電解槽100の内側には、電気分解の際、電解槽内部の水面から電解液が跳ね上がり、電解液の一部が水素と酸素との混合ガスと共に出てくる現象を防ぐための電解液流出防止板118が設置されている。In addition, inside the electrolytic cell 100 adjacent to the gas discharge port 140 described above, during electrolysis, the electrolytic solution jumps up from the water surface inside the electrolytic cell, and a part of the electrolytic solution is discharged together with the mixed gas of hydrogen and oxygen. An electrolyte outflow prevention plate 118 is installed to prevent this phenomenon.

この電解液流出防止板118は、図4に示すとおり、大体L字の形態として取り付けられており、ガス排出口140を包囲するような形態で、電解液がガス排出口140へ流入されるのを防止する遮断板である。As shown in FIG. 4, the electrolyte solution outflow prevention plate 118 is attached in an approximately L shape, and the electrolyte solution flows into the gas discharge port 140 in a form surrounding the gas discharge port 140. This is a blocking plate that prevents

また、電解槽100には、電気分解によって消費される水の供給を受けるための給水口(未図示)が設けられている。この給水口は自動給水タンク400と連結され、自動給水タンク400から自動的に水の供給を受けることになる。Further, the electrolytic cell 100 is provided with a water supply port (not shown) for receiving supply of water consumed by electrolysis. The water supply port is connected to the automatic water supply tank 400 and automatically receives water from the automatic water supply tank 400.

さらに、電解槽100には、使用者が電解液の水位を目認できる水位計170が設けられており、電解槽100の掃除や電解液交換の際、電解液を排出するためのドレインバルブ180が設けられている。Furthermore, the electrolytic cell 100 is provided with a water level meter 170 that allows the user to recognize the level of the electrolytic solution. A drain valve 180 for discharging the electrolytic solution when the electrolytic cell 100 is cleaned or the electrolytic solution is replaced. Is provided.

前述したとおり、電解槽100は、左右の半円筒体110a、110bがそれぞれ陽極板と陰極板の役割をするために、互いに絶縁されており、陽極板の機能をする半円筒体110aには陽極電源が連結され、陰極板の機能をする半円筒体110bには陰極電源が連結されるようになっている。また、これらの陽極電源と陰極電源を連結するために、左右の半円筒体110a、110bにはそれぞれ電源入力端子119a、119bが設けられている。As described above, the electrolytic cell 100 includes the left and right semi-cylindrical bodies 110a and 110b that are insulated from each other in order to function as an anode plate and a cathode plate, respectively. A power source is connected, and a cathode power source is connected to the semi-cylindrical body 110b that functions as a cathode plate. Further, in order to connect the anode power source and the cathode power source, the left and right semi-cylindrical bodies 110a and 110b are provided with power input terminals 119a and 119b, respectively.

また、電解槽100には、電解槽温度感知センサー190が設けられ、電解槽の温度が一定温度以上に上昇すると、冷却ファン510、520が自動的に作動して電解槽100を冷却させることになる。さらに、電解槽100の温度が設定温度以上に過熱すると、自動的に作動して電解槽100への電源供給を遮断することになる。Further, the electrolytic cell 100 is provided with an electrolytic cell temperature sensor 190, and when the electrolytic cell temperature rises above a certain temperature, the cooling fans 510 and 520 are automatically operated to cool the electrolytic cell 100. Become. Furthermore, when the temperature of the electrolytic cell 100 is overheated to a set temperature or higher, the automatic operation is performed and the power supply to the electrolytic cell 100 is cut off.

以上で説明した構造の多数の電解槽100を直列に連結する場合、電気的に直列に連結される一方、それぞれの電解槽の電解液もホースによって連結されることになる。この時、電源は、直列に連結された電解槽の一番前と一番後ろの半円筒体にそれぞれ陽極と陰極を連結することになる。When a large number of electrolytic cells 100 having the structure described above are connected in series, they are electrically connected in series, while the electrolytic solution in each electrolytic cell is also connected by a hose. At this time, the power source connects the anode and the cathode to the front and rear half cylinders of the electrolytic cells connected in series.

