JP3119221U - Intake mechanism of high-frequency atomizer - Google Patents

Intake mechanism of high-frequency atomizer Download PDF

Info

Publication number
JP3119221U
JP3119221U JP2005010280U JP2005010280U JP3119221U JP 3119221 U JP3119221 U JP 3119221U JP 2005010280 U JP2005010280 U JP 2005010280U JP 2005010280 U JP2005010280 U JP 2005010280U JP 3119221 U JP3119221 U JP 3119221U
Authority
JP
Japan
Prior art keywords
diaphragm
intake mechanism
water intake
actuator
frequency atomizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005010280U
Other languages
Japanese (ja)
Inventor
陳文賓
鄭乃▲イン▼
Original Assignee
凱智實業股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凱智實業股▲分▼有限公司 filed Critical 凱智實業股▲分▼有限公司
Priority to JP2005010280U priority Critical patent/JP3119221U/en
Application granted granted Critical
Publication of JP3119221U publication Critical patent/JP3119221U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】大量の作用液体に用いることができ、作用液体の表面に浮かせる方式で張り出し式励起装置を設け、励起装置の振動板を効果的に液面位置に合わせることができ、且つ、定量の霧化仕事率を発揮する、高周波霧化装置の取水機構の提供。
【解決手段】圧電セラミックアクチュエータを利用し、振動板を露出した状態で張り出させて設置し、振動板の自由な端を露出した状態で液体表面の作動位置に設置し、全体を浮遊体により浮かせる方式で設置し、振動波を直接液体表面に作用させ、一部のエネルギーが液体に達して撹拌効果が形成され、一定の有向量の操作を保持させる。
【選択図】図3
PROBLEM TO BE SOLVED: To provide an overhanging exciter that can be used for a large amount of working liquid, floats on the surface of the working liquid, effectively adjusts the diaphragm of the exciter to the liquid surface position, Providing a water intake mechanism for a high-frequency atomizer that demonstrates atomization power.
A piezoelectric ceramic actuator is used to project the diaphragm in an exposed state, and to be installed at an operating position on the liquid surface with the free end of the diaphragm exposed. It is installed in a floating manner, and vibration waves are directly applied to the liquid surface, so that a part of energy reaches the liquid and a stirring effect is formed, and a certain directed amount of operation is maintained.
[Selection] Figure 3

Description

本考案は高周波霧化装置の取水機構に関し、特に、多量の作用液体に用い、その表面に浮かせる方式で励起装置を設置し、この励起装置が浮いた状態に設置された後、その振動板が常に同じ負荷条件で、定量的な仕事率を発揮する、高周波霧化装置の取水機構に関する。 The present invention relates to a water intake mechanism of a high-frequency atomizer, and in particular, it is used for a large amount of working liquid, and an exciter is installed in a manner that floats on its surface. The present invention relates to a water intake mechanism of a high-frequency atomizer that always exhibits a quantitative work rate under the same load condition.

水液の霧化装置は、主に高周波振動の器材を利用し、水液内部に入れて発振させ、その発振エネルギー波で液面を分解するか、発振器材内部に振動板を組み込んで動かし、この振動板を利用して水液に対し波動式の動エネルギーを発させるものがある。 The water-liquid atomization device mainly uses high-frequency vibration equipment, oscillates by putting it in the liquid, and decomposes the liquid surface with the oscillation energy wave or incorporates a diaphragm inside the oscillator material and moves it. Some use this diaphragm to generate wave-type kinetic energy for water.

円形の圧電セラミックを利用する場合、これを水液液面の下方に設置し、通電後高周波振動を生じさせ、そのエネルギー波を液面に作用させて液面の水液の結合張力を失わせ、分解して霧化する。これらはアクチュエータが液体内部に位置する設計であるため、発生する動エネルギーのほとんどが液体により吸収されて損耗してしまう。 When using a circular piezoelectric ceramic, install it below the liquid level of the liquid, generate high-frequency vibration after energization, and cause the energy wave to act on the liquid level to lose the binding tension of the liquid on the liquid level. , Decompose and atomize. Since these actuators are designed so that the actuator is located inside the liquid, most of the generated kinetic energy is absorbed by the liquid and worn out.

ジョンソン&ジョンソン社(S.C.
JOHNSON&SON,INC.)の設計に近いものでは、図1に示すように、円形の圧電セラミックアクチュエータ100を利用し、その内部に通孔101を形成し、片面に円形振動板102を連結して霧励起装置1を構成している。
Johnson & Johnson (SC
JOHNSON & SON, INC.) Is close to the design of FIG. 1, using a circular piezoelectric ceramic actuator 100, forming a through hole 101 therein, and connecting a circular diaphragm 102 on one side to form a fog The excitation device 1 is configured.

円形振動板102中央に半球面103を突起させて設け、この半球面に密集させて複数の励起孔104を設けている。 A hemispherical surface 103 is provided at the center of the circular diaphragm 102, and a plurality of excitation holes 104 are provided densely on the hemispherical surface.

この励起装置1が水源を得る構造は、導水繊維105を利用し、その一端を容器106内に入れ、内部の水液を吸い上げ、この導水繊維105上端部に張力により形成される水膜を半球面103に近付け、アクチュエータ100を作動させて振動板102を動かし、励起孔104に分解・霧発生の操作をさせるしくみである。この設計は容器106に少量の液体がある状況において実施・応用することができる。 The structure in which the excitation device 1 obtains a water source uses the water guide fiber 105, puts one end of the water into the container 106, sucks up the liquid inside, and forms a water film formed by tension on the upper end of the water guide fiber 105 as a hemisphere. This is a mechanism for moving the vibration plate 102 by operating the actuator 100 close to the surface 103 and causing the excitation hole 104 to perform decomposition and fog generation operations. This design can be implemented and applied in situations where there is a small amount of liquid in the container 106.

また、容器106内部の液面の高さが導水繊維105の導水効率に対して変化を及ぼすため、導水繊維105の設計はその毛細管作用の効果が不均一となり、霧発生量が不均一となってしまう。 Further, since the height of the liquid level inside the container 106 affects the water transfer efficiency of the water guide fiber 105, the design of the water guide fiber 105 has a non-uniform effect of capillary action, and the amount of fog generated is not uniform. End up.

導水繊維105を利用する設計は、容器106内部に入れる液体が医療用のもので内部に薬性物質が混ぜられており、この薬性物質が液体または粉末状である場合、これら物質の比重と充填する液体が不等である状況においては、浮遊や沈殿の現象が起こり、導水操作の過程においてそれが原因となってその発生される霧の薬性が不均一になってしまう。 The design using the water guide fiber 105 is that when the liquid to be placed inside the container 106 is for medical use and a medicinal substance is mixed therein, and the medicinal substance is in liquid or powder form, the specific gravity of these substances In a situation where the liquids to be filled are unequal, the phenomenon of floatation and precipitation occurs, and this causes mist medicinal properties to become uneven in the course of the water guiding operation.

また、導水繊維105の毛細管現象により濾過作用が生まれ、発生される霧の薬量が不足してしまうこともある。 In addition, the capillary action of the water guide fiber 105 may cause a filtering action, resulting in a shortage of the amount of fog generated.

さらに、薬性物質と充填液体の親和性が良くない状況では、静態で容器106内部に入れられていると、該物質と溶液を撹拌することができず、導き出される水液から薬性物質が隔離されてしまう。 Further, in a situation where the affinity between the medicinal substance and the filling liquid is not good, if the substance and the solution are placed inside the container 106 in a static state, the substance and the solution cannot be stirred, and the medicinal substance is not extracted from the derived aqueous liquid. It will be isolated.

通常、励起装置が発する霧気は、ほとんどが医療行為に使用される。 Usually, the fog generated by the excitation device is mostly used for medical practice.

上述の欠点に鑑みて、本考案の目的は、圧電セラミックアクチュエータを利用し、振動板を露出した状態で張り出させて設置し、振動板の自由な端を露出した状態で液体表面の作動位置に設置し、全体を浮遊体により浮かせる方式で設置し、振動波を直接液体表面に作用させ、一部のエネルギーが液体に達して撹拌効果が形成され、一定の有向量の操作を保持させると共に、同じ負荷条件を得て定量の霧化仕事率を発揮させることができる、高周波霧化装置の取水機構を提供することにある。 In view of the above-mentioned drawbacks, the object of the present invention is to use a piezoelectric ceramic actuator, install the diaphragm with the diaphragm exposed, and operate the liquid surface with the diaphragm free end exposed. Installed in a way that floats entirely with a floating body, causing vibration waves to act directly on the surface of the liquid, part of the energy reaches the liquid, creating a stirring effect, and maintaining a certain directed amount of operation An object of the present invention is to provide a water intake mechanism for a high-frequency atomizer capable of obtaining the same load condition and exhibiting a certain amount of atomization power.

本考案は大量の作用液体に用いることができ、作用液体の表面に浮かせる方式で張り出し式励起装置を設け、該励起装置の振動板を効果的に液面位置に合わせることができ、且つ、定量の霧化仕事率を発揮する高周波霧化装置の取水機構であって、主に塊状の圧電セラミックアクチュエータを用い、その片側に面上に励起孔を開設した振動板を張り出した状態に設けて励起装置を構成し、該励起装置全体が浮遊体上に設置され、該浮遊体を作用液体の表面に浮かべ、前記振動板の自由な端が作用側となり、一定の有向量を保持して液面に接触し、同等の負荷条件を維持しながら定量の仕事率を発揮することを特徴とする。 The present invention can be used for a large amount of working liquid, and is provided with an overhanging exciter that floats on the surface of the working liquid, and the diaphragm of the exciter can be effectively aligned with the liquid surface position and can be quantified. This is a water intake mechanism of a high-frequency atomization device that exhibits a high atomization work rate, mainly using a block-shaped piezoelectric ceramic actuator, with a diaphragm with an excitation hole on one side provided in an overhanging state for excitation The apparatus is configured, the entire excitation device is installed on a floating body, the floating body is floated on the surface of the working liquid, the free end of the diaphragm becomes the working side, and maintains a certain directed amount to the liquid surface It is characterized by exhibiting a quantitative work rate while maintaining the same load condition.

本考案の実施内容については、まず図2に示すように、主に塊状の圧電セラミックアクチュエータ11を利用し、その片側に張り出させて振動板12を連結して励起装置1を形成する。この振動板12のアクチュエータ11に連結する側に結合面10を設け、該結合面10を利用してアクチュエータ11の対応する端に結合させる。結合面10はあらゆる機械的または金属部品等による結合、或いは接着、溶接等の方法による結合を採用することができる。 As for the implementation contents of the present invention, first, as shown in FIG. 2, an exciter 1 is formed by mainly using a block-shaped piezoelectric ceramic actuator 11, projecting to one side thereof, and connecting a diaphragm 12. A coupling surface 10 is provided on the side of the diaphragm 12 that is coupled to the actuator 11, and the coupling surface 10 is used to couple to the corresponding end of the actuator 11. The bonding surface 10 can be bonded by any mechanical or metal parts, or by bonding, welding, or the like.

振動板12の面上に励起孔120を設け、この励起孔120は細かな円孔とし、密集した状態に分布させた幾何面積を形成する。該励起孔120の位置は、液体の表面に作用することができるよう液面に近い高さとする。 Excitation holes 120 are provided on the surface of the diaphragm 12, and the excitation holes 120 are fine circular holes and form a geometric area distributed in a dense state. The position of the excitation hole 120 is set to a height close to the liquid level so that it can act on the surface of the liquid.

アクチュエータ11の外表に誘電塗布層110を設け、この誘電塗布層110に電源の電線を接続する。 A dielectric coating layer 110 is provided on the outer surface of the actuator 11, and a power source wire is connected to the dielectric coating layer 110.

図3に示すように、励起装置1を浮きユニット2に設けた浮遊体21に水平に連結し、浮遊体21が容器4内部の作用液体400の液面40に浮き、振動板12が液面40に近い水平な位置にくるようにすることができる。 As shown in FIG. 3, the excitation device 1 is connected horizontally to the floating body 21 provided in the floating unit 2, the floating body 21 floats on the liquid surface 40 of the working liquid 400 inside the container 4, and the diaphragm 12 It can be in a horizontal position close to 40.

浮きユニット2は座体22を備え、この座体22は位置規制装置3に上下移動可能に設置され、且つ、この位置規制装置3により規制され、容器4内部で浮きユニット2が垂直線上で上下移動する状態を保つことができる。 The floating unit 2 includes a seat body 22. The seat body 22 is installed on the position restricting device 3 so as to be movable up and down, and is regulated by the position restricting device 3, so that the floating unit 2 is vertically moved on the vertical line inside the container 4. It can keep moving.

電力により励起装置1が起動されると、振動板12が高周波振動を発生して液面40に作用し、液面40の水膜が分解されて圧送され、霧が発生される。 When the excitation device 1 is activated by electric power, the diaphragm 12 generates high-frequency vibrations and acts on the liquid surface 40, the water film on the liquid surface 40 is decomposed and pumped, and fog is generated.

振動板12の動エネルギーはほとんどが液面40に作用し、一部が作用液体400に伝達され、液体400内部に撹拌または流動作用を発生させる。 Most of the kinetic energy of the diaphragm 12 acts on the liquid surface 40, and part of the kinetic energy is transmitted to the working liquid 400, causing a stirring or flow action inside the liquid 400.

図4に示すように、浮遊体21はアクチュエータ11にあらゆる方式で結合され、アクチュエータ11に設けた振動板12は、方向転換部121の調整によりアクチュエータ11との水平相対高さ位置を変えることができ、振動板12の位置を正確に液面40に合わせることができる。 As shown in FIG. 4, the floating body 21 is coupled to the actuator 11 in any manner, and the diaphragm 12 provided on the actuator 11 can change the horizontal relative height position with the actuator 11 by adjusting the direction changing portion 121. The position of the diaphragm 12 can be accurately adjusted to the liquid level 40.

方向転換部121の調整は、浮遊体121が質量密度の関係により液面40で浮き沈みする高さが不等になる状況下において、方向転換部121の調整を利用して振動板12の位置を液面40に合わせることを可能にする。 Adjustment of the direction changing unit 121 is performed by adjusting the direction changing unit 121 to adjust the position of the diaphragm 12 under the situation where the height at which the floating body 121 floats and sinks on the liquid surface 40 is unequal due to the mass density. It is possible to adjust to the liquid level 40.

液面40に相対して浮遊体21が浮く高さの違いは、作用液体400の比重の違いによっても変わるが、同様に方向転換部121を利用して浮く高さを変えることにより、振動板12の水平位置を調整して効果的に液面40に位置を合わせることができる。 The difference in height at which the floating body 21 floats relative to the liquid surface 40 varies depending on the difference in specific gravity of the working liquid 400, but similarly, by changing the height at which the floating body 21 floats using the direction changer 121, the diaphragm The horizontal position of 12 can be adjusted and the position can be effectively aligned with the liquid level 40.

また、この方向転換部121の存在を利用し、アクチュエータ11を浮遊体21の上方に位置させ、水液の侵入を防ぎ、化学変化の結合力等への影響の発生を防ぐことができる。 Further, by utilizing the presence of the direction changing portion 121, the actuator 11 can be positioned above the floating body 21 to prevent the intrusion of water and the occurrence of the influence of the chemical change on the binding force and the like.

図5に示すように、浮遊体21上方にアクチュエータ11が結合され、アクチュエータ11から伸ビルように設けた振動板12は、折り曲げ部122の折り曲げ調整により振動板12に傾斜角度を形成し、斜め方向に液面40に進入させることができ、振動板12の自由な端が液体内部に進入される。 As shown in FIG. 5, the actuator 11 is coupled to the floating body 21, and the diaphragm 12 provided so as to extend from the actuator 11 forms an inclination angle on the diaphragm 12 by adjusting the bending of the bending portion 122. It is possible to enter the liquid surface 40 in the direction, and the free end of the diaphragm 12 enters the liquid.

折り曲げ部122の実施は、同様にアクチュエータ11が常に液体内部に浸漬されるのを防ぐことができる。 The implementation of the bent portion 122 can similarly prevent the actuator 11 from being always immersed in the liquid.

図6に示すように、浮遊体21にアクチュエータ11が結合され、浮遊体21の片側に開口部210を設け、この開口部210に斜面213を形成し、アクチュエータ11を設置すると共に、このアクチュエータ11と同一の平面に振動板12を結合する。これにより、斜面213を利用してアクチュエータ11の振動板12を斜め方向に位置させることができる。 As shown in FIG. 6, the actuator 11 is coupled to the floating body 21, an opening 210 is provided on one side of the floating body 21, a slope 213 is formed in the opening 210, the actuator 11 is installed, and the actuator 11 The diaphragm 12 is coupled to the same plane. Thereby, the diaphragm 12 of the actuator 11 can be positioned in an oblique direction using the slope 213.

開口部210の両側に突出部211、212を設け、この両側の突出部211、212を利用して浮かせるときの平衡力を形成し、振動板12を保護してもよい。 Protruding portions 211 and 212 may be provided on both sides of the opening 210, and the diaphragm 12 may be protected by forming an equilibrium force when floating using the protruding portions 211 and 212 on both sides.

図7に示すように、振動板12はアクチュエータ11が斜面213に傾斜状態に設置されているため斜め方向に伸出され、その自由な端が液面40内部に進入され、突出部211、212がその両側で振動板12を保護する。 As shown in FIG. 7, the diaphragm 12 is extended in an oblique direction because the actuator 11 is installed in an inclined state on the inclined surface 213, and a free end thereof enters the liquid surface 40, and the protruding portions 211 and 212. Protects the diaphragm 12 on both sides.

図8に示すように、該浮遊体21は円形枠浮遊体21Aとすることもでき、内部の通孔210Aに励起装置1が結合され、振動板12が斜め方向に位置し、円形枠浮遊体21Aの外囲が全面的に振動板12を保護する。 As shown in FIG. 8, the floating body 21 may be a circular frame floating body 21A. The excitation device 1 is coupled to the internal through-hole 210A, the diaphragm 12 is positioned in an oblique direction, and the circular frame floating body 21 The enclosure of 21A protects the diaphragm 12 entirely.

図9に示すように、該浮遊体は方形枠浮遊体21Bとすることもでき、内部に形成した通孔210Bに同様に励起装置1が結合され、この励起装置1に設けた振動板12が斜め方向に通孔210B内に位置し、同様にこの方形枠浮遊体210Bの外囲が完全に振動板12を保護する。 As shown in FIG. 9, the floating body may be a rectangular frame floating body 21 </ b> B. Similarly, the excitation device 1 is coupled to the through-hole 210 </ b> B formed inside, and the diaphragm 12 provided in the excitation device 1 includes It is located in the through hole 210B in an oblique direction, and similarly, the outer periphery of the rectangular frame floating body 210B completely protects the diaphragm 12.

図10に示すように、図8、図9の構造に基づき、浮遊体21A(21B)の外形輪郭を容器4の内部に合わせ、容器4内部の断面は浮遊体21A、21Bと同じ形でやや大きいものとし、これにより浮遊体21A(21B)が固定されず、内部の通孔210A(210B)に励起装置1の振動板12が斜め方向に設置され、液面40に進入される。さらに励起装置1に撓性電源ワイヤ111を接続し、こうして構成した浮きユニット2は自由にその相対する容器4内部で浮き沈みすることができる。 As shown in FIG. 10, based on the structure of FIGS. 8 and 9, the outer contour of the floating body 21A (21B) is matched with the inside of the container 4, and the cross section inside the container 4 is slightly the same as the floating bodies 21A and 21B. As a result, the floating body 21A (21B) is not fixed, and the diaphragm 12 of the excitation device 1 is installed in an oblique direction in the internal through hole 210A (210B) and enters the liquid surface 40. Further, the flexible power supply wire 111 is connected to the excitation device 1, and the floating unit 2 configured in this way can freely float and sink inside the opposing container 4.

浮遊体21A(21B)下端に重り24を設けてもよく、重り24は接続ワイヤ240等あらゆる方法で浮遊体21A(21B)の下端に連結され、この重り24を利用して全体の重心位置を調整し、浮遊体21A、21Bに水平状態を保たせながら液面40で浮き沈みさせることができる。 A weight 24 may be provided at the lower end of the floating body 21A (21B), and the weight 24 is connected to the lower end of the floating body 21A (21B) by any method such as a connection wire 240. It is possible to adjust and float the liquid surface 40 while keeping the floating bodies 21A and 21B in a horizontal state.

図11に示すように、該アクチュエータ11には振動板12を張り出させて連結するが、これをさらにアクチュエータ11の両側に対称にそれぞれ振動板12を設け、対称の結合を形成し、2つの振動板12が同時にアクチュエータ11により駆動されるため、アクチュエータ11の仕事率を大きくすれば、2つの振動板12を同時に動作させ、より大量の霧を形成することができる。 As shown in FIG. 11, a diaphragm 12 is extended and connected to the actuator 11. The diaphragm 12 is further provided symmetrically on both sides of the actuator 11 to form a symmetric coupling. Since the diaphragm 12 is driven by the actuator 11 at the same time, if the power of the actuator 11 is increased, the two diaphragms 12 can be operated simultaneously to form a larger amount of fog.

該アクチュエータ11に連結される振動板12は、長細い形状の単体とし、両側にそれぞれ励起孔120を設け、中央部分にアクチュエータ11下方とほぼ同じ面積の結合面10を設け、単体としてアクチュエータ11と結合され、これにより比較的大きな機械的結合強度を得ることができる。 The diaphragm 12 connected to the actuator 11 is a single unit having a long and narrow shape, provided with excitation holes 120 on both sides, and provided with a coupling surface 10 having substantially the same area as the lower side of the actuator 11 at the central portion. So that a relatively large mechanical bond strength can be obtained.

図12に示すように、該アクチュエータは円形アクチュエータ11Aとしてもよく、同様に片側に張り出させて振動板12が結合され、振動板12に弧形面積の結合面10を形成し、円形アクチュエータ11Aとあらゆる方法で結合させる。 As shown in FIG. 12, the actuator may be a circular actuator 11A. Similarly, the diaphragm 12 is extended to one side to be coupled to the diaphragm 12, and a coupling surface 10 having an arc-shaped area is formed on the diaphragm 12, thereby forming the circular actuator 11A. And combine in any way.

図13に示すように、該円形アクチュエータ11Aは横方向に延伸し張り出した振動板12が連結され、該振動板12は対称方式を採用し、円形アクチュエータ11Aの両側に対称に設け、仕事率の条件が許す場合、または仕事率を大きくする場合において、同時に2つの対称の振動板12を作用させ大量の霧を発することができる。そのうち該振動板12はそれぞれ独立した単片式または連結された細長い形状の単体とすることができ、円形アクチュエータ11A底部に合わせた形の結合面10を利用し、単体となるよう結合面10全面を結合させ、その機械的結合を強化する。 As shown in FIG. 13, the circular actuator 11A is connected to a diaphragm 12 extending in the lateral direction and projecting, and the diaphragm 12 adopts a symmetrical system and is provided symmetrically on both sides of the circular actuator 11A. When the conditions permit or when the power is increased, a large amount of fog can be generated by simultaneously operating two symmetric diaphragms 12. Among them, the diaphragm 12 can be an independent single piece type or a single unit having a long and narrow shape, and the entire coupling surface 10 is formed so as to be a single unit by using the coupling surface 10 shaped in accordance with the bottom of the circular actuator 11A. And strengthen the mechanical bond.

図14に示すように、図11、13のように構成した励起装置1を、梁棒5を利用して吊るか掛ける方式で浮遊体21中央部分に連結し、該浮遊体21は図8または図9の枠体または2つの浮遊体とし、対称に梁棒5の両端に結合され、平衡を保ちながら浮く状態を形成する。 As shown in FIG. 14, the excitation device 1 configured as shown in FIGS. 11 and 13 is connected to the central portion of the floating body 21 in a hanging manner using the beam bar 5. The frame body of FIG. 9 or two floating bodies are symmetrically coupled to both ends of the beam bar 5 to form a floating state while maintaining equilibrium.

励起装置1は梁棒5に設置された後、振動板12が液面40に接し、そのうち、アクチュエータ11A内部に結合された振動板12は間接的に梁棒5を介して浮遊体21により浮かせられ、この浮遊体21と液面40が一定高さの浮き作用を保持し、振動板12が有効に液面40に位置するようにすることができる。 After the exciter 1 is installed on the beam bar 5, the diaphragm 12 comes into contact with the liquid surface 40, and the diaphragm 12 coupled to the inside of the actuator 11 </ b> A is indirectly floated by the floating body 21 via the beam bar 5. Thus, the floating body 21 and the liquid surface 40 maintain a floating action with a certain height, and the diaphragm 12 can be effectively positioned on the liquid surface 40.

そのうち、振動板12に設けた方向転換部121を利用し、振動板12とアクチュエータ11(11A)の水平相対高さを調整し、振動板12が平らに液面40に接触するようにさせることができる。 Of these, the horizontal relative height of the diaphragm 12 and the actuator 11 (11A) is adjusted using the direction changing portion 121 provided on the diaphragm 12, and the diaphragm 12 is brought into contact with the liquid level 40 flatly. Can do.

図15に示すように、図14に示すようなアクチュエータ11、11Aに連結された振動板12は、折り曲げ部122の作用を介し、斜め方向に液面40に進入させることができる。 As shown in FIG. 15, the diaphragm 12 connected to the actuators 11, 11 </ b> A as shown in FIG. 14 can enter the liquid level 40 in an oblique direction through the action of the bent portion 122.

図16に示すように、該浮きユニット2は主に浮遊体21を利用して励起装置1を保持し、この励起装置1はアクチュエータ11を備え、このアクチュエータ11はさらに張り出した状態に連結された振動板12を備え、浮遊体11の一端が座体22を介して位置規制装置3に滑動可能に設置され、該位置規制装置3はレール31の両側に軌道311を備え、座体22の対応するよう設けられたスライド孔221がこの軌道311に滑動可能に連結される。 As shown in FIG. 16, the floating unit 2 mainly uses a floating body 21 to hold the excitation device 1, and the excitation device 1 includes an actuator 11, and the actuator 11 is further connected to a protruding state. The diaphragm 12 is provided, and one end of the floating body 11 is slidably installed on the position restriction device 3 via the seat body 22, and the position restriction device 3 is provided with a track 311 on both sides of the rail 31. A slide hole 221 provided so as to be slidably connected to the track 311.

図17に示すように、該浮きユニット2は浮遊体21が座体22に連結されて構成され、このユニットには重心Wが形成され、この重心Wと位置規制装置3に設けたレール31の反力点P1またはP2間にうでの長さRが形成され、反力点P1、P2は軌道31の縦方向の直線上の位置にあり、座体22に設けたスライド孔221は高さHを備え、浮きユニット2の浮動の位置移動状態は、浮遊体21に対する液体の浮力作用と、重心Wとうでの長さRの相乗関係で形成される反作用力に基づく。 As shown in FIG. 17, the floating unit 2 is configured by connecting a floating body 21 to a seat body 22. The center of gravity W is formed in this unit, and the center of gravity W and the rail 31 provided in the position regulating device 3 are arranged. A length R between the reaction force points P1 and P2 is formed, the reaction force points P1 and P2 are located on a straight line in the longitudinal direction of the track 31, and the slide hole 221 provided in the seat body 22 has a height H. The floating position movement state of the floating unit 2 is based on a reaction force formed by a synergistic relationship between the buoyancy effect of the liquid on the floating body 21 and the length R at the center of gravity W.

図18に示すように、反力点P1からP2の力をF3とすると、重心Wと反力点P2間に斜め方向の力F2が形成され、うでの長さの関係で反力点P2と重心Wの間に引っ張り力F1が形成される。 As shown in FIG. 18, when the force from the reaction force points P1 to P2 is F3, an oblique force F2 is formed between the gravity center W and the reaction force point P2, and the reaction force point P2 and the gravity center W are related to the length of the umbilical cord. A tensile force F1 is formed between the two.

このような力関係の構成により、浮遊体21が重心Wの作用で下降すると、引っ張り力F1が分力F2、F3から合成される力で満足され、下方向に移動する力が形成され、反力点P1の摩擦がなくなる。摩擦がなくなる条件は、十分な分力が生まれるよう反力点P1、P2が高さHを備えている必要がある。 With such a force-related configuration, when the floating body 21 is lowered by the action of the center of gravity W, the pulling force F1 is satisfied by the force synthesized from the component forces F2 and F3, and a force that moves downward is formed. The friction at the power point P1 is eliminated. The condition for eliminating the friction is that the reaction points P1 and P2 need to have a height H so that a sufficient component force is generated.

図19に示すように、上述の構造のように浮きユニット2をレール31で垂直線上での位置移動に規制することで、設置された励起装置1は、容器4の作用液体400が形成する液面40に効果的に位置を合わせることができ、毎回液面位置が変わる過程で浮きユニット2の座体22がスライド移動することで、励起装置1は液面40上の定点位置を維持することができる。 As shown in FIG. 19, by restricting the floating unit 2 to the position movement on the vertical line by the rail 31 as in the above-described structure, the installed excitation device 1 is a liquid formed by the working liquid 400 of the container 4. The position can be effectively aligned with the surface 40, and the exciter 1 maintains a fixed point position on the liquid surface 40 by the sliding movement of the seat 22 of the floating unit 2 in the process of changing the liquid surface position each time. Can do.

図20に示すように、該位置規制装置3はさらに容器4の片側の連結座体32に設置してもよく、アーム321を軸着し、このアーム321の自由な端をさらに浮遊体21に軸着し、アーム321の揺動長さと弧の長さの範囲内で浮遊体21の移動角度を規制することができる。浮遊体21は液面40の高低状態によりその位置する高さを決定し、アーム321の揺動長さLが浮遊体21の高低位置を制限する。このアーム321の連結作用を利用し、浮遊体21の浮く角度を決定し、基本的に液面40と水平になるようにすることができる。 As shown in FIG. 20, the position regulating device 3 may be further installed on a connecting seat 32 on one side of the container 4, and an arm 321 is pivotally attached, and a free end of the arm 321 is further attached to the floating body 21. The moving angle of the floating body 21 can be regulated within the range of the swing length of the arm 321 and the length of the arc. The floating body 21 determines the position where the liquid surface 40 is located, and the swinging length L of the arm 321 limits the height position of the floating body 21. By utilizing the connecting action of the arm 321, the floating angle of the floating body 21 can be determined so that it is basically level with the liquid level 40.

図21に示すように、該浮きユニット2は座体22を介して位置規制装置3により規制され、該位置規制装置3はスライド棒33から構成される。このスライド棒33を座体22に設けたスライド孔221に穿通し、浮きユニット2に設けた浮遊体21に励起装置1を設置する。 As shown in FIG. 21, the floating unit 2 is regulated by a position regulating device 3 via a seat body 22, and the position regulating device 3 is constituted by a slide bar 33. The slide rod 33 is pierced through the slide hole 221 provided in the seat body 22, and the excitation device 1 is installed in the floating body 21 provided in the floating unit 2.

図22に示すように、該浮きユニット2に設けた座体22は浮遊体21の片側に位置し、座体22はスライド孔221によりスライド棒33上で作用し、浮きユニット2が張り出した状態に設置される。 As shown in FIG. 22, the seat body 22 provided in the floating unit 2 is located on one side of the floating body 21, and the seat body 22 acts on the slide rod 33 by the slide hole 221, and the floating unit 2 is overhanging. Installed.

図23に示すように、振動板12の面上内側に励起孔120を設け、該励起孔120は長細い形状の細孔123とすることができ、縦方向に相隣する細孔123を互い違いに分布させ、且つ、前後の排列長さを作用長さ範囲Dとする。 As shown in FIG. 23, excitation holes 120 are provided on the inner surface of the diaphragm 12, and the excitation holes 120 can be formed as long and narrow pores 123. The pores 123 adjacent to each other in the vertical direction are staggered. And the arrangement length before and after is defined as an action length range D.

該細孔123は細長い形状であるため、細孔123と同じ幅の粒径またはより小さい粒状物質がある場合、細孔123を通過することができ、また、水液内部に含まれる粒径が細孔123の槽幅より大きいものは、通過することができなくなる。該細孔123は粒径が大きい物質の通過を阻んでも、全面的に詰まってしまうことはなく、濾過の作用を形成することができる。 Since the pores 123 have an elongated shape, if there is a particle size of the same width as the pores 123 or a smaller granular material, the pores 123 can pass through the pores 123, and the particle size contained in the aqueous liquid can be reduced. Those larger than the tank width of the pores 123 cannot pass through. Even if the pores 123 block the passage of a substance having a large particle size, they are not completely clogged and can form a filtering action.

図24に示すように、該励起孔120は波形状の細孔124としてもよく、縦方向に相隣する細孔124を互い違いに分布させ、集合させて作用長さ範囲Dを形成する。 As shown in FIG. 24, the excitation hole 120 may be a wave-shaped pore 124, and the pores 124 adjacent to each other in the vertical direction are alternately distributed and gathered to form the action length range D.

上述の細孔124を集合させて形成する長さ範囲Dの応用は、図5に示すように、該長さ範囲Dの細孔124を振動板12に分布させ、振動板12の自由な端を液面40内に進入させた後、該長さ範囲D内に分布する複数の細孔123、124が、振動板12が斜め方向に液面40内に進入されると、長さ範囲D内のあらゆる位置で液面と交差する点Pが生まれ、該交差する点Pを利用してその箇所の液面40に対し水液の霧化を行い、液体内に進入された自由な端が発生する振動エネルギーで液体を撹拌することができる。 As shown in FIG. 5, the application of the length range D formed by assembling the pores 124 described above is to distribute the pores 124 of the length range D to the diaphragm 12, thereby free end of the diaphragm 12. When the diaphragm 12 enters the liquid surface 40 in an oblique direction, the plurality of pores 123 and 124 distributed in the length range D are allowed to enter the liquid surface 40. A point P that intersects the liquid level is born at every position in the inside, and the liquid P is atomized to the liquid level 40 at the point using the intersecting point P, and a free end that has entered the liquid is The liquid can be stirred by the generated vibration energy.

励起孔120は波形細孔124の構成を利用し、その波形の形状で細孔の線的長さを延長することができる。 The excitation hole 120 uses the configuration of the corrugated pore 124, and the linear length of the pore can be extended with the corrugated shape.

従来の導水繊維の振動板に相対する関係位置を示す側面図である。It is a side view which shows the relative position facing the diaphragm of the conventional water guide fiber. 本考案の励起装置の構成基礎を示す立体斜視図である。It is a three-dimensional perspective view which shows the structure basis of the excitation apparatus of this invention. 本考案の応用例を示す側面断面図である。It is side surface sectional drawing which shows the application example of this invention. 本考案のアクチュエータと振動板の方向が変化する結合状態を示す側面図である。It is a side view which shows the combined state from which the direction of the actuator of this invention and a diaphragm changes. 本考案のアクチュエータと振動板の折り曲げ状態を示す側面図である。It is a side view which shows the bending state of the actuator and diaphragm of this invention. 本考案の浮遊体に斜め方向に励起装置を結合した状態を示す立体斜視図である。It is a three-dimensional perspective view which shows the state which couple | bonded the excitation apparatus with the floating body of this invention in the diagonal direction. 図6の側面図である。FIG. 7 is a side view of FIG. 6. 本考案の円形枠体状の浮遊体を示す立体斜視図である。It is a three-dimensional perspective view which shows the circular frame-shaped floating body of this invention. 本考案の方形枠体状の浮遊体を示す立体斜視図である。It is a three-dimensional perspective view which shows the rectangular frame-shaped floating body of this invention. 本考案の枠体形浮遊体の実施を示す側面図である。It is a side view which shows implementation of the frame-shaped floating body of this invention. 本考案のアクチュエータと振動板の結合を示す立体斜視図である。It is a three-dimensional perspective view which shows the coupling | bonding of the actuator of this invention, and a diaphragm. 本考案の円形アクチュエータと振動板の結合を示す立体斜視図である。It is a three-dimensional perspective view which shows the coupling | bonding of the circular actuator of this invention, and a diaphragm. 本考案の円形アクチュエータの両側に振動板を設けた状態を示す立体斜視図である。It is a three-dimensional perspective view which shows the state which provided the diaphragm on both sides of the circular actuator of this invention. 本考案のアクチュエータの両側に振動板を結合させて液面上に浮かせた状態を示す側面図である。It is a side view which shows the state which combined the diaphragm on both sides of the actuator of this invention, and floated on the liquid level. 本考案のアクチュエータの両側に振動板を折り曲げ状に形成した状態を示す側面図である。It is a side view which shows the state which formed the diaphragm in the folding shape on both sides of the actuator of this invention. 本考案の浮きユニットを座体を介してレールに連結し、位置が規制される状態を示す立体斜視図である。It is a three-dimensional perspective view which shows the state by which the floating unit of this invention is connected to a rail through a seat body, and a position is controlled. 図16の側面図である。FIG. 17 is a side view of FIG. 16. 図17の力関係を示す図である。It is a figure which shows the force relationship of FIG. 図16を容器内に実施した状態を示す側面図である。It is a side view which shows the state which implemented FIG. 16 in the container. 本考案の位置規制装置にアームを利用した実施例を示す側面図である。It is a side view which shows the Example which utilized the arm for the position control apparatus of this invention. 本考案の位置規制装置にスライド棒を利用した実施例を示す立体斜視図である。It is a three-dimensional perspective view which shows the Example which utilized the slide bar for the position control apparatus of this invention. 本考案の位置規制装置をスライド棒を介して浮きユニットに設置した状態を示す立体斜視図である。It is a three-dimensional perspective view which shows the state which installed the position control apparatus of this invention in the floating unit via the slide bar. 本考案の振動板の励起孔を細孔で構成した状態を示す上面図である。It is a top view which shows the state which comprised the excitation hole of the diaphragm of this invention by the pore. 本考案の振動板の励起孔を波形細孔で構成した状態を示す上面図である。It is a top view which shows the state which comprised the excitation hole of the diaphragm of this invention by the waveform pore.

符号の説明Explanation of symbols

1 励起装置
10 結合面
11A、100 円形アクチュエータ
101 通孔
102 円形振動板
103 半球面
120、104 励起孔
105 導水繊維
4、106 容器
11 アクチュエータ
110 誘電塗布層
111 撓性電源ワイヤ
12 振動板
121 方向転換部
122 折り曲げ部
123 細孔
124 波形細孔
2 浮きユニット
21 浮遊体
21A 円形枠浮遊体
21B 方形枠浮遊体
210A、210B 通孔
210 開口部
211、212 突出部
213 斜面
22 座体
221 スライド孔
24 重り
240 接続ワイヤ
3 位置規制装置
31 レール
311 軌道
32 連結座体
321 アーム
33 スライド棒
40 液面
400 作用液体
5 梁棒
H 高さ
P 交差する点
P1、P2 反力点
R うでの長さ
W 重心
F1 引っ張り力
F2、F3 分力
D 長さ範囲
DESCRIPTION OF SYMBOLS 1 Excitation apparatus 10 Coupling surface 11A, 100 Circular actuator 101 Through-hole 102 Circular diaphragm 103 Semispherical surface 120, 104 Excitation hole 105 Water guide fiber 4, 106 Container 11 Actuator
DESCRIPTION OF SYMBOLS 110 Dielectric coating layer 111 Flexible power supply wire 12 Diaphragm 121 Direction change part 122 Bending part 123 Fine hole 124 Corrugated fine hole 2 Floating unit 21 Floating body
21A Circular frame floating body 21B Square frame floating body 210A, 210B Through-hole 210 Openings 211, 212 Protruding portion 213 Slope 22 Seat body 221 Slide hole 24 Weight
240 connecting wire 3 position regulating device 31 rail 311 track 32 connecting seat 321 arm 33 slide bar 40 liquid level 400 working liquid 5 beam bar H height P intersecting points P1, P2 reaction force point R length W center of gravity F1 Tensile force F2, F3 Component force D Length range

Claims (24)

大量の作用液体に用いることができ、作用液体の表面に浮かせる方式で張り出し式励起装置を設け、該励起装置の振動板を効果的に液面位置に合わせることができ、且つ、定量の霧化仕事率を発揮する高周波霧化装置の取水機構であって、主に塊状の圧電セラミックアクチュエータを用い、その片側に面上に励起孔を開設した振動板を張り出した状態に設けて励起装置を構成し、該励起装置全体が浮遊体上に設置され、該浮遊体を作用液体の表面に浮かべ、前記振動板の自由な端が作用側となり、一定の有向量を保持して液面に接触し、同等の負荷条件を維持しながら定量の仕事率を発揮することを特徴とする、高周波霧化装置の取水機構。 It can be used for a large amount of working liquid, and an overhanging exciter is provided in a manner that floats on the surface of the working liquid, and the diaphragm of the exciter can be effectively aligned with the liquid surface position, and quantitative atomization A water intake mechanism for a high-frequency atomizer that demonstrates power, mainly using a block-shaped piezoelectric ceramic actuator, and a diaphragm with an excitation hole on one side of the surface is provided in an overhanging state. The entire excitation device is installed on a floating body, the floating body is floated on the surface of the working liquid, the free end of the diaphragm becomes the working side, and keeps a certain amount of direct contact with the liquid surface. An intake mechanism for a high-frequency atomizer, characterized by demonstrating a quantitative work rate while maintaining equivalent load conditions. 前記アクチュエータと振動板間の結合が、結合面を利用し溶接で接合された、請求項1に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer according to claim 1, wherein the coupling between the actuator and the diaphragm is joined by welding using a coupling surface. 前記振動板とアクチュエータ間が、方向転換部を介して相対する水平位置を調整可能である、請求項1に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer of Claim 1 which can adjust the horizontal position which the said diaphragm and an actuator oppose via a direction change part. 前記振動板とアクチュエータ間が、折り曲げ部を介して相対する斜角関係を調整可能である、請求項1に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer of Claim 1 which can adjust the diagonal relationship which the said diaphragm and an actuator oppose via a bending part. 前記アクチュエータと振動板が平面上で結合され、全体を斜め方向に浮遊体の片側に形成した斜面に設置した、請求項1に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer according to claim 1, wherein the actuator and the diaphragm are coupled on a plane, and the whole is installed on a slope formed on one side of the floating body in an oblique direction. 前記浮遊体に凹み状の開口部を設け、該開口部の両側に突出部を形成し、励起装置の振動板を保護する、請求項1に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer according to claim 1, wherein a concave opening is provided in the floating body, and protrusions are formed on both sides of the opening to protect the diaphragm of the excitation device. 前記浮遊体が枠体であり、内部に通孔を備え、励起装置を該通孔に設置し、振動板を液面に接触させる、請求項1に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer according to claim 1, wherein the floating body is a frame body, has a through hole therein, an exciter is installed in the through hole, and the diaphragm is brought into contact with the liquid surface. 前記枠体の浮遊体底部に重りを設けた、請求項7に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer of Claim 7 which provided the weight in the floating body bottom part of the said frame. 前記塊状のアクチュエータの相対する両側にそれぞれ対称な振動板を延伸して設けた、請求項1に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high-frequency atomizer according to claim 1, wherein symmetrical diaphragms are provided to extend on opposite sides of the massive actuator. 前記2つの振動板が、方向転換部を介してアクチュエータに対する水平位置を調整可能である、請求項9に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high-frequency atomizer according to claim 9, wherein the two diaphragms can adjust a horizontal position with respect to the actuator via a direction changing portion. 前記2つの振動板が、折り曲げ部を介してアクチュエータに対する斜角関係を調整可能である、請求項9に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high-frequency atomizer according to claim 9, wherein the two diaphragms are capable of adjusting an oblique relationship with respect to the actuator via a bent portion. 前記アクチュエータが、梁棒を介して浮遊体内部に組み込まれた、請求項9に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high-frequency atomizer according to claim 9, wherein the actuator is incorporated into the floating body via a beam bar. 前記塊状のアクチュエータが方形である、請求項1または9に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high-frequency atomizer according to claim 1 or 9, wherein the massive actuator is rectangular. 前記塊状のアクチュエータが円形である、請求項1または9に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer according to claim 1 or 9, wherein the massive actuator is circular. 大量の作用液体に用いることができ、作用液体表面に浮かべる方式で張り出し式霧励起装置を設け、その振動板を効果的に液面位置に合わせることができ、主に塊状の圧電セラミックアクチュエータを用い、その片側に面上に励起孔を開設した振動板を張り出した状態に設けて励起装置を構成し、該励起装置全体が浮遊体上に設置され、該浮遊体を作用液体の表面に浮かべ、前記振動板の自由な端が作用側となり、一定の有向量を保持して液面に接触し、同等の負荷条件を維持しながら定量の仕事率を発揮し、そのうち、該浮遊体と座体とを連結して浮きユニットを形成し、該座体が位置規制装置により容器内部に位置規制され、且つ、上下移動可能に設置される、高周波霧化装置の取水機構。 It can be used for a large amount of working liquid, and an overhanging fog excitation device is provided by floating on the surface of the working liquid, and its diaphragm can be effectively aligned with the liquid surface position, mainly using a massive piezoelectric ceramic actuator The excitation device is configured by projecting a diaphragm having an excitation hole on one side thereof to form an excitation device, the entire excitation device is installed on a floating body, and the floating body is floated on the surface of the working liquid, The free end of the diaphragm becomes the working side, maintains a certain directed amount, contacts the liquid surface, exhibits a fixed work rate while maintaining the same load condition, and the floating body and the seat Are connected to each other to form a floating unit, the position of the seat body is regulated inside the container by the position regulating device, and the water intake mechanism of the high frequency atomizer is installed so as to be movable up and down. 前記位置規制装置がレールであり、軌道を利用して座体に設けた対応するスライド孔と係合される、請求項15に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer according to claim 15, wherein the position regulating device is a rail and is engaged with a corresponding slide hole provided in the seat body using a track. 前記位置規制装置が、容器片側に設けた連結座体に連結され、アームを介して浮遊体に接続される、請求項15に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high-frequency atomizer according to claim 15, wherein the position regulating device is coupled to a coupling seat provided on one side of the container and connected to a floating body via an arm. 前記位置規制装置がスライド棒であり、前記座体に設けた対応するスライド孔に穿通される、請求項15に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high-frequency atomizer according to claim 15, wherein the position regulating device is a slide rod and is pierced through a corresponding slide hole provided in the seat body. 前記位置規制装置が浮きユニットの横の位置に組み込まれる、請求項15に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer according to claim 15, wherein the position regulating device is incorporated at a position beside the floating unit. 前記振動板の面上に開設した励起孔が円孔である、請求項1または15に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer of Claim 1 or 15 whose excitation hole opened on the surface of the said diaphragm is a circular hole. 前記円孔が複数開設され、あらゆる幾何形状に分布される、請求項20に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high frequency atomizer according to claim 20, wherein a plurality of the circular holes are provided and distributed in all geometric shapes. 前記振動板の面上に開設した励起孔が相隣する励起孔と互い違いに配列され、一定の作用長さ範囲に分布された細い線状の槽から構成される、請求項1または15に記載の高周波霧化装置の取水機構。 The excitation holes opened on the surface of the diaphragm are alternately arranged with adjacent excitation holes, and are composed of thin linear tanks distributed in a certain working length range. Intake mechanism of the high-frequency atomizer. 前記細い線状の槽が直線状である、請求項22に記載の高周波霧化装置の取水機構。 The water intake mechanism of the high-frequency atomizer according to claim 22, wherein the thin linear tank is linear. 前記細い線状の槽が波形状である、請求項22に記載の高周波霧化装置の取水機構。
The water intake mechanism of the high-frequency atomizer according to claim 22, wherein the thin linear tank has a wave shape.
JP2005010280U 2005-12-05 2005-12-05 Intake mechanism of high-frequency atomizer Expired - Fee Related JP3119221U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010280U JP3119221U (en) 2005-12-05 2005-12-05 Intake mechanism of high-frequency atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010280U JP3119221U (en) 2005-12-05 2005-12-05 Intake mechanism of high-frequency atomizer

Publications (1)

Publication Number Publication Date
JP3119221U true JP3119221U (en) 2006-02-16

Family

ID=43469457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010280U Expired - Fee Related JP3119221U (en) 2005-12-05 2005-12-05 Intake mechanism of high-frequency atomizer

Country Status (1)

Country Link
JP (1) JP3119221U (en)

Similar Documents

Publication Publication Date Title
JP5253574B2 (en) Fog or microbubble generation method and mist or microbubble generator using surface acoustic wave
US5831166A (en) Method of non-contact micromanipulation using ultrasound
US20070169775A1 (en) Mechanism for the draft of a high frequency atomization device
CA2652000C (en) Damping (heave) plates having improved characteristics
Xiao et al. Effect of sodium oleate on the adsorption morphology and mechanism of nanobubbles on the mica surface
Dupré de Baubigny et al. Shape and effective spring constant of liquid interfaces probed at the nanometer scale: Finite size effects
CA2500556A1 (en) Atomizer with tilted orifice plate and replacement reservoir for same
JP3119221U (en) Intake mechanism of high-frequency atomizer
KR20170054055A (en) Ball box and solder ball attach apparatus having the same
Bournival et al. Behavior of bubble interfaces stabilized by particles of different densities
US5785761A (en) Fine particles dispersing apparatus
JP4947365B2 (en) Atomizer
JP6096379B1 (en) Control method for three-dimensional additive manufacturing apparatus, control method for three-dimensional additive manufacturing apparatus, and control program for three-dimensional additive manufacturing apparatus
JP2015081221A (en) Hydrogen generator
US20100071687A1 (en) Nebulization Apparatus
Feng et al. Particle separation from liquid marbles by the viscous folding of liquid films
JP2009078223A (en) Generation apparatus of liquid containing microbubble and/or microparticle, liquid containing microbubble and/or microparticle, and manufacturing method of liquid containing microbubble and/or microparticle
KR200410398Y1 (en) Draft mechanism for high frequency atomization device
GB2433708A (en) Creation of a mist from a liquid surface within a container
CN212328735U (en) High-efficient ultrasonic atomization generating device
JP7410512B2 (en) Bubble generator and flotation equipment
JPH03232562A (en) Ultrasonic wave generator and ultrasonic atomizer
EP0283307A2 (en) Vortex ring mixers
JP2014005009A (en) Liquid filling nozzle
Thomson et al. Nonequilibrium capillary self-assembly

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees