JP3118676B2 - Method of manufacturing probe unit - Google Patents

Method of manufacturing probe unit

Info

Publication number
JP3118676B2
JP3118676B2 JP04277694A JP27769492A JP3118676B2 JP 3118676 B2 JP3118676 B2 JP 3118676B2 JP 04277694 A JP04277694 A JP 04277694A JP 27769492 A JP27769492 A JP 27769492A JP 3118676 B2 JP3118676 B2 JP 3118676B2
Authority
JP
Japan
Prior art keywords
probe
flexible portion
probe unit
manufacturing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04277694A
Other languages
Japanese (ja)
Other versions
JPH06112548A (en
Inventor
修 高松
康弘 島田
隆行 八木
優 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP04277694A priority Critical patent/JP3118676B2/en
Publication of JPH06112548A publication Critical patent/JPH06112548A/en
Application granted granted Critical
Publication of JP3118676B2 publication Critical patent/JP3118676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、走査型トンネル顕微鏡
またはその原理を応用した情報の高密度記録、再生、消
去を行う情報処理装置等に用いるトンネル電流検知用の
プローブユニットの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a probe unit for detecting a tunnel current used in a scanning tunneling microscope or an information processing apparatus for performing high-density recording, reproduction and erasure of information by applying the principle thereof.

【0002】[0002]

【従来の技術】近年において、導体の表面原子の電子構
造を直接観測できる走査型トンネル顕微鏡(以下、ST
Mと略す)が開発され(G.Binnig et a
l.,Phys.Rev.Lett.49(1982)
57)、単結晶、非結晶を問わず実空間像を著しく高い
分解能(ナノメートル以下)で測定できるようになっ
た。
2. Description of the Related Art In recent years, a scanning tunneling microscope (hereinafter referred to as ST) capable of directly observing the electronic structure of surface atoms of a conductor.
M) (G. Binnig et a).
l. Phys. Rev .. Lett. 49 (1982)
57) It has become possible to measure a real space image with a remarkably high resolution (below nanometers) irrespective of single crystal or non-crystal.

【0003】かかるSTMは、金属のプローブ(探針)
と導電性物質の間に電圧を加えて、1nm程度の距離間
で近づけると、その間にトンネル電流が流れることを利
用している。この電流は両者の距離変化に非常に敏感で
かつ指数関数的に変化するので、トンネル電流を一定に
保つようにプローブを走査することにより、実空間の表
面構造を原子オーダーの分解能で観察することができ
る。
[0003] Such an STM is a metal probe.
When a voltage is applied between the conductive material and the conductive material and the distance is reduced to about 1 nm, a tunnel current flows during that time. Since this current is very sensitive to the change in distance between them and changes exponentially, observe the surface structure in real space with atomic-order resolution by scanning the probe to keep the tunnel current constant. Can be.

【0004】このSTMを用いた解析は導電性材料に限
られるが、導電性材料の表面に薄く形成された絶縁膜の
構造解析にも応用され始めている。更に、上述の装置、
手段は微小電流を検知する方法を用いているため、媒体
に損傷を与えず、かつ低電力で観測できる利点をも有す
る。また、大気中での動作も可能で有るためSTMの広
範囲な応用が期待されている。特に、特開昭63−16
1552号公報、特開昭63−161553号公報等に
提案されているように、高密度な記録再生装置としての
実用化が積極的に進められている。これは、STMと同
様のプローブを用いて、プローブと記録媒体間に印加す
る電圧を変化させて記録を行うものであり、記録媒体と
しては、電圧−電流特性においてメモリ性の有るスイッ
チング特性を示す材料、たとえばカルコゲン化物類、π
電子系有機化合物の薄膜層を用いている。一方、再生に
ついては、記録を行った領域とそうでない領域のトンネ
ル抵抗の変化により行っている。この記録方式を用いる
記録媒体としては、プローブに印加する電圧により記録
媒体の表面形状が変化するものでも記録再生が可能であ
る。
Although the analysis using the STM is limited to conductive materials, it has begun to be applied to the structural analysis of an insulating film formed thinly on the surface of the conductive material. Further, the device described above,
Since the means uses a method for detecting a minute current, there is also an advantage that the medium can be observed with low power without damaging the medium. Further, since operation in the atmosphere is possible, a wide range of applications of STM is expected. In particular, JP-A-63-16
As proposed in JP-A No. 1552, JP-A-63-161553, etc., practical application as a high-density recording / reproducing apparatus has been actively promoted. In this method, recording is performed by changing the voltage applied between the probe and the recording medium using a probe similar to the STM, and the recording medium exhibits a switching characteristic having a memory property in a voltage-current characteristic. Materials, such as chalcogenides, π
A thin film layer of an electronic organic compound is used. On the other hand, reproduction is performed based on a change in tunnel resistance between a recorded area and a non-recorded area. As a recording medium using this recording method, recording and reproduction can be performed even if the surface shape of the recording medium changes according to the voltage applied to the probe.

【0005】従来、プローブの形成手法として半導体製
造プロセス技術を用い、1つの基板上に微細な構造を作
る加工技術(K.E.Peterson,“Silic
onas a Mechanical Materia
l”,Proceedings of the IEE
E,vol70,P420,1982)を利用して構成
したSTMが、特開昭61−206148号公報に提案
されている。これは単結晶シリコンを基板として、微細
加工により基板面と平行な方向(XY方向)に微動でき
る平行バネを形成し、更にその可動部にプローブを形成
したカンチレバー(片持ち梁)構造の舌状部を設け、該
舌状部と底面部との間に電界を与え静電力により基板表
面と直角な方向(Z方向)に変位するように構成されて
いる。また、特開昭62−281138号公報には、特
開昭61−206148号公報に開示されたのと同様の
舌状部をマルチに配列した変換器アレイを備えた記憶装
置が記載されている。
Conventionally, a semiconductor manufacturing process technique has been used as a technique for forming a probe, and a processing technique for forming a fine structure on a single substrate (KE Peterson, "Silic").
onas a Mechanical Materialia
l ", Proceedings of the IEEE
E, vol 70, P420, 1982) has been proposed in JP-A-61-206148. This is a tongue of a cantilever (cantilever) structure in which a single spring is used as a substrate, a parallel spring that can finely move in a direction parallel to the substrate surface (XY directions) is formed by microfabrication, and a probe is formed on its movable part. A portion is provided, and an electric field is applied between the tongue portion and the bottom portion so as to be displaced in a direction perpendicular to the substrate surface (Z direction) by electrostatic force. Further, Japanese Patent Application Laid-Open No. Sho 62-281138 describes a storage device provided with a converter array in which tongue-shaped portions are arranged in multiples, similar to that disclosed in Japanese Patent Application Laid-Open No. Sho 61-206148. .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来例
のカンチレバー型プローブは以下のような問題点を有し
ていた。
However, the conventional cantilever probe has the following problems.

【0007】カンチレバーの作製において、シリコン
基板上に単結晶シリコンを厚く成長させているため、製
造コストが高かった。また、シリコン基板を異方性エッ
チングにより加工しているため、加工に時間がかかり生
産性が低かった。
In manufacturing a cantilever, a single-crystal silicon is grown thick on a silicon substrate, so that the manufacturing cost is high. Further, since the silicon substrate is processed by anisotropic etching, the processing is time-consuming and productivity is low.

【0008】エッチング液によってはアルカリイオン
を含むため、駆動回路(IC等)を一体に作る場合に汚
染され特性が劣化するという問題が有った。
[0008] Since some etching solutions contain alkali ions, there is a problem in that when the driving circuit (IC or the like) is integrally formed, the etching solution is contaminated and the characteristics are deteriorated.

【0009】そこで、本発明の目的は、上記従来例の問
題点に鑑み、プローブユニットの生産性、信頼性を向上
させ、製造コストを低減させたプローブユニットの製造
方法を提供することにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method of manufacturing a probe unit in which the productivity and reliability of the probe unit are improved and the manufacturing cost is reduced in view of the above-mentioned problems of the prior art.

【0010】[0010]

【課題を解決するための手段及び作用】上記目的を達成
するために成された本発明は、基板上に形成された梁状
の可撓部を有する静電変位素子と該可撓部の自由端側に
設けられたプローブから構成されるプローブユニットの
製造方法において、基板上に成膜及びパターニングによ
り下電極及び取り出し電極を形成する第1工程、前記下
電極全面と取り出し電極をまたぐように成膜及びパター
ニングにより導電体の凸部を形成する第2工程、前記凸
部と取り出し電極をまたぐようにレジストを用いたパタ
ーン電気メッキにより可撓部を形成する第3工程、該可
撓部上にプローブを形成する第4工程、前記凸部を除去
する第5工程を含んでなることを特徴とするプローブユ
ニットの製造方法である。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides an electrostatic displacement element having a beam-like flexible portion formed on a substrate and a free portion of the flexible portion. In a method for manufacturing a probe unit including a probe provided on an end side, a first step of forming a lower electrode and an extraction electrode on a substrate by film formation and patterning is performed so as to straddle the entire lower electrode and the extraction electrode. A second step of forming a projection of the conductor by film and patterning; a third step of forming a flexible section by pattern electroplating using a resist so as to straddle the projection and the extraction electrode; A method of manufacturing a probe unit, comprising: a fourth step of forming a probe; and a fifth step of removing the protrusion.

【0011】ここで,梁状の可撓部とは、可撓部分の一
端が基板上に固定された片端固定の梁構造、すなわちカ
ンチレバー構造体を示す。この時、カンチレバーの形状
は任意である。
Here, the beam-shaped flexible portion refers to a beam structure having one end fixed to one end of the flexible portion on a substrate, that is, a cantilever structure. At this time, the shape of the cantilever is arbitrary.

【0012】次に、図面を用いて本発明を詳細に説明す
る。
Next, the present invention will be described in detail with reference to the drawings.

【0013】図1は本発明のプローブユニットの製造方
法を示す断面図である。図1(a)に於て、まず基板1
を用意する。この基板1としては、半導体、金属、ガラ
ス、セラミックス等の材料を用いることができる。続い
て、基板上に下電極2及び取り出し電極3を形成する。
取り出し電極3は、後工程でのメッキ電極を兼ねるため
表面酸化物の生じにくい材料、例えばNi等の金属が好
ましい。
FIG. 1 is a sectional view showing a method of manufacturing a probe unit according to the present invention. In FIG. 1A, first, a substrate 1
Prepare As the substrate 1, a material such as a semiconductor, a metal, a glass, and a ceramic can be used. Subsequently, the lower electrode 2 and the extraction electrode 3 are formed on the substrate.
The extraction electrode 3 is preferably made of a material that does not easily generate surface oxides, such as a metal such as Ni, because it also serves as a plating electrode in a later step.

【0014】次に、図1(b)に示すように、導電体の
凸部4を下電極2と取り出し電極3をまたぐように形成
する。本発明に係る凸部4は、後工程でのメッキ電極及
び除去される犠牲層として用いられるため、エッチング
時に後述の可撓部7と選択エッチングが可能な材料でメ
ッキ可能ならば良い。
Next, as shown in FIG. 1B, a projection 4 of the conductor is formed so as to straddle the lower electrode 2 and the extraction electrode 3. Since the convex portion 4 according to the present invention is used as a plating electrode and a sacrificial layer to be removed in a later step, it is sufficient that the convex portion 4 can be plated with a material that can be selectively etched with the flexible portion 7 described later during etching.

【0015】次に、図1(c)に示すように、凸部4と
取り出し電極3上に図2に示されるようなフォトレジス
ト5を用いて可撓部パターン6を露出させる。続いて、
電気メッキにより可撓部パターン6内にメッキ膜を成長
させ可撓部7を形成する。ここで可撓部7の形成方法に
電気メッキを用いるのは、後工程で梁状の可撓部となる
ため、応力の小さい膜が好ましく、電気メッキを用いる
ことにより応力制御が可能で低応力の膜が得られ、更
に、電気メッキでは、1μm/min以上の高速成長が
可能な為である。
Next, as shown in FIG. 1C, the flexible portion pattern 6 is exposed on the protrusion 4 and the extraction electrode 3 by using a photoresist 5 as shown in FIG. continue,
A flexible film 7 is formed by growing a plating film in the flexible pattern 6 by electroplating. Here, it is preferable to use electroplating as the method for forming the flexible portion 7 because a beam-shaped flexible portion is formed in a later step, so that a film having a small stress is preferred. This is because a high-speed growth of 1 μm / min or more is possible by electroplating.

【0016】次に、図1(d)に示すように、後工程に
より可撓部7の自由端となる側にプローブ8を形成す
る。ここでプローブ8の形成方法としては、従来公知の
方法、例えばエッチング法、リフトオフ法、微小片の接
着法等を用いることができる。続いて、凸部4をエッチ
ング除去することにより、梁状の可撓部を有するプロー
ブユニットを形成できる。係るプローブユニットを用い
れば、下電極2と可撓部7に電圧を印加することによっ
て梁状の可撓部を基板面と直行する方向(Z方向)に撓
ませ、プローブ位置をZ方向に変位させることができ
る。
Next, as shown in FIG. 1D, a probe 8 is formed on a side which is to be a free end of the flexible portion 7 in a later step. Here, as a method of forming the probe 8, a conventionally known method, for example, an etching method, a lift-off method, a method of bonding small pieces, or the like can be used. Subsequently, a probe unit having a beam-shaped flexible portion can be formed by removing the convex portion 4 by etching. When such a probe unit is used, a voltage is applied to the lower electrode 2 and the flexible portion 7 to deflect the beam-shaped flexible portion in a direction perpendicular to the substrate surface (Z direction), thereby displacing the probe position in the Z direction. Can be done.

【0017】なお、下電極2、取り出し電極3、凸部4
の形成方法としては、従来公知の技術、例えば半導体産
業で一般に用いられている真空蒸着法やスパッタ法、化
学気相成長法等の薄膜作製技術やフォトリソグラフ技術
及びエッチング技術を適用することができ、その作製方
法は本発明を制限するものではない。
The lower electrode 2, the extraction electrode 3, the projection 4
As a method of forming a thin film, a conventionally known technique, for example, a thin film manufacturing technique such as a vacuum deposition method or a sputtering method generally used in the semiconductor industry, a chemical vapor deposition method, a photolithographic technique, and an etching technique can be applied. The manufacturing method does not limit the present invention.

【0018】本発明によれば、基板上に形成した凸部を
またぐように、レジストを用いたパターン電気メッキで
可撓部を形成する。しかる後、凸部を除去することによ
り梁状の可撓部を形成するため、製造コストを低減でき
る。
According to the present invention, a flexible portion is formed by pattern electroplating using a resist so as to straddle a convex portion formed on a substrate. Thereafter, the beam-shaped flexible portion is formed by removing the convex portion, so that the manufacturing cost can be reduced.

【0019】本発明において、前記凸部の材料を選択す
ることにより、高速エッチングが可能である。例えば、
凸部4にAgを用いれば、硝酸第2セリウムアンモニウ
ム系のエッチング液を用いることができ、この場合には
1000Å/sec以上の高速エッチが可能となり生産
性が向上できる。更には、アルカリ性のエッチング液を
用いないで加工できるためICへの汚染を低減できる。
In the present invention, high-speed etching is possible by selecting the material of the projection. For example,
If Ag is used for the projections 4, a ceric ammonium nitrate-based etchant can be used. In this case, high-speed etching of 1000 ° / sec or more can be performed, and productivity can be improved. Further, since processing can be performed without using an alkaline etching solution, contamination to IC can be reduced.

【0020】[0020]

【実施例】以下、実施例を用いて本発明を具体的に詳述
する。
The present invention will be described below in detail with reference to examples.

【0021】実施例1 本実施例を図1を参照しつつ説明する。まず、熱酸化膜
が5000Å形成されたシリコンウエハを基板1として
用意する。続いて、基板1上にNiを2000Å真空蒸
着法により成膜し、フォトリソグラフィとエッチングに
よりパターン形成を行い下電極2及び取り出し電極3を
形成した(図1(a)参照)。
Embodiment 1 This embodiment will be described with reference to FIG. First, a silicon wafer on which a thermal oxide film is formed at 5000 ° is prepared as a substrate 1. Subsequently, Ni was deposited on the substrate 1 by a vacuum evaporation method at 2000 ° and a pattern was formed by photolithography and etching to form a lower electrode 2 and an extraction electrode 3 (see FIG. 1A).

【0022】次に、銀を真空蒸着法により基板1上に2
μm成膜し、フォトリソグラフィとエッチングによりパ
ターン形成を行い凸部4を形成した(図1(b)参
照)。
Next, silver is deposited on the substrate 1 by vacuum evaporation.
A film having a thickness of μm was formed, and a pattern was formed by photolithography and etching to form a convex portion 4 (see FIG. 1B).

【0023】次に、フォトレジストを用いたパターン電
気メッキにより、可撓部7を凸部4と取り出し電極3上
に作製した。なお、凸部4上の可撓部7の寸法は幅50
μm,長さ400μmに設定した。このとき可撓部7に
は、2μm厚のNiを用いた(図1(c)参照)。この
ときNiの電気メッキはワット浴を用いて温度を50℃
に保ち、電流密度0.09A/cm2 、メッキ時間2分
間の条件で行った。なお、メッキ膜の内部応力は9.8
×108 dyn/cm2 であった。
Next, a flexible portion 7 was formed on the protrusion 4 and the extraction electrode 3 by pattern electroplating using a photoresist. The size of the flexible portion 7 on the convex portion 4 is 50 width.
μm and length 400 μm. At this time, Ni having a thickness of 2 μm was used for the flexible portion 7 (see FIG. 1C). At this time, the Ni electroplating was performed at a temperature of 50 ° C. using a Watt bath.
The plating was performed under the conditions of a current density of 0.09 A / cm 2 and a plating time of 2 minutes. The internal stress of the plating film was 9.8.
× 10 8 dyn / cm 2 .

【0024】次に、可撓部7の自由端となる側にプロー
ブ8を蒸着とリフトオフ法を用いて形成した。このとき
プローブ8にはAuを用いた。続いて、AZ4620
(ヘキスト社製)を用いて、フォトリソグラフによりプ
ローブ8及び可撓部7を保護してから、凸部4をりん酸
系水溶液を用いてオーバーエッチし、凸部4を除去した
(図1(d)参照)。このときエッチングに要した時間
は10分であった。また、Ni及び熱酸化膜がエッチン
グ液にさらされるがこれらはエッチングされなかった。
Next, a probe 8 was formed on the side to be a free end of the flexible portion 7 by vapor deposition and a lift-off method. At this time, Au was used for the probe 8. Then, AZ4620
After protecting the probe 8 and the flexible portion 7 by photolithography using (Hoechst), the convex portion 4 was over-etched using a phosphoric acid-based aqueous solution to remove the convex portion 4 (FIG. d)). At this time, the time required for the etching was 10 minutes. The Ni and thermal oxide films were exposed to the etchant, but were not etched.

【0025】続いて、フォトレジストをアセトンを用い
て除去することにより、幅50μm,長さ400μmの
梁状の可撓部を有するプローブユニットを得た。以上の
ようにして作製したプローブユニットの変位量を測定し
たところ、Z方向(図1の上下方向)に0.25μm/
vで変位することが分かった。
Subsequently, the photoresist was removed using acetone to obtain a probe unit having a beam-shaped flexible portion having a width of 50 μm and a length of 400 μm. When the displacement of the probe unit manufactured as described above was measured, it was found that the displacement was 0.25 μm / Z in the Z direction (the vertical direction in FIG. 1).
It was found that the displacement was at v.

【0026】実施例2 本実施例では、可撓部7をAu、凸部4のエッチング液
を硝酸系に変更した以外は実施例1と同様にして、プロ
ーブユニットを作製した。
Example 2 In this example, a probe unit was produced in the same manner as in Example 1 except that the flexible portion 7 was changed to Au and the etching solution for the convex portion 4 was changed to nitric acid.

【0027】このとき、Au及び熱酸化膜がエッチング
液にさらされるがこれらはエッチングされなかった。ま
たAuメッキ膜の内部応力は5×108 dyn/cm2
であった。以上のようにして作製したプローブユニット
の変位量を測定したところ、Z方向(図1の上下方向)
に0.62μm/vで変位することが分かった。
At this time, the Au and the thermal oxide film were exposed to the etching solution, but were not etched. The internal stress of the Au plating film is 5 × 10 8 dyn / cm 2.
Met. When the displacement amount of the probe unit manufactured as described above was measured, the Z direction (the vertical direction in FIG. 1) was obtained.
Was found to be displaced at 0.62 μm / v.

【0028】[0028]

【発明の効果】本発明によれば、単結晶シリコンの成長
及びシリコン基板の異方性エッチングによる加工を要し
ないため、生産性が向上し、更に製造コストが低減でき
るプローブユニットの製造方法を提供できる。
According to the present invention, there is provided a method of manufacturing a probe unit which does not require single crystal silicon growth and processing by anisotropic etching of a silicon substrate, thereby improving productivity and further reducing manufacturing cost. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のプローブユニットの製造方法の主要工
程を示す断面図である。
FIG. 1 is a sectional view showing main steps of a method for manufacturing a probe unit according to the present invention.

【図2】可撓部パターン領域を示す平面図である。FIG. 2 is a plan view showing a flexible portion pattern area.

【符号の説明】[Explanation of symbols]

1 基板 2 下電極 3 取り出し電極 4 凸部 5 フォトレジスト 6 可撓部パターン 7 可撓部 8 プローブ DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower electrode 3 Extraction electrode 4 Convex part 5 Photoresist 6 Flexible part pattern 7 Flexible part 8 Probe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 優 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (58)調査した分野(Int.Cl.7,DB名) H01L 41/08 G01B 7/34 G11B 9/00 G01N 37/00 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor: Yu Nakayama 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (58) Field surveyed (Int.Cl. 7 , DB name) H01L 41/08 G01B 7/34 G11B 9/00 G01N 37/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に形成された梁状の可撓部を有す
る静電変位素子と該可撓部の自由端側に設けられたプロ
ーブから構成されるプローブユニットの製造方法におい
て、基板上に成膜及びパターニングにより下電極及び取
り出し電極を形成する第1工程、前記下電極全面と取り
出し電極をまたぐように成膜及びパターニングにより導
電体の凸部を形成する第2工程、前記凸部と取り出し電
極をまたぐようにレジストを用いたパターン電気メッキ
により可撓部を形成する第3工程、該可撓部上にプロー
ブを形成する第4工程、前記凸部を除去する第5工程を
含んでなることを特徴とするプローブユニットの製造方
法。
In a method of manufacturing a probe unit including an electrostatic displacement element having a beam-shaped flexible portion formed on a substrate and a probe provided on a free end side of the flexible portion, a method for manufacturing a probe unit is provided. A first step of forming a lower electrode and an extraction electrode by film formation and patterning, a second step of forming a projection of a conductor by film formation and patterning over the entire lower electrode and the extraction electrode, Including a third step of forming a flexible portion by pattern electroplating using a resist so as to straddle the extraction electrode, a fourth step of forming a probe on the flexible portion, and a fifth step of removing the convex portion A method for manufacturing a probe unit, comprising:
JP04277694A 1992-09-24 1992-09-24 Method of manufacturing probe unit Expired - Fee Related JP3118676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04277694A JP3118676B2 (en) 1992-09-24 1992-09-24 Method of manufacturing probe unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04277694A JP3118676B2 (en) 1992-09-24 1992-09-24 Method of manufacturing probe unit

Publications (2)

Publication Number Publication Date
JPH06112548A JPH06112548A (en) 1994-04-22
JP3118676B2 true JP3118676B2 (en) 2000-12-18

Family

ID=17587006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04277694A Expired - Fee Related JP3118676B2 (en) 1992-09-24 1992-09-24 Method of manufacturing probe unit

Country Status (1)

Country Link
JP (1) JP3118676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289465B2 (en) 2007-09-26 2012-10-16 Funai Electric Co., Ltd. Liquid crystal display device comprising a front cabinet with a surrounding rib and positioning ribs at a back surface side

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19617666B4 (en) * 1996-05-03 2006-04-20 Robert Bosch Gmbh Micromechanical rotation rate sensor
US6399900B1 (en) * 1999-04-30 2002-06-04 Advantest Corp. Contact structure formed over a groove

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289465B2 (en) 2007-09-26 2012-10-16 Funai Electric Co., Ltd. Liquid crystal display device comprising a front cabinet with a surrounding rib and positioning ribs at a back surface side

Also Published As

Publication number Publication date
JPH06112548A (en) 1994-04-22

Similar Documents

Publication Publication Date Title
JP2752755B2 (en) Integrated scanning tunneling microscope
US5923637A (en) Method of manufacturing micro-tip for detecting tunneling current or micro-force or magnetic force
JP3192887B2 (en) Probe, scanning probe microscope using the probe, and recording / reproducing apparatus using the probe
JPH05284765A (en) Cantilever type displacement element, cantilever type probe using the same, scan type tunnel microscope using the same probe and information processor
JPH04321954A (en) Cantilever type probe, and scanning tunnelling microscope using this probe, and information processor
US5631463A (en) Displacement element, probe employing the element, and apparatus employing the probe
US6303392B1 (en) Etching mask, method of making same, etching method, magnetic head device and method of manufacturing same
JP3118676B2 (en) Method of manufacturing probe unit
JP3224174B2 (en) Micro displacement element, optical deflector, scanning probe microscope, and information processing device
JP3406940B2 (en) Microstructure and method for forming the same
JP2613876B2 (en) Method for manufacturing thin-film magnetic head
JP3062967B2 (en) Cantilever actuator, scanning tunnel microscope and information processing apparatus using the same
JP3234722B2 (en) Arc-shaped warped lever type actuator, method of driving the actuator, and information processing apparatus using information input / output probe
US8432001B2 (en) Electric field information reading head, electric field information writing/reading head and fabrication methods thereof and information storage device using the same
JP3114023B2 (en) Manufacturing method of integrated actuator
JP3044424B2 (en) Information processing apparatus and method for manufacturing microtip
JPH0552509A (en) Probe unit and its manufacture, information processing device, and scanning tunneling electron miscroscope
JP2920318B2 (en) Surface processing method
JPH06317404A (en) Cantilever type actuator, scanning probe microscope using it, and information processor
JP3062980B2 (en) Atomic force microscope and information processing apparatus using the same
JPH0518707A (en) Minute displacement element and its manufacture and information processing device and tunnel current detection device using the same
JP3217609B2 (en) Manufacturing method of recording medium
JPH07311206A (en) Manufacture of micro-probe
JP2992909B2 (en) Manufacturing method of recording medium
JPH10206436A (en) Manufacture of very small tip for detecting tunnel current or fine power and manufacture of probe and the probe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000905

LAPS Cancellation because of no payment of annual fees