図6は、本考案に適用される自動給水タンク400の斜視図を示す。FIG. 6 shows a perspective view of an automatic water supply tank 400 applied to the present invention.

この自動給水タンク400は、電解槽の給水口(未図示)と連結され、電気分解によって消費される水を給水口を通じて電解槽100へ自動で補給する。円筒形の自動給水タンク400の下部には電解槽100へ水を供給するための水供給口410と、タンク内部へ水を補充するための水流入口420が設けられており、タンクの上部にはタンク内部の水位を感知して水不足の時、水流入口420とホースや配管を通じて連結されるソレノイドバルブ422を開閉する信号を送り出す水位感知センサー430が設けられている。This automatic water supply tank 400 is connected to a water supply port (not shown) of the electrolytic cell, and automatically supplies water consumed by electrolysis to the electrolytic cell 100 through the water supply port. A water supply port 410 for supplying water to the electrolytic cell 100 and a water inlet 420 for replenishing the water inside the tank are provided at the lower part of the cylindrical automatic water supply tank 400. A water level detection sensor 430 is provided to send a signal for opening and closing a solenoid valve 422 connected to the water inlet 420 through a hose or a pipe when the water level in the tank is detected and water is insufficient.

また、ソレノイドバルブ422の後端にはチェックバルブ424が設けられ、水の逆流を防止する。In addition, a check valve 424 is provided at the rear end of the solenoid valve 422 to prevent back flow of water.

水位感知センサー430の隣には手動で水の補充ができる手動給水口440と、タンクの中の圧力異常の際、作動する安全弁450と、前述した電解槽のガス集合手段600と連結バルブとホースで連結され、タンクの内部圧力を電解槽の内部圧力と同一にする圧力調整口460が設けられている。Next to the water level sensor 430, there is a manual water supply port 440 through which water can be manually refilled, a safety valve 450 that operates when the pressure in the tank is abnormal, the gas collecting means 600 of the electrolytic cell, the connection valve, and the hose. And a pressure adjusting port 460 for making the internal pressure of the tank the same as the internal pressure of the electrolytic cell.

そして、タンクの側面にはタンク内部の水位を目認できる水位計470が設けられており、タンクの下部にはタンク内部の水を排出できるドレインバルブ412が設けられている。タンク400の上部の両側面にはタンク400をタンク装着フレーム210に安着させ、ボルトで結合するためのボルト孔482a、482bが形成された装着板部480a、480bが具備されている。また、タンク400をタンク装着フレーム210に安着させる時は電解槽100を電解槽装着フレーム200に安着させる場合と同じく、絶縁のために、絶縁材片202と絶縁ブッシング206と絶縁ワッシャー207を使用して結合する。A water level meter 470 that can recognize the water level inside the tank is provided on the side of the tank, and a drain valve 412 that can discharge the water inside the tank is provided below the tank. On both side surfaces of the upper portion of the tank 400, mounting plate portions 480a and 480b in which bolt holes 482a and 482b for fixing the tank 400 to the tank mounting frame 210 and connecting with bolts are formed. Further, when the tank 400 is seated on the tank mounting frame 210, the insulating material piece 202, the insulating bushing 206, and the insulating washer 207 are provided for insulation in the same manner as when the electrolytic cell 100 is seated on the electrolytic cell mounting frame 200. Use to join.

図7は、本考案に適用される水封式逆火防止器の縦断面図であり、図8はその平面図である。FIG. 7 is a longitudinal sectional view of a water-sealed backfire preventer applied to the present invention, and FIG. 8 is a plan view thereof.

水封式逆火防止器800は、発生した水素と酸素との混合ガスを、水中を通過させた後、排出することにより、外部から水封式逆火防止器800へ火炎が逆流しても水によって火炎が遮断され、水封式逆火防止器800のガス流入口802を通じて電解槽まで火炎が及ぶのを防止する。The water-sealed backfire preventer 800 allows the generated mixed gas of hydrogen and oxygen to pass through the water and then discharges it, so that even if a flame flows back to the water-sealed backfire preventer 800 from the outside. The flame is blocked by water, and the flame is prevented from reaching the electrolytic cell through the gas inlet 802 of the water-sealed backfire preventer 800.

このような機能を持つ水封式逆火防止器800は、水が一定の高さまで満たされた逆火防止液桶810に上方からガス供給管820が垂直に進入されて、底の方で水平に切曲され、大体L字の形に配置されている。In the water-sealed backfire preventer 800 having such a function, a gas supply pipe 820 is vertically entered from above into a backfire prevention liquid tank 810 filled with water up to a certain height, and horizontally at the bottom. And is arranged in an approximately L shape.

このガス供給管820の切曲された下段水平部には微細なガス流出孔822が穿孔されており、このガス流出孔822を通じて水素と酸素との混合ガスが逆火防止液桶810の内部へ流入される。このガス流出孔822はガス供給管820の下段水平部の下方へ穿孔され、逆火防止液桶の底に向いている。このような構造によって、ガス流出孔822を通じて出力される水素と酸素との混合ガスが急激に上昇するのを防ぎ、逆火防止液桶810の水が激しくふつふつとわき上がるような現象を減らすことができる。A fine gas outflow hole 822 is formed in the bent lower horizontal portion of the gas supply pipe 820, and a mixed gas of hydrogen and oxygen enters the backfire prevention liquid tank 810 through the gas outflow hole 822. Inflow. The gas outflow hole 822 is drilled below the lower horizontal portion of the gas supply pipe 820 and faces the bottom of the flashback prevention liquid tank. By such a structure, it is possible to prevent the mixed gas of hydrogen and oxygen output through the gas outflow hole 822 from rapidly rising, and to reduce a phenomenon in which the water of the flashback prevention liquid tank 810 is violently raised. Can do.

ガス供給管820のガス流出孔822の上方にはガス分散板830、832が一定間隔を離隔して上下に配置されている。このガス分散板830、832にはガス供給管820が通過するガス供給管貫通孔830a、832aが形成されており、その周囲に無数の微細なガス分散孔830b、832bが穿孔されている。Gas dispersion plates 830 and 832 are arranged above and below the gas outlet hole 822 of the gas supply pipe 820 at regular intervals. Gas supply pipe through-holes 830a and 832a through which the gas supply pipe 820 passes are formed in the gas dispersion plates 830 and 832, and innumerable fine gas dispersion holes 830b and 832b are formed in the periphery thereof.

従って、ガス流出孔822を通じて出てくる水素と酸素との混合ガスはガス分散板830、832のガス分散孔830b、832bを通過しながら気泡発生が抑制され、水面の上へ上昇することになる。Accordingly, the mixed gas of hydrogen and oxygen coming out through the gas outflow hole 822 is suppressed from generating bubbles while passing through the gas dispersion holes 830b and 832b of the gas dispersion plates 830 and 832, and rises above the water surface. .

さらに、逆火防止液桶810の内部には水面から一定間隔を離隔して空間上に水上昇阻止板834が設けられ、水素と酸素との混合ガスの上昇により、水面から水が跳ね上がる現象を抑制することになる。この水上昇阻止板834はその下方のガス分散板830、832と同一の構造であり、微細なガス分散孔834bが穿孔されている。水素と酸素との混合ガスはこの水上昇阻止板834を通過して上昇することになる。Further, a water rise prevention plate 834 is provided in the space inside the flashback prevention liquid tank 810 at a predetermined interval from the water surface, and the phenomenon that water jumps from the water surface due to the rise of the mixed gas of hydrogen and oxygen. Will be suppressed. The water rise prevention plate 834 has the same structure as the gas dispersion plates 830 and 832 below it, and fine gas dispersion holes 834b are drilled. The mixed gas of hydrogen and oxygen rises through the water rise prevention plate 834.

水上昇阻止板834の上方には半円板形の水流出防止板836がガス排出口840の方を包囲しながら斜めに設けられている。この水流出防止板836は水面から跳ね上がる水が水上昇阻止板834を通過してもガス排出口840へ入るのを遮断するための2次的遮断幕である。円板形である水上昇阻止板834は逆火防止液桶810の断面と同一であり、穿孔されているが、水流出防止板836は半円板形で孔がなく、水上昇阻止板834の大体半分の大きさであり、ガス排出口840が水面から直接露出されるのを防止する。Above the water rise prevention plate 834, a semicircular disc-shaped water outflow prevention plate 836 is provided obliquely while surrounding the gas discharge port 840. This water outflow prevention plate 836 is a secondary blocking curtain for blocking the water splashing from the water surface from entering the gas discharge port 840 even if it passes through the water rise prevention plate 834. The disk-shaped water rise prevention plate 834 has the same cross section as the backfire prevention liquid tank 810 and is perforated, but the water outflow prevention plate 836 is semicircular and has no holes, and the water rise prevention plate 834 The gas discharge port 840 is prevented from being directly exposed from the water surface.

このように、逆火防止液桶810の水が水面から跳ね上がっても水上昇阻止板834及び水流出防止板836によって二重遮断され、水素と酸素との混合ガスのみがガス排出口840を通じて排出されることになる。Thus, even if the water of the backfire prevention liquid tank 810 jumps from the water surface, it is double-blocked by the water rise prevention plate 834 and the water outflow prevention plate 836, and only the mixed gas of hydrogen and oxygen is discharged through the gas discharge port 840. Will be.

前記の逆火防止液桶810は圧力を考慮して円筒形に構成するのが望ましく、その内部に装着されるガス分散板830、832及び水上昇阻止板834も円板形態に構成される。また、逆火防止液桶810の上部には内部へ水を注入するための注水口842が設けられており、下部には内部の水を排出させられるドレインバルブ844が設けられている。The backfire prevention liquid tank 810 is preferably formed in a cylindrical shape in consideration of pressure, and the gas dispersion plates 830 and 832 and the water rise prevention plate 834 mounted therein are also formed in a disk shape. In addition, a water injection port 842 for injecting water into the interior is provided in the upper part of the backfire prevention liquid tank 810, and a drain valve 844 for discharging the internal water is provided in the lower part.

火炎調節器850は、前述の図7と図8に示す水封式逆火防止器800と同一の構造を持つ。この火炎調節器850は本装置の本体10の内部に装着せず、必要によって本体10の外部から水封式逆火防止器800とホースで連結して使用することができる。従って、点火火炎の温度調節の必要がない場合は火炎調節器850を経由せず、水封式逆火防止器800から直接水素と酸素との混合ガスを供給することになる。The flame regulator 850 has the same structure as the water-sealed backfire preventer 800 shown in FIGS. The flame regulator 850 is not attached to the inside of the main body 10 of the present apparatus, and can be used by connecting to the water-sealed backfire preventer 800 with a hose from the outside of the main body 10 if necessary. Therefore, when it is not necessary to adjust the temperature of the ignition flame, the mixed gas of hydrogen and oxygen is supplied directly from the water ring backfire preventer 800 without going through the flame controller 850.

ここに開示された実施例は、当業者の理解を助ける為のもので、本考案の技術的思想がこの実施例の記載によって限定されるものではなく、本考案の技術的思想の範囲内で多様な変形が可能であるのは勿論である。The embodiments disclosed herein are intended to assist those skilled in the art, and the technical idea of the present invention is not limited by the description of the embodiments, but within the scope of the technical idea of the present invention. Of course, various modifications are possible.

本考案の大容量水素・酸素混合ガス発生装置によって生産された水素と酸素との混合ガスは、高温の炭素を含まない無公害ガスで、各種の熱加工等の熱源として使用されるだけでなく、有毒性廃棄物焼却、水素と酸素との混合ガス温風器、水素と酸素との混合ガスボイラー、水素と酸素との混合ガス加熱炉、水素と酸素との混合ガス焼却炉、水素と酸素との混合ガス炭化装置、水素と酸素との混合ガスエンジン等のための燃料供給装置としても幅広く使用できる。また、他の燃料との併用もできる。The mixed gas of hydrogen and oxygen produced by the large-capacity hydrogen / oxygen mixed gas generator of the present invention is a non-polluting gas that does not contain high-temperature carbon and is not only used as a heat source for various types of thermal processing. Toxic waste incineration, hydrogen and oxygen mixed gas hot air heater, hydrogen and oxygen mixed gas boiler, hydrogen and oxygen mixed gas heating furnace, hydrogen and oxygen mixed gas incinerator, hydrogen and oxygen It can also be widely used as a fuel supply device for a mixed gas carbonizing device, a mixed gas engine of hydrogen and oxygen, and the like. It can also be used in combination with other fuels.

本考案の大容量水素・酸素混合ガス発生機の分解斜視図であり、It is an exploded perspective view of a large-capacity hydrogen / oxygen mixed gas generator of the present invention, 本考案の大容量水素・酸素混合ガス発生機の組立図を示す。An assembly drawing of the large-capacity hydrogen / oxygen mixed gas generator of the present invention is shown. 本考案による大容量水素・酸素混合ガス発生機の電解槽の組立図を示す。The assembly drawing of the electrolytic cell of the large capacity hydrogen / oxygen mixed gas generator according to the present invention is shown. 同じく電解槽の分解斜視図を示す。Similarly, the exploded perspective view of an electrolytic cell is shown. 図3のA−A線の断面図である。It is sectional drawing of the AA line of FIG. 自動給水装置部の構成図である。It is a block diagram of an automatic water supply apparatus part. 水封式逆火防止器の縦断面図である。It is a longitudinal cross-sectional view of a water-sealed backfire preventer. 図7の平面図である。FIG. 8 is a plan view of FIG. 7.

符号の説明Explanation of symbols

100a〜100f:電解槽 110a、110b:半円筒体
112a、112b:装着掛け 114a、114b:結合板
116a、116b:結合孔 118:電解液流出防止板
120:絶縁板 122:貫通孔
300:電源供給部 400a、400b:自動給水タンク
500:冷却手段 600:ガス集合手段
700:圧力調節部 710:1次圧力調節スイッチ
720:2次圧力調節スイッチ 800:水封式逆火防止器
850:火炎調節器 900:制御部
100a to 100f: electrolytic cell 110a, 110b: semi-cylindrical body 112a, 112b: mounting hook 114a, 114b: coupling plate 116a, 116b: coupling hole 118: electrolyte solution outflow prevention plate 120: insulating plate 122: through hole 300: power supply Parts 400a, 400b: automatic water supply tank 500: cooling means 600: gas collecting means 700: pressure adjusting part 710: primary pressure adjusting switch 720: secondary pressure adjusting switch 800: water-sealed backfire preventer 850: flame controller 900: Control unit

Claims (4)

絶縁された左右の半円筒体を合体させ、円筒体を成し、左右の半円筒体に陽極電源と陰極電源をそれぞれ印加して内部において水を電気分解して水素と酸素との混合ガスを生成して出力する電解槽と、
電解槽に直流電源を供給して電解ができるようにする電源供給部と、
電気分解によって消費される水を適正量供給するための自動給水タンクと、
電解槽の過熱防止のための冷却手段と、
出力された水素と酸素との混合ガスの圧力を一定に制御する圧力調節部と、
内部に水を充填し、電解槽から生成出力された水素と酸素との混合ガスを、水中を通過させて送り出すことによって外部からの火炎が電解槽へ逆流することを遮断する水封式逆火防止器と、
電圧と電流の制御及び各種計器やセンサー等の本装置の構成要素を総合的に制御する制御部と、
出力された水素と酸素との混合ガスを集合させ、送り出すガス集合手段を有することを特徴とする大容量水素・酸素混合ガス発生装置。
Insulated left and right semi-cylindrical bodies are combined to form a cylindrical body, and an anode power source and a cathode power source are applied to the left and right semi-cylindrical bodies, respectively, and water is electrolyzed to generate a mixed gas of hydrogen and oxygen. An electrolytic cell to generate and output;
A power supply section for supplying direct current power to the electrolytic cell so that electrolysis can be performed;
An automatic water supply tank for supplying an appropriate amount of water consumed by electrolysis,
A cooling means for preventing overheating of the electrolytic cell;
A pressure adjusting unit that controls the pressure of the mixed gas of hydrogen and oxygen that is output to be constant;
Water-sealed flashback that fills the interior with water and blocks the reverse flow of flame from the outside to the electrolytic cell by sending the mixed gas of hydrogen and oxygen generated and output from the electrolytic cell through the water. A preventer,
A control unit that comprehensively controls the components of the apparatus, such as voltage and current control and various instruments and sensors;
A large-capacity hydrogen / oxygen mixed gas generator having gas collecting means for collecting and sending out an output mixed gas of hydrogen and oxygen.
縁に結合孔が形成されている結合板を持ち、その自体が電極板の役割をする半径同一の対向する半円筒体の左右の電解槽ケースと、
絶縁板を介在して半径同一の対向する半円筒体の左右の電解槽ケースを密着合体することによって内部に電極板を持たない電解室を形成し、その電解室の一定高さまでに電解液を注水して半円筒体の左右の電解槽ケースに設けられている電源入力端子にそれぞれ陽・陰直流電源を印加して水素と酸素との混合ガスを生成して出力する請求項1に記載の大容量水素・酸素混合ガス発生装置の電気分解槽。
Left and right electrolytic cell cases of opposite semi-cylindrical bodies having the same radius, each having a coupling plate formed with a coupling hole at the edge, and serving as an electrode plate itself,
Electrolytic chambers without electrode plates inside are formed by tightly combining the left and right electrolytic cell cases of opposing semi-cylindrical bodies with the same radius through an insulating plate, and the electrolytic solution is added up to a certain height of the electrolytic chamber. 2. The method according to claim 1, wherein water is injected and positive and negative DC power supplies are respectively applied to power input terminals provided in the left and right electrolytic cell cases of the semi-cylindrical body to generate and output a mixed gas of hydrogen and oxygen. Electrolysis tank for large-capacity hydrogen / oxygen mixed gas generator.
電気分解の際、電解槽内部の水面から電解液が跳ね上がり、電解液の一部が水素と酸素との混合ガスと共に出てくる現象を防ぐために、電解槽内部のガス排出口と隣接した内面に設けられた電解液流出防止板を具備する請求項2に記載の大容量水素・酸素混合ガス発生装置の電気分解層。In order to prevent the electrolyte from splashing from the water surface inside the electrolytic cell during electrolysis and part of the electrolytic solution coming out with the mixed gas of hydrogen and oxygen, the inner surface adjacent to the gas outlet inside the electrolytic cell The electrolysis layer of the large-capacity hydrogen / oxygen mixed gas generator according to claim 2, further comprising an electrolytic solution outflow prevention plate provided. 水素と酸素との混合ガスが水封式逆火防止器を通過して出てくる時、水素と酸素との混合ガスの吐出し力によって水封式逆火防止器の中の水が水素と酸素との混合ガスと共に出てくる現象を防ぐために、水封式逆火防止器の内部に設けられた水上昇阻止板と、
水上昇阻止板も通過した水がガス排出口へ流入されるのを遮断するために、水上昇阻止板の上方にガス排出口の方へ斜めに設けられた水流出防止板を持つ請求項1に記載の大容量水素・酸素混合ガス発生装置の水封式逆火防止器。
When the mixed gas of hydrogen and oxygen comes out through the water-sealed backfire preventer, the water in the water-sealed backfire preventer is replaced with hydrogen by the discharge force of the mixed gas of hydrogen and oxygen. In order to prevent the phenomenon coming out with the mixed gas with oxygen, a water rise prevention plate provided inside the water-sealed backfire preventer,
2. A water outflow prevention plate provided obliquely toward the gas discharge port above the water rise prevention plate in order to block water that has passed through the water rise prevention plate from flowing into the gas discharge port. A water-sealed backfire preventer for the large-capacity hydrogen / oxygen mixed gas generator described in 1.
JP2006000926U 2006-01-18 2006-01-18 Large-capacity hydrogen / oxygen mixed gas generator Expired - Fee Related JP3120716U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000926U JP3120716U (en) 2006-01-18 2006-01-18 Large-capacity hydrogen / oxygen mixed gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000926U JP3120716U (en) 2006-01-18 2006-01-18 Large-capacity hydrogen / oxygen mixed gas generator

Publications (1)

Publication Number Publication Date
JP3120716U true JP3120716U (en) 2006-04-20

Family

ID=43470870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000926U Expired - Fee Related JP3120716U (en) 2006-01-18 2006-01-18 Large-capacity hydrogen / oxygen mixed gas generator

Country Status (1)

Country Link
JP (1) JP3120716U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113003892A (en) * 2021-03-25 2021-06-22 中建环能科技股份有限公司 Coking wastewater treatment system and treatment process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113003892A (en) * 2021-03-25 2021-06-22 中建环能科技股份有限公司 Coking wastewater treatment system and treatment process

Similar Documents

Publication Publication Date Title
US20040038096A1 (en) Hydrogen/oxygen generating system with temperature control
KR100684685B1 (en) Occurrence apparatus for hydrogen oxygen mixing gas
EP2762613A1 (en) A fuel system
US20100147231A1 (en) Electrolytic Cell for an Internal Combustion Engine
JP3836833B2 (en) Hydrogen and oxygen mixed gas generator and its electrolyzer
EP3397795B1 (en) Electrolytic cell for internal combustion engine
KR20050047697A (en) A mixed gas generator of oxygen and hydrogen and an electrolyzer therein
JP3120716U (en) Large-capacity hydrogen / oxygen mixed gas generator
KR20020032272A (en) An oxyhydrogen gas generator
JP2009035804A (en) Large amount brown's gas generation apparatus and electrolytic cell therefor
KR100662093B1 (en) Brown gas generator
CN100447306C (en) Automatic hydro-electrolytic hydroxide generator
JP3124769U (en) Hydrogen oxygen mixed gas generator
KR20040055411A (en) High efficiency brown gas generator
WO1998009001A1 (en) Method and advice for generating hydrogen and oxygen
JP3101713U (en) Mixed gas generator of hydrogen and oxygen
JP3102932U (en) Hydrogen and oxygen mixed gas generation electrolyzer
KR20020071099A (en) A hydrogen and oxygen generator
KR200204013Y1 (en) Digital oh gas boiler
AU2015218446A1 (en) Multifunctional on Demand Portable H2O Hydrogen/Oxygen Separator Generator For Combustion Engines, Cutting Steel and Heating
JP2005089851A (en) Device for stabilizing temperature of electrolytic solution in electrolytic tank
JP2008013830A (en) Electrode structure of electrolysis tank, and electrolysis tank
JP3099101U (en) Structure of mixed gas generator
JPH1112773A (en) Method for generating hydrogen and oxygen and device therefor
JP2013223839A (en) Neutralization apparatus and hot water supply system having the same

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees