JP3120478U - Current suppression balanced circuit - Google Patents

Current suppression balanced circuit Download PDF

Info

Publication number
JP3120478U
JP3120478U JP2006000196U JP2006000196U JP3120478U JP 3120478 U JP3120478 U JP 3120478U JP 2006000196 U JP2006000196 U JP 2006000196U JP 2006000196 U JP2006000196 U JP 2006000196U JP 3120478 U JP3120478 U JP 3120478U
Authority
JP
Japan
Prior art keywords
current
load
circuit
balanced
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006000196U
Other languages
Japanese (ja)
Inventor
明徳 陳
Original Assignee
台北沛波電子股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台北沛波電子股▲ふん▼有限公司 filed Critical 台北沛波電子股▲ふん▼有限公司
Priority to JP2006000196U priority Critical patent/JP3120478U/en
Application granted granted Critical
Publication of JP3120478U publication Critical patent/JP3120478U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

【課題】 ロードの作動の安定性制御と電流平衡効果を達成する電流抑制平衡回路を提供する。
【解決手段】 少なくとも一個ののロード(灯管、発光部品、単相或いは多相分流高効率モジュールなど)を具える制御回路中に応用し、インバーター回路、探知回路、平衡変圧器を含む。該インバーター回路は電流を該ロードに提供し、探知回路は該制御回路中の総ロード或いは参考ロードの電流量を受取り及び探知し、その電流量を安定後、インバーター回路の入力端に戻し、インバーター回路は安定(修正)電流を出力する。少なくとも一個のの平衡変圧器は、その一次側コイルでの修正安定電流を受取り、及びその二次側コイルは個別に該ロードに直列する。こうして、レンツの定理を応用し、平衡変圧器の二次側の電流が変異を生じる(ロードの電流が変異を生じる)時、個別にその一次側の修正安定電流と相互に比較を行う。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a current suppression balance circuit that achieves stability control of load operation and a current balance effect.
The present invention is applied to a control circuit including at least one load (lamp tube, light-emitting component, single-phase or multi-phase shunt high-efficiency module, etc.), and includes an inverter circuit, a detection circuit, and a balanced transformer. The inverter circuit provides current to the load, and the detection circuit receives and detects the current amount of the total load or the reference load in the control circuit, stabilizes the current amount, and returns it to the input terminal of the inverter circuit. The circuit outputs a stable (modified) current. At least one balanced transformer receives a modified stable current in its primary coil, and its secondary coil is individually in series with the load. Thus, applying Lenz's theorem, when the current on the secondary side of the balanced transformer is mutated (the load current is mutated), it is individually compared with the corrected current on the primary side.
[Selection] Figure 1

Description

本考案は一種の電流抑制平衡回路に関する。特に一種の平衡変圧器を利用し、各ロード端の電流を安定(修正)電流と比較し、該ロードの作動の安定性の制御と電流平衡の効果を達成する電流抑制平衡回路に係る。   The present invention relates to a kind of current suppression balanced circuit. In particular, the present invention relates to a current-suppressing balanced circuit that uses a kind of balanced transformer, compares the current at each load end with a stable (corrected) current, and achieves the effect of controlling the stability of the operation of the load and current balancing.

一般の液晶モニタパネルでは、十分な輝度を得るためしばしば多くの灯管を用いる必要がある。そのため灯管に対する電力の提供には単一の変圧器或いはその他の電力転換システムを用い、2個以上が並列接続した灯管を駆動する。
しかし、各灯管間の抵抗値には差異があるため、各並列接続灯管を流れる管電流(分流)の均一分配に重大な影響を及ぼす。その電流が過小(或いは過大)であれば、輝度不足(或いは過多)を引起し、液晶モニタパネルの光源の均一性に悪影響を及ぼす。また、電流が過大であれば灯管そのものとシステム全体の使用寿命を縮めてしまい、さらには、インバーターのパーツ誤差及び灯管特性の時間に従う変化など状況に対して、正確な制御を行うことができない。加えて、灯管のマイナス電気抵抗特性により、どれか一つの灯管が先に起動後、管電流が増加すると、管電圧は相対的に低下し、その他の並列接続出力する灯管は入力電圧がすでにより低い電位にクランパーされているため順調に起動できなくなってしまい、パネルの点滅現象さえも生じる。
台湾特許公報公告第478292号の「多灯管駆動システム」は主に単一インバーターの出力ロード端により、抵抗値対応の原理を利用し、灯管電流平衡の目的を達成するが、しかし、上記システムは運用の過程において、主灯管を基準として設置する必要があり、またその他の副灯管は順番に該主灯管と電流の抵抗値を対応平衡させなければならない。しかも、各灯管間に存在する製造の過程における計算不能な灯管の長さや直径、水銀密度、圧力、電極塗層などの微小誤差を受け、管電圧の管電流の通常の内抵抗特性曲線に対する偏移を引起し、該各灯管を最良の作動状態とすることができず、またその電流平衡の効果を達成することができない。
台湾特許公報公告第478292号公報 特開2004-265868号公報
In general liquid crystal monitor panels, it is often necessary to use many lamp tubes in order to obtain sufficient luminance. Therefore, a single transformer or other power conversion system is used to provide power to the lamp tube, and two or more lamp tubes connected in parallel are driven.
However, since there is a difference in the resistance value between each lamp tube, it has a significant effect on the uniform distribution of the tube current (divided flow) flowing through each parallel-connected lamp tube. If the current is too small (or too large), the luminance is insufficient (or excessive), and the uniformity of the light source of the liquid crystal monitor panel is adversely affected. In addition, if the current is excessive, the service life of the lamp tube itself and the entire system will be shortened, and moreover, it will be possible to accurately control the situation, such as changes in the inverter part error and lamp tube characteristics over time. Can not. In addition, due to the negative electrical resistance characteristics of the lamp tube, when the tube current increases after any one of the lamp tubes starts up first, the tube voltage decreases relatively, and the other lamp tubes that are connected in parallel output the input voltage. Has already been clamped to a lower potential, it will not be able to start up smoothly, and even a panel flashing phenomenon will occur.
Taiwan Patent Gazette Publication No. 478292 “Multi-lamp tube drive system” achieves the objective of lamp tube current balance by utilizing the principle of resistance value mainly by the output load end of a single inverter. In the course of operation, the system must be installed with reference to the main lamp tube, and the other sub lamp tubes must in turn correspondingly balance the resistance values of the main lamp tube and the current. Moreover, the normal internal resistance characteristic curve of the tube voltage of the tube voltage due to minute errors such as length and diameter of the tube, mercury density, pressure, electrode coating layer, etc. that cannot be calculated in the manufacturing process existing between each tube. The lamp tube cannot be brought into the best operating state and its current balancing effect cannot be achieved.
Taiwan Patent Gazette Publication No. 478292 JP 2004-265868 A

前述したように、公知構造には以下の欠点があった。
すなわち、主灯管を基準として設置しなければならず、その他に副灯管を順番に該主灯管と電流の抵抗値を対応平衡させなければならないため、各灯管状況の差異や微小誤差の影響を受け易い。これにより、管電圧の管電流の内抵抗特性曲線に対する偏移を引起し、該各灯管を最良の作動状態とすることができず、またその電流平衡の効果を達成することができない。さらに、多管並列接続出力に応用する場合には、先に起動した灯管が招く管電圧クランパーによりその他灯管の起動を抑制する問題が存在し、直接駆動設計方式への使用には適さない。
本考案は、上記構造の問題点に鑑みてなされたもので、ロードの作動の安定性及び電流平衡を制御する電流抑制平衡回路を提供するものである。
As described above, the known structure has the following drawbacks.
In other words, the main lamp tube must be installed as a reference, and in addition, the sub lamp tube must be sequentially balanced with the resistance value of the current corresponding to the main lamp tube. Susceptible to. This causes a shift of the tube voltage with respect to the internal resistance characteristic curve of the tube current, so that each lamp tube cannot be brought into the best operating state, and the current balance effect cannot be achieved. In addition, when applied to multi-tube parallel connection output, there is a problem of suppressing the start of other lamp tubes due to the tube voltage clamper caused by the previously started lamp tube, which is not suitable for use in the direct drive design method. .
The present invention has been made in view of the above problems of the structure, and provides a current suppression balanced circuit that controls the stability of the operation of the load and the current balance.

上記課題を解決するため、本考案は下記の電流抑制平衡回路を提供する。
それは、主に一種の電流抑制平衡回路を提供し、少なくとも一個のロード(CCFT冷陰極管などの灯管など)、発光部品(LED或いはOLEDダイオードなど)、単相或いは多相分流高効率モジュール(Multi-phase DC-DC Converterなど)を具える制御回路中に応用し、インバーター回路、探知回路、少なくとも一個の平衡変圧器を含み、該インバーター回路は電流を該ロードに提供し、該探知回路は該制御回路中の総ロード(或いは指定の参考ロード)の電流量を受取り及び探知し、その電流量を安定(整流ろ過)後、該インバーター回路の入力端に戻し、該インバーター回路は安定(修正)電流を出力し、該少なくとも一個の平衡変圧器はその一次側(primary side)コイルは該インバーター回路が出力する安定(修正)電流を受取り、及びその二次側(secondary side)コイルは個別に該ロードを直列接続し、こうしてレンツ定理(Lenz’s Law)の応用下では、誘導電位の方向は反抗原磁力線増減の方向で、該平衡変圧器の二次側の電流が変異を生じる(すなわちロード端の電流が変異を生じる)時、個別にその一次側の安定(修正)電流と相互に比較(対応)を行い、該ロードの作動の安定性及び電流平衡を制御する効果を達成することを特徴とする電流抑制平衡回路である。
In order to solve the above problems, the present invention provides the following current suppression balanced circuit.
It mainly provides a kind of current suppression balanced circuit, at least one load (such as lamp tube such as CCFT cold cathode tube), light emitting component (such as LED or OLED diode), single phase or multiphase shunt high efficiency module ( Application in a control circuit comprising a multi-phase DC-DC converter, etc., comprising an inverter circuit, a detection circuit, at least one balancing transformer, the inverter circuit providing current to the load, the detection circuit Receives and detects the current amount of the total load (or designated reference load) in the control circuit, stabilizes the current amount (rectification filtration), returns it to the input terminal of the inverter circuit, and the inverter circuit is stable (corrected). ) Output current, the at least one balanced transformer has its primary side coil receiving the stable (modified) current output by the inverter circuit, and its secondary side coil individually The low Thus, under the application of Lenz's Law, the direction of the induced potential is the direction of increase or decrease of the anti-antigen magnetic field lines, and the current on the secondary side of the balanced transformer is mutated (i.e., at the load end). When the current causes a variation), it individually compares (corresponds) with the primary stable (corrected) current to achieve the effect of controlling the stability and current balance of the load. This is a current suppression balanced circuit.

すなわち、請求項1の考案は、主に少なくとも一個のロードを具える制御回路中に応用し、インバーター回路、探知回路、少なくとも一個の平衡変圧器を含み、
前記インバーター回路は駆動ユニット及び一個或いは一個以上の出力変圧器を組合せ組成し、電流を前記ロード端に提供し、前記探知回路は該インバーター回路の入力端及び制御回路中の電流回授探知点間に連接し、該制御回路中の総ロードの電流量を受取り及び探知し、その電流量を安定後、該インバーター回路の入力端に戻し、該インバーター回路は安定修正電流を出力し、前記少なくとも一個の平衡変圧器の一次側コイルは前記インバーター回路が出力する修正電流を受領し、及びその二次側コイルは個別に前記ロードを直列接続し、前記平衡変圧器を利用し、該各ロード端の電流をそれぞれ前記インバーター回路が出力する修正電流と比較し、これにより該ロードの作動の安定性制御及び電流の平衡を達成することを特徴とする電流抑制平衡回路である。
That is, the device of claim 1 is mainly applied to a control circuit having at least one load, and includes an inverter circuit, a detection circuit, and at least one balanced transformer.
The inverter circuit is a combination of a drive unit and one or more output transformers, and provides current to the load end, and the detection circuit is connected between the input end of the inverter circuit and a current transfer detection point in the control circuit. Connected to the control circuit, receiving and detecting the amount of current of the total load in the control circuit, stabilizing the amount of current, and returning it to the input terminal of the inverter circuit, the inverter circuit outputting a stable correction current, the at least one And the secondary coil individually connects the loads in series and utilizes the balanced transformer, and each of the load ends of the load transformers receives the corrected current output from the inverter circuit. A current characterized in that each current is compared with a modified current output by the inverter circuit, thereby achieving stability control of the operation of the load and current balancing. A control circuit equilibrium.

請求項2の考案は、前記平衡変圧器は該インバーター回路中、その出力変圧器の初級側及び駆動ユニット間に設置可能であることを特徴とする請求項1記載の電流抑制平衡回路である。
請求項3の考案は、前記平衡変圧器はロード或いは出力変圧器の分組に対応し、対応して分組した同一組内の一次側コイルを合併し組合せ一個の双子或いは多胎構造とすることを特徴とする請求項1或いは2記載の電流抑制平衡回路である。
請求項4の考案は、前記ロードは一個或いは一個以上の灯管或いはその他発光部品であることを特徴とする請求項1、2或いは3記載の電流抑制平衡回路である。
請求項5の考案は、前記ロードは一個単相或いは多相式分流効率モジュールであることを特徴とする請求項1、2或いは3記載の電流抑制平衡回路である。
The invention of claim 2 is the current suppression balanced circuit according to claim 1, wherein the balanced transformer can be installed in the inverter circuit between the beginner side of the output transformer and the drive unit.
The invention of claim 3 is characterized in that the balanced transformer corresponds to a group of load or output transformers, and a primary coil in the same group grouped correspondingly is merged to form a single twin or multiple structure. A current suppression balanced circuit according to claim 1 or 2.
The invention of claim 4 is the current suppression balanced circuit according to claim 1, wherein the load is one or more lamp tubes or other light emitting components.
The invention according to claim 5 is the current suppression balanced circuit according to claim 1, wherein the load is a single-phase or multiphase shunt efficiency module.

上記のように、本考案によれば、平衡変圧器を利用し、各ロード端の電流をそれぞれ修正安定電流と相互に比較することができ、各灯管状況の差異を受け生じる微小誤差の影響を排除することができる。こうして、効果的に該ロードの作動の安定性を制御し、電流平衡の効果を実現可能で、また、効果的に各ロードの駆動(点灯)状態を制御することができる。さらに反起電力効果により、先に起動した灯管のクランパー問題を完全に克服可能で、各式直接駆動設計方式に適用可能で全体モジュール效率を向上させることができる。   As described above, according to the present invention, the current at each load end can be compared with the corrected stable current using a balanced transformer, and the influence of minute errors caused by differences in each lamp tube situation. Can be eliminated. In this way, it is possible to effectively control the stability of the operation of the load, realize the effect of current balancing, and effectively control the driving (lighting) state of each load. Furthermore, the counter-electromotive force effect can completely overcome the lamp tube clamper problem that has been activated earlier, and can be applied to each direct drive design method to improve the overall module efficiency.

本考案の好適な電流抑制平衡回路の実施例を図面を参照して説明する。
図1に示すように、本考案の実施例は、一種の電流抑制平衡回路を提供し、少なくとも一個のロード4(CCFT冷陰極管など灯管、LED或いはOLEDダイオードなど発光部品など)、単相或いは多相分流高効率モジュール(Multi-phase DC-DC Converterなど)を具える制御回路中に応用し、インバーター回路1、探知回路2、少なくとも一個の平衡変圧器3から構成されている。
前記インバーター回路1は、駆動ユニット11及び一個或いは一個以上の出力変圧器Tを組合せて組成し、電流を該ロード4端に提供する。
前記探知回路2は、前記インバーター回路1の入力端及び制御回路中の電流回授探知点(如ロード4端の低圧側)間に接続し、該制御回路中の総ロード(或いは指定の参考ロード)4の電流量を受取り及び探知し、その電流量を修正後、該インバーター回路1の入力端に戻し、該インバーター回路1は安定(修正)電流を出力する。
前記少なくとも一個の平衡変圧器3の一次側(primary side)コイルは、該インバーター回路1が出力する安定(修正)電流を受取り、及びその二次側(secondary side)コイルは個別に該ロード端4を直列接続する。
A preferred embodiment of the current suppression balanced circuit of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the embodiment of the present invention provides a kind of current suppression balanced circuit, at least one load 4 (light tube such as CCFT cold cathode tube, light emitting component such as LED or OLED diode), single phase, etc. Alternatively, the present invention is applied to a control circuit including a multi-phase shunt high efficiency module (such as a multi-phase DC-DC converter), and includes an inverter circuit 1, a detection circuit 2, and at least one balanced transformer 3.
The inverter circuit 1 is composed by combining the drive unit 11 and one or more output transformers T, and provides current to the load 4 end.
The detection circuit 2 is connected between the input terminal of the inverter circuit 1 and a current transfer detection point in the control circuit (low voltage side of the load 4 terminal), and the total load (or designated reference load in the control circuit) is connected. 4) The current amount of 4 is received and detected, and after correcting the current amount, it is returned to the input terminal of the inverter circuit 1, and the inverter circuit 1 outputs a stable (corrected) current.
The primary side coil of the at least one balanced transformer 3 receives a stable (corrected) current output from the inverter circuit 1, and its secondary side coil is individually connected to the load end 4 Are connected in series.

さらに上記の構造においてレンツ定理(Lenz’s Law)を応用し、本考案はの該平衡変圧器3の一次側(primary side)コイルと二次側(secondary side)コイル間の反起電力(Back emf)作動原理関係式は以下の通りである。
E:は電場強度 D:は電通強度 J:は電流強度
H:は磁場強度 B:は磁通強度 φ:は鉄心内磁通量
μ:は導磁係数 L:はインダクター量
マックスウェル-ファラデイ定理(Maxwell-Faraday’s Law)とマックスウェル-アンペール定理(Maxwell-Ampere’s Law)により(数式1)

Figure 0003120478
静態向量空間回路c内において、 (数式2)
Figure 0003120478
であるため、
向量積分により、ストークス定理(Stokes’Theorem)を引用し、面積分転は線積分で、すなわち、(数式3)
Figure 0003120478
本考案は、以下の関係式を得ることができる(数式4)。
Figure 0003120478
この他、本考案は平衡変圧器設計中において、等方性の軟磁作為鉄心を使用し、これにより、さらに得られるコイル上の起電力(electro-motive force,emf)と鉄心内の磁動勢(magneto-motive force.mmf)はそれぞれ以下の通りである(数式5)。
Figure 0003120478
このため、(数式6)
Figure 0003120478
で、上式を簡化後、二次側コイル両端に現れる誘導電圧は反起電力を呈し、その大きさは以下のようであることが分かる(数式7)。
Figure 0003120478
同時に本考案の実施例中の一次側電流(ip)は既に修正され安定電流になっているため、すなわち、(数式8)
Figure 0003120478
で、さらに以下の式が得られる(数式9)。
Figure 0003120478
Furthermore, the Lenz's Law is applied to the above structure, and the present invention proposes a counter electromotive force (Back emf) between the primary side coil and the secondary side coil of the balanced transformer 3. The operation principle relational expression is as follows.
E: Electric field strength D: Electric conduction strength J: Current strength
H: is the magnetic field strength B: is the magnetic field strength φ: is the magnetic flux in the iron core μ: is the magnetic conductivity coefficient L: is the amount of the inductor Maxwell-Faraday's Law and Maxwell-Ampere's Law ) (Formula 1)
Figure 0003120478
In the static quantity circuit c, (Equation 2)
Figure 0003120478
Because
Stokes' theorem is quoted by the direction integral, and the area rotation is a line integral, that is, (Equation 3)
Figure 0003120478
The present invention can obtain the following relational expression (Formula 4).
Figure 0003120478
In addition, the present invention uses an isotropic soft-magnetic iron core in the design of the balanced transformer, which further increases the electro-motive force (emf) on the coil and the magnetic force in the iron core. (magneto-motive force.mmf) is as follows (Formula 5).
Figure 0003120478
For this reason, (Formula 6)
Figure 0003120478
Thus, after simplifying the above equation, it can be seen that the induced voltage appearing at both ends of the secondary coil exhibits a counter electromotive force, and its magnitude is as follows (Equation 7).
Figure 0003120478
At the same time, the primary current (ip) in the embodiment of the present invention has already been corrected and becomes a stable current, that is, (Equation 8)
Figure 0003120478
Thus, the following formula is obtained (Formula 9).
Figure 0003120478

こうして、上記関係式中より明らかなように、該平衡変圧器3の一次側(primary side)と二次側(secondary side)の間に不平衡の電流を生じる時、その反起電力(すなわちvs)は二次側(secondary side)の電流変異(すなわちdis/dt)と正比例する。同時に二次側(secondary side)のインダクター(すなわちLs)の上昇に従い増加し、該反起電力(すなわちvs)は二次側(secondary side)のインダクター(すなわちLs)上昇に従い増加、拡大することを示す。
これにより、該平衡変圧器3の二次側(secondary side)コイルが直列接続するロード4端の電流を効果的に応用(抑制)し、該平衡変圧器3の二次側(secondary side)の電流は、反起電力の修正を経て、その一次側(primary side) の電流は完全平衡(対応)のメカニズムを達成することができる(すなわち一次側と二次側は反相を呈し、個別の電流が生じる激磁は相互に相殺され、該平衡変圧器鉄心は作動を保持し非飽和区においてインダクター量を増加させ、同時に二次側電流の変異時に発生する反起電力は反相回授しロード作動を効果的に安定させる)。
Thus, as is clear from the above relational expression, when an unbalanced current is generated between the primary side and the secondary side of the balanced transformer 3, the counter electromotive force (i.e., vs. ) Is directly proportional to the secondary side current variation (ie dis / dt). At the same time, it increases as the secondary side inductor (i.e., Ls) increases, and the counter electromotive force (i.e., vs) increases and expands as the secondary side inductor (i.e., Ls) increases. Show.
This effectively applies (suppresses) the current at the load 4 end to which the secondary side coil of the balanced transformer 3 is connected in series, and the secondary side coil of the balanced transformer 3 The current can undergo a modification of the counter-electromotive force and the primary side current can achieve a perfectly balanced (corresponding) mechanism (i.e. Magnetism that generates currents cancel each other, the balanced transformer core maintains its operation and increases the amount of inductor in the non-saturated region, and at the same time, the counter electromotive force generated when the secondary current changes is reversed and loaded. Effectively stabilize operation).

次に、図1に示すように、本考案(実施例)の制御回路が起動すると、該探知回路2を通して該制御回路中の総ロード4の電流量(io)を受取り及び探知し、その電流量を修正後、該インバーター回路1の入力端に戻し、該インバーター回路1は安定(修正)電流を該平衡変圧器3を経由して該ロード4端まで出力する。
こうして、レンツの定理を応用し、もし、該平衡変圧器3の二次側の電流が変異を生じる時(すなわち該ロード4端の電流が変異を生じる時)、該平衡変圧器3の二次側端(すなわち該ロード4端)は反起電力を生じ、その一次側の安定(修正)電流と相互に比較(対応)し、その二次側端(すなわち該ロード4端)電流変異の発生を効果的に抑制する。これにより、該ロード4の作動の安定性制御と電流平衡の効果を達成することができる。
同時に、該平衡変圧器3の反起電力の特性を通して、その未駆動(点灯)のロード4により、その電圧を上昇させ駆動(点灯)状態に入らせ、こうして、該各ロード4の駆動(点灯)の状態を効果的に制御する。
Next, as shown in FIG. 1, when the control circuit of the present invention (the embodiment) is activated, the current amount (io) of the total load 4 in the control circuit is received and detected through the detection circuit 2, and the current is detected. After the amount is corrected, it is returned to the input end of the inverter circuit 1, and the inverter circuit 1 outputs a stable (corrected) current to the end of the load 4 via the balanced transformer 3.
Thus, applying Lenz's theorem, if the current on the secondary side of the balanced transformer 3 is mutated (i.e., the current at the load 4 end is mutated), the secondary of the balanced transformer 3 is The side end (i.e., the load 4 end) generates a counter-electromotive force, and the primary side stable (corrected) current is compared (corresponding) to the secondary side (i.e., the load 4 end). Is effectively suppressed. Thereby, the stability control of the operation of the load 4 and the effect of current balance can be achieved.
At the same time, through the characteristics of the counter-electromotive force of the balanced transformer 3, the undriven (lighted) load 4 raises the voltage to enter the drive (lighted) state, thus driving each load 4 (lighted) ) Is effectively controlled.

すなわち、図2〜16に示すように、本考案の各実施例における該平衡変圧器3は、係以(CB)表示の、その一次側(primary side)コイルは(n1)と表示し、二次側(secondary side)コイルは(n2)と表示する。その他公知の分流ロード相互間に使用する平衡変圧器は(BT)と表示し、図2〜13中に応用するバラストコンデンサは(C)と表示する。
これにより、第一実施例の図2、第二実施例の図6、第三実施例の図7に示すように、該平衡変圧器3は該インバーター回路1の出力変圧器Tの次級側(出力側)に設置可能で、かつ相互並列接続方式により個別に複数の該ロード4の高圧側(図2、6参照)、低圧側(図7参照)に直列接続し、これにより、該インバーター回路1が出力する安定(修正)電流を個別に該ロード4端に分流し比較を行う。こうして、該各ロード4の安定性を制御し電流平衡の効果を達成する。
この他、図2、6に示すように、その符号Cは、間接駆動方式を採用する時の灯管と直列接続する分圧及びバラストコンデンサ(ballast capacitor)で、直接駆動方式に変更する時には、該バラストコンデンサCは消去され使用しない。こうして、図2、6は完全に同一の回路構造となる。
That is, as shown in FIGS. 2 to 16, the balanced transformer 3 in each embodiment of the present invention is indicated by (CB), its primary side coil is indicated as (n1), The secondary side coil is indicated as (n2). Other balanced transformers used between known shunt loads are denoted as (BT), and the ballast capacitor applied in FIGS. 2 to 13 is denoted as (C).
Thus, as shown in FIG. 2 of the first embodiment, FIG. 6 of the second embodiment, and FIG. 7 of the third embodiment, the balanced transformer 3 is the next class side of the output transformer T of the inverter circuit 1. Can be installed on the output side and connected in series to the high-voltage side (see FIGS. 2 and 6) and the low-voltage side (see FIG. 7) of the plurality of loads 4 individually by the parallel connection method. The stable (corrected) current output from the circuit 1 is individually shunted to the end of the load 4 for comparison. Thus, the stability of each load 4 is controlled to achieve the current balancing effect.
In addition, as shown in FIGS. 2 and 6, the reference C is a partial pressure and ballast capacitor connected in series with the lamp tube when the indirect driving method is adopted, and when changing to the direct driving method, The ballast capacitor C is erased and not used. 2 and 6 have completely the same circuit structure.

さらに、図3に示すように、第一実施例の特別に長い灯管(高圧ロード)に使用する応用の場合には、2個の出力変圧器Tを使用し直列接続し、その作業電圧を上昇させ、回路板の高圧放電アーク(arcing)現象発生を防止する必要がある。この時、灯管をフローティング接続(floting)し、両出力変圧器Tの直列接続位置においてアースし、フローティング接続の灯管を中間バーチャルアースと同じようにし、灯管の端電圧を半減させる。こうして、該各ロード4の作動の安定性を制御し、電流平衡の効果を達成する。
また、図4或いは図5に示すように、双灯管或いは多灯管包装組を使用しロード4の応用とする場合には、平衡変圧器3を同一磁気回路に共用し、相互に組合せ一体に包裝し、双子或いは多胎構造とするため、同一灯管組内の個別灯管のロード電流を一致させ、こうして、該各ロード4の安定性を制御し電流平衡の効果を達成する。
さらに、第四実施例の図8に示すように、該平衡変圧器3は該インバーター回路1の出力変圧器Tの初級側(入力側)に設置可能で、かつ相互並列接続方式により該出力変圧器T及び駆動ユニット11を個別に直列接続し、すなわち、平衡変圧器3はインバーター回路中、その出力変圧器3の初級側及び駆動ユニット11間に設置可能であり、これにより該駆動ユニット11が出力する安定(修正)電流を、該出力変圧器Tを経由し個別に該ロード4端に分流し比較を行う。こうして、該各ロード4の作動の安定性制御と電流平衡の効果を達成する。
Furthermore, as shown in FIG. 3, in the case of an application used for the extra long lamp tube (high voltage load) of the first embodiment, two output transformers T are connected in series, and the working voltage is set. It is necessary to prevent the occurrence of the high voltage discharge arcing phenomenon of the circuit board. At this time, the lamp tube is floated and grounded at the serial connection position of the two output transformers T, the lamp tube of the floating connection is made the same as the intermediate virtual ground, and the end voltage of the lamp tube is halved. In this way, the stability of the operation of each load 4 is controlled and the effect of current balancing is achieved.
As shown in FIG. 4 or FIG. 5, when a dual lamp or multi-lamp tube package is used as an application for the load 4, the balanced transformer 3 is shared by the same magnetic circuit and combined with each other. Therefore, the load currents of the individual lamp tubes in the same lamp tube set are matched so that the stability of each load 4 is controlled and the effect of current balance is achieved.
Furthermore, as shown in FIG. 8 of the fourth embodiment, the balanced transformer 3 can be installed on the beginner side (input side) of the output transformer T of the inverter circuit 1 and the output transformer can be connected by a mutual parallel connection method. The transformer T and the drive unit 11 are individually connected in series, that is, the balanced transformer 3 can be installed in the inverter circuit between the beginner side of the output transformer 3 and the drive unit 11, so that the drive unit 11 The stable (corrected) current to be output is individually shunted to the load 4 end via the output transformer T and compared. Thus, the stability control of the operation of each load 4 and the effect of current balance are achieved.

第五実施例の図9に示すように、該平衡変圧器3は該インバーター回路1の出力変圧器Tの初級側に設置可能で、かつ樹状規律逓増排列方式により、相対し該出力変圧器T及び駆動ユニット11を直列接続し、これにより該駆動ユニット11が出力する安定(修正)電流を、該変圧器Tを経由し個別に該ロード4端に分流し比較を行う。こうして、該各ロード4の作動の安定性制御と電流平衡の効果を達成する。
さらに、第六実施例の図10、第七実施例の図11に示すように、該平衡変圧器3は該インバーター回路1の出力変圧器Tの初級側に設置可能で、かつ、相互並列接続方式により、該出力変圧器T及び駆動ユニット11に個別に直列接続し、同時にさらにその出力変圧器Tの次級側(出力側)において公知の平衡変圧器(BT)により各組ロード4の高圧側(図10参照)、低圧側(図11参照)に直列接続する。すなわち、前記平衡変圧器3はロード4或いは出力変圧器Tの分組に対応し、対応し分組し同一組内の一次側コイルを合併し組合せ一個の双子或いは多胎構造としている。
これにより、該駆動ユニット11が出力する安定(修正)電流を、該出力変圧器Tを経由し個別に該ロード4端に分流し比較を行う。こうして、該各ロード4の作動の安定性制御と電流平衡の効果を達成する。
次に、第八実施例の図12、第九実施例の図13に示すように、該平衡変圧器3は該インバーター回路1の出力変圧器Tの初級側に設置可能で、かつ相互並列接続方式により、双出力端を具える変圧器Tに個別に直列接続し、同時に公知の平衡変圧器(BT)により各組ロード4の高圧側(図12参照) 、低圧側(図13参照)に直列接続し、第六、第七実施例と同様に、該駆動ユニット11が出力する安定(修正)電流を該双出力型変圧器Tを経由し個別に該ロード4端に分流し比較を行う。こうして、該各ロード4の作動の安定性制御と電流平衡の効果を達成する。
As shown in FIG. 9 of the fifth embodiment, the balanced transformer 3 can be installed on the beginner side of the output transformer T of the inverter circuit 1 and is opposed to the output transformer by a tree-like discriminating and increasing arrangement system. T and the drive unit 11 are connected in series, whereby a stable (corrected) current output from the drive unit 11 is individually shunted to the end of the load 4 via the transformer T for comparison. Thus, the stability control of the operation of each load 4 and the effect of current balance are achieved.
Further, as shown in FIG. 10 of the sixth embodiment and FIG. 11 of the seventh embodiment, the balanced transformer 3 can be installed on the beginner side of the output transformer T of the inverter circuit 1 and connected in parallel. According to the system, the output transformer T and the drive unit 11 are individually connected in series, and at the same time, the high voltage of each set load 4 by a well-known balanced transformer (BT) on the next class side (output side) of the output transformer T Side (see FIG. 10) and low pressure side (see FIG. 11). In other words, the balanced transformer 3 corresponds to a group of the load 4 or the output transformer T, and corresponds to the group, and the primary coil in the same group is merged to form a single twin or multiple structure.
Thereby, the stable (corrected) current output from the drive unit 11 is individually shunted to the end of the load 4 via the output transformer T for comparison. Thus, the stability control of the operation of each load 4 and the effect of current balance are achieved.
Next, as shown in FIG. 12 of the eighth embodiment and FIG. 13 of the ninth embodiment, the balanced transformer 3 can be installed on the beginner side of the output transformer T of the inverter circuit 1 and connected in parallel. According to the system, the transformers T having dual output ends are individually connected in series, and at the same time, a known balanced transformer (BT) is connected to the high voltage side (see FIG. 12) and low voltage side (see FIG. 13) of each set load 4. Connected in series, as in the sixth and seventh embodiments, the stable (corrected) current output from the drive unit 11 is individually shunted to the four ends of the load via the dual output transformer T for comparison. . Thus, the stability control of the operation of each load 4 and the effect of current balance are achieved.

第十実施例の図14に示すように、該ロード4は、さらにその他発光部品(LED或いはOLEDなどのダイオードなど)を組合せ応用することができる。その応用の制御回路実施状態指示図である図14、また上記図2〜13に示すように、該平衡変圧器3は該インバーター回路1の出力変圧器Tの次級側に設置可能で、かつ相互並列接続方式により該ロード4の低圧側に個別に直列接続し(高圧側にも直列接続可能)、これにより該インバーター回路1が出力する安定(修正)電流を、個別に該ロード4端に分流し比較を行う。こうして、該各ロード4の安定性を制御し電流平衡の効果を達成する。同時にバックライトボードのホワイトバランスの必要に対応し、該異なる色系の発光部品と直列接続する平衡変圧器3の初、次級間のコイル数比と調整し、異なる色系発光部品が必要とする相対輝度比率を相対的に得ることができ、また維持することができる(発光部品の老化により、ホワイトバランスの失調を来たすことはない)。
さらに、第十一実施例の図15に示すように、本考案はさらに該平衡変圧器3を単相或いは多相式分流電圧安定高効率モジュール(VRMs-Voltage Regulator Modules)などの制御回路中に応用することができる。その実施状態は、該平衡変圧器3は該インバーター回路1が内部に含む切換ユニット12及びその外付けの分流インダクター5間に設置(挿入)可能で、これにより電流を平均に各分流インダクターに分配し、全体モジュール熱源を均一に分散する效果を達成する。またこの実施例中では、鉄心とコイルの構造設計により、該同一分流回路の平衡変圧器と分流インダクターを一体に組合せ(図16参照)、その一次側と二次側間のDMカプリング効果(diferential mode coupling effect,Lc)部分を利用し、平衡変圧器として応用し、カプリング部分がないリーケージインダクター(leakage inductance,Lk)を分流インダクターとして使用し、同様に均一分流の效果を達成する。
As shown in FIG. 14 of the tenth embodiment, the load 4 can be applied in combination with other light emitting components (such as diodes such as LEDs or OLEDs). As shown in FIG. 14 which is a control circuit implementation state instruction diagram of the application and FIGS. 2 to 13, the balanced transformer 3 can be installed on the next level side of the output transformer T of the inverter circuit 1, and Connected individually in series to the low voltage side of the load 4 by the mutual parallel connection method (can also be connected in series to the high voltage side), and thereby the stable (corrected) current output from the inverter circuit 1 is individually supplied to the end of the load 4 Divide and compare. Thus, the stability of each load 4 is controlled to achieve the current balancing effect. At the same time, corresponding to the need for white balance of the backlight board, adjusting the ratio of the number of coils between the first and second level of the balanced transformer 3 connected in series with the light emitting parts of different colors, different color light emitting parts are required The relative luminance ratio can be relatively obtained and maintained (the white balance is not lost due to the aging of the light emitting component).
Further, as shown in FIG. 15 of the eleventh embodiment, the present invention further places the balanced transformer 3 in a control circuit such as a single-phase or multi-phase shunt voltage stabilizing high-efficiency module (VRMs-Voltage Regulator Modules). Can be applied. In the implementation state, the balanced transformer 3 can be installed (inserted) between the switching unit 12 included in the inverter circuit 1 and the external shunt inductor 5 inside thereof, thereby distributing the current to each shunt inductor on average. In addition, the effect of uniformly distributing the entire module heat source is achieved. In this embodiment, the balance transformer and the shunt inductor of the same shunt circuit are integrally combined by the structural design of the iron core and the coil (see FIG. 16), and the DM coupling effect between the primary side and the secondary side (diferential) Using the mode coupling effect (Lc) part, it can be applied as a balanced transformer, and a leakage inductor without a coupling part (leakage inductance, Lk) is used as a shunt inductor to achieve the effect of uniform shunting.

このように、本考案の技術特徴は平衡変圧器3を利用し各ロード4端の電流をそれぞれ安定(修正)電流と比較し、これにより該ロード4の作動の安定性の制御と電流平衡の効果を達成することができ、同時に、該各ロード4の駆動(点灯)の状態を効果的に制御することができる。
なお、本考案の特徴を損なうものでなければ、前記の各実施例に限定されるものでないことは勿論である。
As described above, the technical feature of the present invention is that the balance transformer 3 is used to compare the current at each end of each load 4 with the stable (corrected) current, thereby controlling the stability of the operation of the load 4 and the current balance. The effect can be achieved, and at the same time, the driving (lighting) state of each load 4 can be effectively controlled.
Of course, the present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired.

本考案の電流抑制平衡回路の基本構造及びその応用指示図である。It is a basic structure of the current suppression balanced circuit of the present invention and its application instruction diagram. 本考案を制御回路中に応用する第一実施例の状態指示図である。FIG. 3 is a state instruction diagram of a first embodiment in which the present invention is applied to a control circuit. 本考案を制御回路中に応用する第一実施例の状態の別種の実施指示図である。It is another execution instruction | indication figure of the state of the 1st Example which applies this invention in a control circuit. 本考案を制御回路中に応用する第一実施例の状態のさらに別種の実施指示図である。FIG. 5 is still another implementation instruction diagram of the state of the first embodiment in which the present invention is applied to the control circuit. 本考案を制御回路中に応用する第一実施例の状態のまた別種の実施指示図である。It is another execution instruction | indication figure of the state of 1st Example which applies this invention in a control circuit. 本考案を制御回路中に応用する第二実施例の状態指示図である。It is a state instruction | indication figure of the 2nd Example which applies this invention in a control circuit. 本考案を制御回路中に応用する第三実施例の状態指示図である。FIG. 6 is a state instruction diagram of a third embodiment in which the present invention is applied to a control circuit. 本考案を制御回路中に応用する第四実施例の状態指示図である。It is a state instruction | indication figure of 4th Example which applies this invention in a control circuit. 本考案を制御回路中に応用する第五実施例の状態指示図である。FIG. 10 is a state instruction diagram of a fifth embodiment in which the present invention is applied to a control circuit. 本考案を制御回路中に応用する第六実施例の状態指示図である。It is a state instruction | indication figure of 6th Example which applies this invention in a control circuit. 本考案を制御回路中に応用する第七実施例の状態指示図である。It is a state instruction | indication figure of 7th Example which applies this invention in a control circuit. 本考案を制御回路中に応用する第八実施例の状態指示図である。It is a state instruction | indication figure of the 8th Example which applies this invention in a control circuit. 本考案を制御回路中に応用する第九実施例の状態指示図である。It is a state instruction | indication figure of the 9th Example which applies this invention in a control circuit. 本考案を制御回路中に応用する第十実施例の状態指示図である。It is a state instruction | indication figure of 10th Example which applies this invention in a control circuit. 本考案を制御回路中に応用する第十一実施例の状態指示図である。It is a state instruction | indication figure of 11th Example which applies this invention in a control circuit. 本考案の平衡変圧器と分流インダクターを一体に組合わせる実施例の状態指示図である。It is a state instruction | indication figure of the Example which combines the balance transformer and shunt inductor of this invention integrally.

符号の説明Explanation of symbols

1 インバーター回路
11 駆動ユニット
12 切換ユニット
2 探知回路
3 平衡変圧器
4 ロード
5 分流インダクター
C バラストコンデンサ
T 出力変圧器
1 Inverter circuit
11 Drive unit
12 Switching unit
2 Detection circuit
3 Balance transformer
4 Road
5 Shunt inductor
C Ballast capacitor
T output transformer

Claims (5)

主に少なくとも一個のロードを具える制御回路中に応用し、インバーター回路、探知回路、少なくとも一個の平衡変圧器を含み、
前記インバーター回路は駆動ユニット及び一個或いは一個以上の出力変圧器を組合せ組成し、電流を前記ロード端に提供し、
前記探知回路は該インバーター回路の入力端及び制御回路中の電流回授探知点間に連接し、該制御回路中の総ロードの電流量を受取り及び探知し、その電流量を安定後、該インバーター回路の入力端に戻し、該インバーター回路は安定修正電流を出力し、
前記少なくとも一個の平衡変圧器の一次側コイルは前記インバーター回路が出力する修正電流を受領し、及びその二次側コイルは個別に前記ロードを直列接続し、前記平衡変圧器を利用し、該各ロード端の電流をそれぞれ前記インバーター回路が出力する修正電流と比較し、これにより該ロードの作動の安定性制御及び電流の平衡を達成することを特徴とする電流抑制平衡回路。
Mainly applied in control circuit with at least one load, including inverter circuit, detection circuit, at least one balanced transformer,
The inverter circuit is a combination of a drive unit and one or more output transformers, and provides current to the load end,
The detection circuit is connected between the input terminal of the inverter circuit and a current transfer detection point in the control circuit, receives and detects the current amount of the total load in the control circuit, and stabilizes the current amount. Return to the input of the circuit, the inverter circuit outputs a stable correction current,
The primary coil of the at least one balanced transformer receives the modified current output by the inverter circuit, and the secondary coil individually connects the loads in series and uses the balanced transformer, A current-suppressing balancing circuit characterized in that each load-end current is compared with a corrected current output by the inverter circuit, thereby achieving stability control of the operation of the load and current balancing.
前記平衡変圧器は該インバーター回路中、その出力変圧器の初級側及び駆動ユニット間に設置可能であることを特徴とする請求項1記載の電流抑制平衡回路。   2. The current suppression balanced circuit according to claim 1, wherein the balanced transformer can be installed in the inverter circuit between the beginner side of the output transformer and the drive unit. 前記平衡変圧器はロード或いは出力変圧器の分組に対応し、対応して分組した同一組内の一次側コイルを合併し組合せ一個の双子或いは多胎構造とすることを特徴とする請求項1或いは2記載の電流抑制平衡回路。   3. The balanced transformer corresponds to a group of load or output transformers, and combines a primary coil in the same group correspondingly grouped into a single twin or multiple structure. The current suppression balanced circuit described. 前記ロードは一個或いは一個以上の灯管或いはその他発光部品であることを特徴とする請求項1、2或いは3記載の電流抑制平衡回路。   4. The current suppression balanced circuit according to claim 1, wherein the load is one or more lamp tubes or other light emitting components. 前記ロードは一個単相或いは多相式分流効率モジュールであることを特徴とする請求項1、2或いは3記載の電流抑制平衡回路。   4. The current suppression balanced circuit according to claim 1, wherein the load is a single-phase or multiphase shunt efficiency module.
JP2006000196U 2006-01-13 2006-01-13 Current suppression balanced circuit Expired - Fee Related JP3120478U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000196U JP3120478U (en) 2006-01-13 2006-01-13 Current suppression balanced circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000196U JP3120478U (en) 2006-01-13 2006-01-13 Current suppression balanced circuit

Publications (1)

Publication Number Publication Date
JP3120478U true JP3120478U (en) 2006-04-06

Family

ID=43470643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000196U Expired - Fee Related JP3120478U (en) 2006-01-13 2006-01-13 Current suppression balanced circuit

Country Status (1)

Country Link
JP (1) JP3120478U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034969A1 (en) * 2007-09-12 2009-03-19 Sharp Kabushiki Kaisha Backlighting device and display device provided with same
JP2010218949A (en) * 2009-03-18 2010-09-30 Sanken Electric Co Ltd Current balancing device and method therefor, led lighting device, lcdb/l module, and lcd display apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034969A1 (en) * 2007-09-12 2009-03-19 Sharp Kabushiki Kaisha Backlighting device and display device provided with same
JP2010218949A (en) * 2009-03-18 2010-09-30 Sanken Electric Co Ltd Current balancing device and method therefor, led lighting device, lcdb/l module, and lcd display apparatus

Similar Documents

Publication Publication Date Title
TWI269611B (en) Parallel lighting system for surface light source discharge tube
US8222836B2 (en) Balancing transformers for multi-lamp operation
CN101652005B (en) Light emitting diode driving apparatus
US6717372B2 (en) Multi-lamp driving system
US9030119B2 (en) LED string driver arrangement with non-dissipative current balancer
US20100270941A1 (en) Apparatus and methods of operation of passive led lighting equipment
JP2011522435A (en) LED lamp driver and method of driving
US7408306B2 (en) Lamp lighting circuit and device, and lamp lighting apparatus and device
JP2009516923A (en) Device for driving an LED cell
JP5006840B2 (en) Light emitting device and lighting device
JP3120478U (en) Current suppression balanced circuit
US8487550B2 (en) Multi-channel LED driver circuit
JP2005168293A5 (en)
TWM291174U (en) Balanced circuit with electric current inhibition features
JP4560679B2 (en) Multi-lamp type discharge lamp lighting device
KR100738013B1 (en) Electric current balancing device
CN100391314C (en) Multiple lamp tube driving system
KR101204566B1 (en) Llc resonant dc/dc converter with multi-output, power supply unit and back light unit
JP2008258166A (en) Fluorescent lamp drive power supply
JP3187575U (en) LED drive device
JP4895851B2 (en) Discharge lamp drive circuit
KR101463566B1 (en) Ramp parallel driving apparatus
CN2872791Y (en) Current suppress balancing circuit
JP2023518554A (en) LED driving device and driving method
JP2006066220A (en) Cold cathode tube drive circuit

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees