JP3116906U - Pyrolysis oil generator - Google Patents

Pyrolysis oil generator Download PDF

Info

Publication number
JP3116906U
JP3116906U JP2005007757U JP2005007757U JP3116906U JP 3116906 U JP3116906 U JP 3116906U JP 2005007757 U JP2005007757 U JP 2005007757U JP 2005007757 U JP2005007757 U JP 2005007757U JP 3116906 U JP3116906 U JP 3116906U
Authority
JP
Japan
Prior art keywords
gas
oil
tank
condenser
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005007757U
Other languages
Japanese (ja)
Inventor
博 井上
敏幸 村田
Original Assignee
八木産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 八木産業株式会社 filed Critical 八木産業株式会社
Priority to JP2005007757U priority Critical patent/JP3116906U/en
Application granted granted Critical
Publication of JP3116906U publication Critical patent/JP3116906U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

【課題】熱分解により生成した分解油が流通する複数の油化器材を、上下複数段に配置可能な支持基台を設けて簡易な構成にてコンパクト化が可能な熱分解油化装置の提供。
【解決手段】熱分解により生成した分解油を流通する凝縮器や油水分離タンク16,18等の油化器材を、支持固定する支持基台24を備えたものにおいて、前記支持基台24は、油化器材のうち少なくとも凝縮器を最上段に配置するとともに、その下方空間スペースに前記油水分離タンク16,18及びガス洗浄タンク26を配置する構成とし、最下位には油回収タンク17,19を配置する構成とした。
【選択図】図1
Provided is a pyrolysis oil converting apparatus that can be made compact with a simple configuration by providing a support base capable of arranging a plurality of oil generating equipment through which cracked oil generated by pyrolysis flows in a plurality of stages above and below. .
A support base 24 for supporting and fixing an liquefier equipment such as a condenser that circulates cracked oil generated by thermal decomposition and oil-water separation tanks 16 and 18, wherein the support base 24 includes: At least the condenser of the liquefier equipment is arranged at the uppermost stage, and the oil / water separation tanks 16 and 18 and the gas washing tank 26 are arranged in the space below the oily equipment, and the oil recovery tanks 17 and 19 are arranged at the lowest position. It was set as the structure to arrange.
[Selection] Figure 1

Description

本考案は、プラスチックなどの原料から分解油を生成する熱分解油化装置に関する。   The present invention relates to a pyrolysis oil converting apparatus that generates cracked oil from a raw material such as plastic.

従来、この種油化装置ではバッチ式及び連続運転式を問わず廃プラスチックやタイヤなどを収容した熱分解釜を、オイルやガスなどの燃焼加熱手段を有する加熱炉にて加熱溶融し、その熱分解により生じた乾留ガスを冷却凝縮することで液化して分解油を生成するようにしている。しかるに、この種油化装置は原料を収容し熱分解する熱分解釜、オイルバーナなどの加熱手段を有した加熱炉、熱分解により発生した乾留ガスを冷却液化する凝縮器(冷却器)、この液化により生成された分解油を良質油として取り出し、そして回収貯留する油水分離タンク及び貯油タンクを具備し、更には前記凝縮器にて油化されず通過した所謂未分解ガスに対し、これに含まれる不純物を洗浄除去するガス洗浄タンクを備え、更にはこの洗浄後の未分解ガスを燃焼処理する専用の燃焼炉を設けた構成としている(例えば、特許文献1参照)。
特開2003−277767号公報
Conventionally, in this seed oil generator, a pyrolysis kettle containing waste plastic, tires, etc. regardless of batch type or continuous operation type is heated and melted in a heating furnace having combustion heating means such as oil or gas, and the heat The dry distillation gas generated by cracking is cooled and condensed to be liquefied to produce cracked oil. However, this seed oil generator contains a pyrolysis kettle that contains raw materials and thermally decomposes, a heating furnace having heating means such as an oil burner, a condenser (cooler) that cools and liquefies dry distillation gas generated by pyrolysis, The cracked oil produced by liquefaction is taken out as a high-quality oil, and is provided with an oil-water separation tank and an oil storage tank for collecting and storing it, and further included in the so-called undecomposed gas that has not been liquefied by the condenser. In addition, a gas cleaning tank that cleans and removes impurities is provided, and a dedicated combustion furnace that combusts the undecomposed gas after cleaning is provided (see, for example, Patent Document 1).
JP 2003-277767 A

上記のように凝縮器等多くの油化器材は、生成されるガス及び液体の流れに沿って隣接して配置される場合が多く、所謂横並びを主体とした配置構成としており、中でも分解油を効率よく回収するには凝縮器による冷却液化機能であり、器材(装置)としても最も大型化する。しかも、乾留ガスなどは発生する圧力により移送容易であるのに対し、生成された分解油は、特に上方へ移送する手段としてポンプを設けねばならないなど、構成の複雑化を招くことも相俟って、油化装置を設置する占有面積が大となり広い場所を必要としていた。   As described above, many liquefier equipment such as condensers are often arranged adjacent to each other along the flow of generated gas and liquid, and so-called side-by-side arrangement is mainly used. In order to recover efficiently, it is a cooling liquefaction function by a condenser, and the equipment (device) is the largest in size. Moreover, while carbonized gas and the like are easy to transfer due to the generated pressure, the generated cracked oil must be provided with a pump as a means for transferring it upwards, leading to a complicated structure. As a result, the area occupied by the installation of the oil generator becomes large and a large space is required.

本考案は上記問題点を解決するため、油化器材の上下複数段の配置構成により簡易な構成にてコンパクト化が可能な熱分解油化装置を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a pyrolysis oil making apparatus that can be made compact with a simple structure by arranging a plurality of upper and lower stages of the oil making equipment.

上記目的を達成するために、本考案の熱分解油化装置は、廃プラスチックなどを収容した熱分解釜を加熱手段を備えた加熱炉にて加熱し、発生する乾留ガスを凝縮器を介して液化して分解油を生成するとともに、この分解油を油水分離タンクを経て油回収タンクに貯留し、また前記凝縮器にて油化されず通過した未分解ガスの不純物を洗浄除去するガス洗浄タンクを具備し、且つ前記凝縮器や油水分離タンク等の油化器材を支持固定する支持基台を備えたものにおいて、前記支持基台は、前記油化器材を上下複数段に支持する構成にあって、そのうち前記凝縮器を最上段に配置するとともに、その下方空間スペースに前記油水分離タンク及びガス洗浄タンクを配置する構成とし、更に最下位には前記油回収タンクを設置したことを特徴とするものである。   In order to achieve the above object, the pyrolysis oil converting apparatus of the present invention heats a pyrolysis kettle containing waste plastic etc. in a heating furnace equipped with heating means, and the generated dry distillation gas through a condenser. A gas cleaning tank that generates cracked oil by liquefaction, stores the cracked oil in an oil recovery tank through an oil-water separation tank, and cleans and removes impurities of undecomposed gas that has not been liquefied by the condenser And a support base for supporting and fixing the liquefier equipment such as the condenser and oil / water separation tank, the support base is configured to support the liquefier equipment in a plurality of upper and lower stages. Among them, the condenser is arranged in the uppermost stage, the oil / water separation tank and the gas washing tank are arranged in the space below the condenser, and the oil recovery tank is installed in the lowermost part. Than it is.

上記手段によれば、特に大型化する凝縮器の下方空間スペースを有効活用できる上、生成された分解油は落差を利用して流通可能であるなど、簡易な構成にてコンパクト化が可能で、設置するための占有面積も小さくできる実用的効果が期待できる熱分解油化装置を提供できる。   According to the above means, it is possible to effectively utilize the space below the condenser which is particularly large, and the generated cracked oil can be circulated using a drop, and can be made compact with a simple configuration. It is possible to provide a pyrolysis oil converting apparatus that can be expected to have a practical effect that can reduce the occupied area for installation.

以下、本考案の熱分解油化装置の一実施例を示す図1ないし図3を参照して説明する。
そのうち、図1は図中の矢視A方向で示す油化生成フローも兼ねた熱分解油化装置の全体構成を示すもので、廃プラスチックなどの原料を熱分解する熱分解釜1は、詳細は略すが加熱炉2内に出し入れ可能に収容され、下方に加熱源として常設された例えばオイルバーナ3により燃焼加熱され、更には詳細は後述するがガスバーナ4による燃焼加熱も随時可能としている。その加熱源による燃焼排気ガスは、加熱炉2の上部から外方に導出された排気ダクト5を介して炉外大気中に排出される。
Hereinafter, description will be made with reference to FIGS. 1 to 3 showing an embodiment of the pyrolysis oil converting apparatus of the present invention.
Among them, FIG. 1 shows the overall structure of a pyrolysis oil converting apparatus that also serves as an oil generation flow shown in the direction of arrow A in the figure. The pyrolysis kettle 1 for pyrolyzing raw materials such as waste plastic is shown in detail in FIG. However, it is accommodated in the heating furnace 2 so as to be able to be taken in and out, and is burned and heated by, for example, an oil burner 3 which is permanently installed as a heating source below. The combustion exhaust gas from the heating source is discharged into the atmosphere outside the furnace through an exhaust duct 5 led out from the upper part of the heating furnace 2.

しかるに、油化する装置として本実施例では、前記熱分解釜1内に供給された原料たる例えば廃プラスチックを加熱溶融してガス化する所謂乾留を行ない、その加熱分解にて生じた乾留ガスを冷却凝縮して液化することにより分解油を生成する所謂1次油化生成ライン(後述する矢印A1で示すライン)と、同様の過程を経る2次油化生成ライン(同、矢印A2で示すライン)を備えている。すなわち、熱分解釜1の上部から導出された乾留ガス(破線矢印A0方向の流れ)は、改質タンク6に流入する。この改質タンク6は、詳細は省略するが内部に触媒が装填され、これに乾留ガスを接触反応させて例えば炭素数を小さくしたり臭いなどの不純物を除去して良質なものに改質する機能を有する。   However, in this embodiment as an oil converting apparatus, so-called dry distillation is performed in which, for example, waste plastic as a raw material supplied into the pyrolysis kettle 1 is heated and melted to gasify, and the dry distillation gas generated by the thermal decomposition is removed. A so-called primary oil generation line (a line indicated by an arrow A1 to be described later) that generates cracked oil by cooling and condensing and liquefying, and a secondary oil generation line (a line indicated by an arrow A2) that undergoes the same process. ). That is, the dry distillation gas (flow in the direction of the broken arrow A0) derived from the upper part of the pyrolysis kettle 1 flows into the reforming tank 6. Although not described in detail, the reforming tank 6 is loaded with a catalyst, and is subjected to catalytic reaction with a dry distillation gas to reduce the number of carbon atoms and impurities such as odors, thereby reforming to a high quality one. It has a function.

この改質タンク6で改質された乾留ガスは、以降は後述する運転制御に応答して開閉動作する第1,第2の開閉弁7,8のいずれかを通して破線矢印A1と同A2で示す方向に分岐した別ルートを辿り、凝縮器として機能する1次凝縮タンク9または2次凝縮タンク10に夫々導入可能な構成としている。しかるに、凝縮器における冷却手段として例えばクーリングタワー11を利用して冷却媒体が夫々矢印B1,B2方向に循環する冷却ジャケット12,13を、円筒状の通気用タンク14,15の外周囲に外装したユニット構成からなり、その通気用タンク14,15内を乾留ガスが流通することで冷却するようにしている。
例えば、本実施例に示す通気用タンク14,15は、筒状の長手方向に夫々3つに区画された分室14a,14b,14c及び15a,15b,15cを有し、いずれも上端部の一部を連通してガスの流通を可能としている。また、本実施例では上記各凝縮タンク9,10を長手方向に並設するとともに、互いに連結固定し一体化した構成としている。
The dry distillation gas reformed in the reforming tank 6 is indicated by broken line arrows A1 and A2 through one of the first and second on-off valves 7 and 8 that open and close in response to operation control described later. It is configured such that it can be introduced into the primary condensing tank 9 or the secondary condensing tank 10 which functions as a condenser by following different routes branched in the direction. However, the cooling jackets 12 and 13 in which the cooling medium circulates in the directions of the arrows B1 and B2 by using, for example, the cooling tower 11 as cooling means in the condenser are externally mounted on the outer periphery of the cylindrical ventilation tanks 14 and 15. It consists of a structure and it is made to cool by the inside of the tanks 14 and 15 for ventilation | gas_flowing by circulating a dry distillation gas.
For example, the aeration tanks 14 and 15 shown in the present embodiment have three compartments 14a, 14b, 14c and 15a, 15b, 15c, which are each divided into three in the cylindrical longitudinal direction, all of which have one upper end portion. It is possible to circulate the gas by communicating the department. In the present embodiment, the condensing tanks 9 and 10 are arranged side by side in the longitudinal direction and connected and fixed to each other.

従って、この凝縮器に流入した乾留ガスが冷却凝縮され油成分が液化されて生成された分解油は、1次側では各分室14a,14b,14c単位に通過する段階毎に液化収集され、油流通管路20に沿って実線矢印A1方向に流出して、下方に配置された1次油水分離タンク16から油流通管路21を経て、更に下方に配置された1次油回収タンク17に貯留される構成としている。一方、2次側の各分室15a,15b,15cでも上記同様の過程を経て実線矢印A2方向に流出した分解油は、油流通管路22を経て2次油水分離タンク18に流入し、そして油流通管路23を経て2次油回収タンク19に貯留される構成としている。   Therefore, the cracked oil produced by cooling and condensing the dry distillation gas flowing into the condenser and liquefying the oil component is liquefied and collected on the primary side for each stage passing through each of the compartments 14a, 14b, and 14c. The oil flows out in the direction of the solid arrow A1 along the distribution line 20 and is stored in the primary oil recovery tank 17 disposed further down from the primary oil / water separation tank 16 disposed below through the oil distribution line 21. It is assumed to be configured. On the other hand, the cracked oil that has flowed out in the direction of the solid arrow A2 through the same process in the secondary compartments 15a, 15b, and 15c flows into the secondary oil / water separation tank 18 through the oil distribution line 22, and It is configured to be stored in the secondary oil recovery tank 19 via the distribution pipe 23.

上記から明らかなように、凝縮タンク9,10を経て生成された分解油は、以降のフローにおいていずれも落差を利用して次の油水分離タンク16,18に流入し、そして油回収タンク17,19に回収貯留される。そのため、これらの油化器材を上下複数段に配置すべく支持基台24を設けてコンパクト化を図っている。すなわち、この支持基台24の最上段(図中、符号H2で示す)に突設された複数の支持部24bには、油化器材のうち最も大型の凝縮器たる各凝縮タンク9,10の連結一体化された円筒状の外径部分を支持固定している。この場合、凝縮タンク9,10に流入する乾留ガスは、熱分解釜1が低位置に設置されていても高温度で圧力も高いため、次の部所である凝縮器に対しその高さ位置に関係なく移送可能で何ら支障ない。尚、前記改質タンク6の設置構成については特に詳細に説明しないが、支持基台24の最上段H2位置に凝縮タンク9,10らの横に並んで配置固定するなど、適宜の位置に支持固定できる。   As is apparent from the above, the cracked oil produced through the condensation tanks 9 and 10 flows into the next oil / water separation tanks 16 and 18 by using the head in the subsequent flows, and the oil recovery tanks 17 and 18 19 is collected and stored. For this reason, the support base 24 is provided so as to arrange these oil generating devices in a plurality of upper and lower stages to achieve compactness. That is, the plurality of support portions 24b provided on the uppermost stage of the support base 24 (indicated by reference numeral H2 in the figure) are provided with each of the condensation tanks 9 and 10 that are the largest condensers among the oiling devices. A cylindrical outer diameter portion that is connected and integrated is supported and fixed. In this case, the dry distillation gas flowing into the condensation tanks 9 and 10 has a high temperature and high pressure even if the pyrolysis kettle 1 is installed at a low position. It can be transported regardless of whether there is any problem. Although the installation configuration of the reforming tank 6 will not be described in detail, the reforming tank 6 is supported at an appropriate position, such as being arranged and fixed next to the condensation tanks 9 and 10 at the uppermost stage H2 position of the support base 24. Can be fixed.

次いで、支持基台24の中段(符号H1)の棚状の支持部24aには、且つ各凝縮タンク9,10の下方の空間スペースに所定の落差を有して油水分離タンク16,18が並んで配置され支持固定されている。そして、最下位(符号H0)である本実施例では設置面25には、やはり相当の落差を有して油回収タンク17,19が配置されている。但し、この最下位の油回収タンク17,19等はその後の用途や取扱い上、必ずしも支持基台25の占有範囲内に配置することに限定されるものではなく、或は逆に最下位にも棚状部分を設けてこれに載置する構成としてもよい。   Next, the oil / water separation tanks 16 and 18 are arranged on the shelf-like support portion 24a of the middle stage (reference numeral H1) of the support base 24 and with a predetermined drop in the space space below the condensing tanks 9 and 10. It is arranged and supported and fixed. In the present embodiment, which is the lowest level (symbol H0), the oil recovery tanks 17 and 19 are arranged on the installation surface 25 with a considerable drop. However, the lowermost oil recovery tanks 17, 19, etc. are not necessarily limited to being disposed within the occupation range of the support base 25 for subsequent use and handling, or conversely at the lowermost positions. It is good also as a structure which provides a shelf-like part and mounts on this.

尚、図中破線矢印Aはガスの流れを示し、実線矢印Aは油の流れを示している。
しかるに、上記各凝縮タンク9,10において一部の低分子ガスなどは油化されず、この所謂未分解ガスは破線矢印A1及び同A2方向に流れ、凝縮されることなくいずれも共通のガス洗浄タンク26に流入する構成としている。
このガス洗浄タンク26は、詳細は後述するが未分解ガス中に含まれる有害な成分を除去するもので、その構成は図2に拡大して示すように使用形態では内部に液体として例えば水道水が所定水位まで供給され、その液体Wの水層上部に若干の空間層Sが必ず形成されるよう水位調整されている。このようなガス洗浄タンク26に対し、前記各凝縮タンク9,10から導出されたガス流通管路27の先端は、その液体W中にあって複数の小孔27aを形成して開口した構成としている。
In the figure, a broken line arrow A indicates a gas flow, and a solid line arrow A indicates an oil flow.
However, in the respective condensation tanks 9 and 10, some of the low-molecular gases are not liquefied, so that this so-called undecomposed gas flows in the directions of the broken arrows A1 and A2, and both are not condensed and have a common gas cleaning. It is configured to flow into the tank 26.
The gas cleaning tank 26 removes harmful components contained in the undecomposed gas, the details of which will be described later, and its configuration is enlarged as shown in FIG. Is supplied to a predetermined water level, and the water level is adjusted so that a slight space layer S is always formed above the water layer of the liquid W. With respect to such a gas cleaning tank 26, the tip of the gas flow conduit 27 led out from each of the condensation tanks 9 and 10 is in the liquid W and has a plurality of small holes 27a that are open. Yes.

これに対し、空間層Sの上部には排出側のガス流通管路28が連通接続され、その他端である先端は図1に示すようにガス圧力調整手段としてのガス圧力調整タンク29に導入され、そしてガス供給管30を経て前記ガスバーナ4に接続されており、これを以ってガス洗浄タンク26を経た未分解ガスを加熱炉2に送る送ガス手段を構成している。しかるに、このガス圧力調整タンク29は、洗浄後の未分解ガスのガス圧を検知し所定値に達したとき該ガスを前記加熱炉2に送りガスバーナ4により燃焼処理する制御機能を有している。   On the other hand, a gas flow conduit 28 on the discharge side is connected to the upper portion of the space layer S, and the other end is introduced into a gas pressure adjusting tank 29 as a gas pressure adjusting means as shown in FIG. The gas burner 4 is connected to the gas burner 4 through a gas supply pipe 30, thereby constituting a gas sending means for sending the undecomposed gas passed through the gas cleaning tank 26 to the heating furnace 2. However, the gas pressure adjusting tank 29 has a control function of detecting the gas pressure of the undecomposed gas after cleaning and sending the gas to the heating furnace 2 and burning it by the gas burner 4 when the gas pressure reaches a predetermined value. .

すなわち、液体W中を脱した洗浄後の未分解ガスは当初大気圧より若干高い程度の低い圧力状態から流れ、そのガス圧が所定値(例えば、1.0kg/cm2)以上に達したことを検知すると、その検知信号に基づき前記ガスバーナ4を燃焼動作させるようにしている。ここで、更に上記ガスバーナ4につき図3を参照して詳述すると、図示するようにガスバーナ4はブロワ31と組み合わせた構成にあって、該ブロワ31はその吐出側に円筒状の吐出口体32を備え、その中央部にガス供給管30と接続されたノズル33を配して、その先端を加熱炉2内に臨んで設けた構成としている。 That is, the undecomposed gas after cleaning that has been removed from the liquid W flows from a low pressure state that is slightly higher than the atmospheric pressure, and the gas pressure has reached a predetermined value (for example, 1.0 kg / cm 2 ) or more. Is detected, the gas burner 4 is operated to burn based on the detection signal. Here, the gas burner 4 will be described in detail with reference to FIG. 3. As shown in the figure, the gas burner 4 is combined with a blower 31, and the blower 31 has a cylindrical discharge port body 32 on its discharge side. The nozzle 33 connected to the gas supply pipe 30 is arranged at the center, and the tip thereof is provided facing the heating furnace 2.

従って、ガス圧力調整タンク29が所定値に達したガス圧を検知すると、未分解ガスをノズル33に供給するとともに、ブロワ31を駆動する。すると、ノズル33の周りの吐出口体32から加熱炉2内に向けて勢いよく吐出される送風により、ノズル33からのガスの放出を誘引する作用を受ける。これにより、ガスバーナ4によるガスの燃焼は、勢いよく内方に吹出された火炎となり、ほぼ中央部に位置する熱分解釜1を効果的に燃焼加熱する。このように、ガス圧力調整タンク29はガス圧力を調整しながらガスバーナ4の動作を制御して加熱炉2内で未分解ガスを燃焼せしめ、安定した有効な火力を得るべく制御手段を備えている。   Therefore, when the gas pressure adjusting tank 29 detects the gas pressure reaching the predetermined value, the undecomposed gas is supplied to the nozzle 33 and the blower 31 is driven. Then, the air blown out from the discharge port body 32 around the nozzle 33 toward the inside of the heating furnace 2 receives the action of inducing the release of gas from the nozzle 33. Thereby, the combustion of the gas by the gas burner 4 becomes a flame blown inward vigorously and effectively heats the pyrolysis kettle 1 located substantially in the center. As described above, the gas pressure adjusting tank 29 is provided with a control means for controlling the operation of the gas burner 4 while adjusting the gas pressure to burn the undecomposed gas in the heating furnace 2 and to obtain a stable and effective thermal power. .

一方、前記ガス洗浄タンク26内の液体Wは、随時清浄な液体と入れ替え可能にしており、そのため上部に配設した給水管26aには図示しない給水ポンプを介して補給水タンク34に連通接続され、下部には液体Wを排出処理する排水管26bを介して排水タンク35が連通接続されている。この排水タンク35には、アルカリ性の中和剤、例えば苛性ソーダ(消石灰)を収納した中和剤収納部35aを備えていて、随時排水タンク35内に投入可能としている。そして、この排水タンク35は送水用ポンプ36を備えた送水管路37からなる送水手段を介して蒸発タンク38に連通接続され、この排水タンク35内の水を蒸発タンク38に適量送水可能に制御される。   On the other hand, the liquid W in the gas cleaning tank 26 can be replaced with a clean liquid at any time. For this reason, the water supply pipe 26a disposed in the upper portion is connected to a makeup water tank 34 through a water supply pump (not shown). A drainage tank 35 is connected to the lower part via a drainage pipe 26b that discharges the liquid W. The drain tank 35 is provided with a neutralizer storage section 35a that stores an alkaline neutralizer, for example, caustic soda (slaked lime), and can be charged into the drain tank 35 at any time. The drain tank 35 is connected to the evaporation tank 38 through water supply means including a water supply pipe 37 provided with a water supply pump 36, and is controlled so that an appropriate amount of water in the drain tank 35 can be supplied to the evaporation tank 38. Is done.

しかるに、上記蒸発タンク38の概略構成につき述べると、これは図1に示すように加熱炉2から導出された円筒状の排気ダクト5の鉛直部分にほぼ密着状態に装着され、上端部がラッパ状に拡開した有底の中空筒状をなしていて、該排気ダクト5の外周囲に隣接して設けられている。そして、この中空内部は貯水可能であって上端面には外部に連通した通気口38aを有し、また上方側部に前記送水管路37の一端が接続され、下部には残水処理などのドレーン39やその他液面計などを備えた構成としている。この構成により、蒸発タンク38内に供給された水が排気ダクト5からの熱を受けて蒸発し、大気中に放出する所謂気化機能を有する。
尚、図1中、前記した熱分解釜1の内底部近傍には回転可能な撹拌体40を備え、外方上部に配設されたモータ41にて駆動される。また、熱分解釜1の外底部には内方に窪ませた凹状部1aが形成され、伝熱面積を拡大すべき構成としている。
However, the schematic configuration of the evaporation tank 38 will be described. As shown in FIG. 1, this is attached to the vertical portion of the cylindrical exhaust duct 5 led out from the heating furnace 2 in a close contact state, and the upper end is a trumpet shape. It has a hollow cylindrical shape with a bottom expanded to be provided adjacent to the outer periphery of the exhaust duct 5. The hollow interior is capable of storing water, has an air vent 38a communicating with the outside at the upper end surface, is connected to one end of the water supply pipe 37 at the upper side, and is used for residual water treatment at the lower portion. The drain 39 and other liquid level gauges are provided. With this configuration, the water supplied into the evaporation tank 38 receives a heat from the exhaust duct 5 to evaporate and has a so-called vaporization function for releasing it into the atmosphere.
In FIG. 1, a rotatable stirrer 40 is provided in the vicinity of the inner bottom of the above-described pyrolysis kettle 1 and is driven by a motor 41 disposed on the outer top. Moreover, the recessed part 1a hollowed inwardly is formed in the outer bottom part of the thermal decomposition pot 1, and it is set as the structure which should expand a heat-transfer area.

次に、上記構成の熱分解油化装置の作用について説明する。
まず、廃プラスチックを油化する一般的な実施態様につき説明すると、今原料として破砕された廃プラスチックが投入された熱分解釜1が加熱炉2内に収容保持され、当初はオイルバーナ3のみに点火されて運転が開始される。しかして、廃プラスチックを加熱溶融しガス化する所謂乾留を行なう熱分解運転が開始され、高温の燃焼排気ガスは排気ダクト5から炉外に排出される。しかるに、モータ41の駆動による撹拌体40の回転動作は、廃プラスチックを撹拌混合し均一に加熱溶融して熱分解作用を促進する。
Next, the operation of the pyrolysis oil converting apparatus having the above configuration will be described.
First, a general embodiment for converting waste plastic to oil will be described. A pyrolysis kettle 1 into which waste plastic that has been crushed as a raw material is placed and held in a heating furnace 2 is initially stored only in an oil burner 3. It is ignited and operation is started. As a result, a pyrolysis operation in which so-called dry distillation is performed to heat and melt waste plastic to gasify is started, and high-temperature combustion exhaust gas is discharged from the exhaust duct 5 to the outside of the furnace. However, the rotation operation of the stirring body 40 by driving the motor 41 promotes the thermal decomposition action by stirring and mixing the waste plastic and heating and melting it uniformly.

この熱分解運転では、まず図示しない制御手段に基づき1次熱分解として、例えば400度Cまでの温度制御に基づく加熱分解が実行され、発生した乾留ガスは熱分解釜1の上部に連通した流通管路を上昇する破線矢印A0方向に流れる。そして、該乾留ガスは改質タンク6に導入され、ここで内部に装填された触媒と接触反応して炭素数を小さくしたり臭いなどの不要な成分を除去して良質なものに改質される。   In this pyrolysis operation, first, as a primary pyrolysis based on a control means (not shown), a thermal decomposition based on a temperature control up to, for example, 400 ° C. is executed, and the generated dry distillation gas is circulated in the upper part of the pyrolysis kettle 1. It flows in the direction of the broken line arrow A0 that rises in the pipeline. The dry distillation gas is then introduced into the reforming tank 6 where it is contacted with the catalyst loaded therein to reduce the number of carbons and remove unnecessary components such as odors and reformed to a high quality. The

しかるに、改質後の乾留ガスは、この1次熱分解では第1の開閉弁7が開放し、他方の第2の開閉弁8は閉塞するよう制御されるため破線矢印A1方向のみに流れ、支持基台24の最上段H2に配置された凝縮器たる1次凝縮タンク9に導かれる。この凝縮タンク9では、乾留ガスが冷却ジャケット12で囲まれた通気用タンク14内を流通する間に冷却され凝縮することで油成分が液化される。そして、ここで生成された分解油は油流通管路20を実線矢印A1方向に垂下し1次油水分離タンク16を経て、更に油流通管路21を経て良質な分解油として1次油回収タンク17に貯留され、燃料等の再資源として有効活用される。この場合、通気用タンク14内に液化された分解油は落差を利用して下方の中段H1に配置固定された1次油水分離タンク16、及び更には最下位H0に位置する1次油回収タンク17に容易に回収される。   However, the reformed dry distillation gas flows only in the direction of the dashed arrow A1 because the first on-off valve 7 is controlled to open and the other second on-off valve 8 is closed in this primary pyrolysis, It is led to the primary condensing tank 9 which is a condenser arranged on the uppermost stage H2 of the support base 24. In the condensing tank 9, the oil component is liquefied by cooling and condensing the dry distillation gas while circulating in the aeration tank 14 surrounded by the cooling jacket 12. The cracked oil generated here hangs down the oil circulation pipe 20 in the direction of the solid arrow A1, passes through the primary oil / water separation tank 16, and further passes through the oil circulation pipe 21 to be a primary oil recovery tank as a high-quality cracked oil. 17 and is effectively used as a resource such as fuel. In this case, the decomposed oil liquefied in the aeration tank 14 uses a drop to dispose the primary oil / water separation tank 16 disposed and fixed in the lower middle stage H1, and further, the primary oil recovery tank located at the lowest H0. 17 easily recovered.

これに対し、この1次凝縮タンク9で油化できなかった低分子のガスは、そのまま1次凝縮タンク9を通り抜け、ガス流通管路27を経てガス洗浄タンク26に導入される。このガス流通管路27の端部に形成された小孔27aは(図2参照)、ガス洗浄タンク26の液体W中に開口しているため、ガスが水中を潜り上部の空間層Sに抜ける間に水との接触が十分に行なわれる。この結果、該ガス中に含まれる塩素分、窒素分、硫黄分などの不純物は水中に置き換えられて除去され、所謂ガスの洗浄動作が行なわれる。この場合、ガス洗浄タンク26に導入されたガス流通管路27は、液体W中に開口しているので、ガスは液体W及び空気層Sを経た後にガス流通管路28に取り込まれる。従って、これら管路27,28間の連通接続は解放され、圧力の変動に伴なう逆方向である流出側のガス流通管路28から流入側のガス流通管路27側にガスが逆流することはない。   On the other hand, the low molecular gas that could not be liquefied in the primary condensing tank 9 passes through the primary condensing tank 9 as it is, and is introduced into the gas washing tank 26 through the gas distribution pipe 27. The small hole 27a formed at the end of the gas flow pipe 27 (see FIG. 2) is opened in the liquid W of the gas cleaning tank 26, so that the gas goes underwater and escapes to the upper space layer S. There is sufficient contact with water in between. As a result, impurities such as chlorine, nitrogen and sulfur contained in the gas are replaced by water and removed, and so-called gas cleaning operation is performed. In this case, since the gas flow line 27 introduced into the gas cleaning tank 26 is opened in the liquid W, the gas is taken into the gas flow line 28 after passing through the liquid W and the air layer S. Accordingly, the communication connection between the pipes 27 and 28 is released, and the gas flows backward from the outflow side gas flow pipe 28 to the inflow side gas flow pipe 27 side in the reverse direction accompanying the fluctuation of pressure. There is nothing.

しかして、洗浄後のガスは破線矢印A1で示すように上記ガス流通管路28を介してガス圧力調整タンク29に送り込まれる。ところが、上記したようにガス流通管路27,28間は液体Wにより隔離された状態にあるため、ガス圧力は低下し当初は大気圧を若干上回った状態で移動する。従って、ガス圧力調整タンク29に達した未分解ガスは、当初の低圧力から所定の圧力(所定値1.0kg/cm2)以上に達したことを検知されて、はじめてガスバーナ4を有する加熱炉2側に燃料として送り込まれる。 Thus, the cleaned gas is fed into the gas pressure adjusting tank 29 via the gas flow line 28 as indicated by the broken line arrow A1. However, since the gas flow pipes 27 and 28 are isolated from each other by the liquid W as described above, the gas pressure decreases and moves in a state slightly exceeding atmospheric pressure at the beginning. Therefore, the heating furnace having the gas burner 4 is detected only when the undecomposed gas that has reached the gas pressure adjusting tank 29 has been detected to have reached a predetermined pressure (predetermined value: 1.0 kg / cm 2 ) from the initial low pressure. It is sent to the 2 side as fuel.

すなわち、ガス圧力調整タンク29はガス圧力が所定値に達したことを検知すると、ガス供給管30を介してガスバーナ4に流通可能とするとともに、ブロワ31を駆動しその吐出口体32からの吐出される送風に誘引されてノズル33からのガス放出を促進し、これに点火して燃焼させるべく制御する。この結果、ガスは加熱炉2内方に向けて勢いよく放出されて安定状態で燃焼し、その火炎は内方のほぼ中央部に収容セットされた熱分解釜1を効果的に加熱する。尚、ガス圧力が低下した場合には、ガス圧力調整タンク29はガスの供給を停止するとともに、ブロワ31を停止しガスバーナ4による燃焼動作を停止する。   That is, when the gas pressure adjusting tank 29 detects that the gas pressure has reached a predetermined value, the gas pressure adjusting tank 29 is allowed to flow to the gas burner 4 through the gas supply pipe 30, and the blower 31 is driven to discharge from the discharge port body 32. It is attracted by the blown air to promote the gas release from the nozzle 33 and controls to ignite and burn it. As a result, the gas is vigorously released toward the inside of the heating furnace 2 and combusts in a stable state, and the flame effectively heats the pyrolysis kettle 1 accommodated and set in the substantially central portion of the inside. When the gas pressure decreases, the gas pressure adjusting tank 29 stops the gas supply, stops the blower 31 and stops the combustion operation by the gas burner 4.

このように、油化されなかった未分解ガスは随時加熱炉2にて燃焼処理され、熱分解釜1の加熱作用に寄与することでオイルバーナ3の燃料の節約ができ、且つ別に専用の燃焼炉を設ける必要もなく油化装置全体の構成をコンパクト化する上にも有効である。また、洗浄後の未分解ガスは燃焼に際してダイオキシンなどの有害なガス成分の発生を軽減できるとともに、更には加熱炉2にて高温度にて燃焼されるので、ダイオキシンの発生を防止するに一層有効である。   In this way, the undecomposed gas that has not been liquefied is combusted in the heating furnace 2 at any time, contributing to the heating action of the pyrolysis kettle 1, saving fuel in the oil burner 3, and separately dedicated combustion. There is no need to provide a furnace, and this is effective in reducing the overall structure of the oil making apparatus. In addition, the undecomposed gas after cleaning can reduce the generation of harmful gas components such as dioxin during combustion, and is further burned at a high temperature in the heating furnace 2, so that it is more effective in preventing the generation of dioxin. It is.

しかるに、ガス洗浄に使用して塩素分等の不純物を含んだ液体Wは、排水管26bを経て下位の排水タンク35に排出貯留される一方、補給水タンク34からの清浄水が給水管26aを経てガス洗浄タンク26に供給貯留され、所謂水の入替え動作が随時実行されガス洗浄タンク26内の液体Wは汚れ度合に応じて適宜清浄な水と置換される。そして、洗浄使用後の水は上記排水タンク35内に一次貯留されるが、この場合、排水タンク35内には中和剤が供給される。すなわち、洗浄後の水に含まれた塩素分等の不純物に対し、その中和剤として有効な消石灰(苛性ソーダ)が中和剤収納部35aに収納されていて、該排水タンク35内に一次貯留される間に投入され中和されるようにしている。   However, the liquid W containing impurities such as chlorine used for gas cleaning is discharged and stored in the lower drainage tank 35 through the drainage pipe 26b, while clean water from the makeup water tank 34 is supplied to the feedwater pipe 26a. Then, the water is supplied and stored in the gas cleaning tank 26, and so-called water replacement operation is performed as needed, and the liquid W in the gas cleaning tank 26 is appropriately replaced with clean water according to the degree of contamination. The water used after washing is primarily stored in the drain tank 35. In this case, a neutralizer is supplied into the drain tank 35. That is, slaked lime (caustic soda) that is effective as a neutralizing agent for impurities such as chlorine contained in the washed water is stored in the neutralizing agent storage part 35a, and is primarily stored in the drain tank 35. In the meantime, it is introduced and neutralized.

そして、中和された水は送水手段たる排水ポンプ36の駆動に基づき送水管路37を経て蒸発タンク38に送り込まれる。この蒸発タンク38では、加熱分解運転中、排気ダクト5から常時排気熱を受けて加熱されているため、該蒸発タンク38に供給された水は蒸発作用が促進される。この気化処理により、発生した蒸気は上端部の通気口38aから大気中に放出される。尚、蒸発タンク38内の残水を処理する場合は、ドレーン39から適宜排出することができる。   Then, the neutralized water is sent to the evaporation tank 38 through the water supply pipe 37 based on the driving of the drain pump 36 which is a water supply means. Since the evaporation tank 38 is always heated by receiving exhaust heat from the exhaust duct 5 during the thermal decomposition operation, the water supplied to the evaporation tank 38 is promoted to evaporate. By this vaporization process, the generated steam is released into the atmosphere from the vent 38a at the upper end. In addition, when processing the residual water in the evaporation tank 38, it can discharge | emit from the drain 39 suitably.

しかして、1次熱分解として400度Cの温度制御に基づく油化処理を主体とした運転を終了すると、制御手段は続いて例えば800度Cまで昇温した温度制御に基づきほぼ同様過程の2次熱分解運転を実行する。この400〜800度Cの高温度制御に基づく運転は、新たな原料の供給がないまま行なわれる。因みに、このとき熱分解釜1内には、1次熱分解運転で未分解の例えば高沸点の分解不可能物などが塊状の残渣として滞留している。従って、この2次熱分解運転では上記残渣に対し、更に高温加熱による熱分解が続いて実行されることになる。   However, when the operation mainly consisting of oil treatment based on temperature control at 400 ° C. is completed as the primary pyrolysis, the control means continues to perform substantially the same process 2 based on temperature control raised to, for example, 800 ° C. The next pyrolysis operation is performed. The operation based on the high temperature control of 400 to 800 degrees C is performed without supplying new raw materials. Incidentally, at this time, in the pyrolysis kettle 1, undecomposed, for example, high-boiling-point non-decomposable substances and the like in the primary pyrolysis operation stay as a lump residue. Therefore, in the secondary pyrolysis operation, the residue is further thermally decomposed by high-temperature heating.

斯くして、この高温度による熱分解により新たに乾留ガスが発生する。このガスは、上記と同様に破線矢印A0方向に流れ改質タンク6を経て改質された後、ここでは第2の開閉弁8のみが開放制御されることに基づき破線矢印A2側に流れる。以降、上記と同様の過程及び作用に基づき油化処理が進められる。すなわち、乾留ガスは最上段H2に位置する凝縮器たる2次凝縮タンク10を経て分解油として生成され、そして中段H1に位置する2次油水分離タンク18を経て実線矢印A2で示すように最下位H0の2次油回収タンク19に流入し貯留され、分解油はこれら油化器材間をいずれも落差を利用して速やかに流通し、構成上簡易な上下複数団の配置構成とすることができる。   Thus, dry distillation gas is newly generated by this high temperature thermal decomposition. This gas flows in the direction of the broken line arrow A0 and is reformed through the reforming tank 6 in the same manner as described above, and then flows to the broken line arrow A2 side based on the fact that only the second on-off valve 8 is controlled to open. Thereafter, the oil conversion process proceeds based on the same process and action as described above. That is, the dry distillation gas is generated as cracked oil through the secondary condensation tank 10 as the condenser located at the uppermost stage H2, and passes through the secondary oil / water separation tank 18 located at the middle stage H1, as shown by the solid line arrow A2. The oil is flown into and stored in the secondary oil recovery tank 19 of H0, and the cracked oil quickly circulates between these liquefied equipment using a drop, and can be arranged in a simple arrangement of upper and lower groups. .

しかるに、前述した矢印A1で示す1次油化生成ラインでは、400度Cまでの油化処理に基づき良質油が生成されるに対し、矢印A2で示す2次油化生成ラインでは高温度(400〜800度C)の熱分解よる炭素成分が多い炭化油が主として生成貯留される。従って、この炭化油は一般の燃料としては不適切なため、例えば原料たる廃プラスチックとともに熱分解釜1中に投入し、廃プラスチックの熱分解を促進すべく活用される。尚、高温度による熱分解により、熱分解釜1内における残渣は油分が大幅に除去されて炭化された所謂粉末状をなす状態に至る。   However, in the primary oil production line indicated by the arrow A1, the high-quality oil is produced based on the oil treatment up to 400 ° C., whereas in the secondary oil production line indicated by the arrow A2, the high temperature (400 The carbonized oil containing a large amount of carbon components by pyrolysis (˜800 degrees C) is mainly produced and stored. Therefore, since this carbonized oil is inappropriate as a general fuel, it is put into the pyrolysis vessel 1 together with, for example, waste plastic as a raw material, and utilized to promote thermal decomposition of the waste plastic. The residue in the pyrolysis kettle 1 is in a so-called powder state in which the oil is significantly removed and carbonized by thermal decomposition at a high temperature.

一方、上記2次凝縮タンク10で油化されなかった未分解ガスは、上記同様に流通管路27を経てガス洗浄タンク26内に導入され、液体Wの水中に放出される。そして、ガスが水中から上部の空間層Sまでに潜り抜ける間に塩素分等の不純物は、水中に置き換えられ除去されることでガスの洗浄動作が行なわれる。続いて、洗浄後の未分解ガスは、破線矢印A2方向に送ガス手段を構成するガス流通管路28及びガス圧力調整タンク29を経て、ガス圧力に基づく制御にて随時ガスバーナ4から放出され、安定した燃焼処理が実行される。   On the other hand, the undecomposed gas that has not been liquefied in the secondary condensing tank 10 is introduced into the gas cleaning tank 26 via the flow conduit 27 and discharged into the liquid W water as described above. Then, while the gas passes through from the water to the upper space layer S, impurities such as chlorine are replaced by the water and removed, whereby the gas cleaning operation is performed. Subsequently, the undecomposed gas after cleaning is released from the gas burner 4 at any time by control based on the gas pressure through the gas flow line 28 and the gas pressure adjusting tank 29 constituting the gas sending means in the direction of the broken arrow A2. A stable combustion process is performed.

これに対し、ガス洗浄に使用した後の塩素分を含んだ汚れた水は、上記同様に汚れ度合に応じて清浄水と入れ替えられ、汚れた水は排水タンク35内に一時貯留され中和剤にて中和された後、蒸発タンク38に送り込まれ排気熱による気化処理が行なわれる。従って、この洗浄に使用した液体処理の取扱いも容易であるとともに、装置の大型化を防ぎコンパクトにまとめることができる。   On the other hand, the contaminated water containing chlorine after being used for gas cleaning is replaced with clean water according to the degree of contamination in the same manner as described above, and the contaminated water is temporarily stored in the drain tank 35 and is neutralized. After being neutralized at, the gas is sent to the evaporation tank 38 and subjected to a vaporization process by exhaust heat. Therefore, it is easy to handle the liquid treatment used for the cleaning, and it is possible to reduce the size of the apparatus and to make it compact.

以上説明したように、本実施例によれば次の効果を有する。
廃プラスチックなどを熱分解して生じた乾留ガスを、冷却凝縮して油化処理する油化装置にあって、凝縮器としての1次,2次凝縮タンク9,10の夫々を経て未だ油化できなかった未分解ガスに対して、有害な要因となる塩素分を含む不純物はガス洗浄タンク26内の液体Wを潜り抜ける間に除去されるようにした。従って、有害な成分を除去されたガスは、ガスバーナ4に供給され加熱炉2内で完全燃焼され、併せて熱分解釜1の加熱作用に寄与することが可能で経済的である。加えて、その燃焼に際して通常の燃焼排気ガス以外に特にダイオキシンなどの有害なガス成分が発生することなく処理でき、特に加熱炉2にて高温度にて燃焼されるので、ダイオキシンの発生を防止するに一層有効で所謂環境に優しい未分解ガスの処理が実行できる。
As described above, the present embodiment has the following effects.
In the oiling device that cools and condenses the dry distillation gas generated by pyrolyzing waste plastics, etc., and liquefies it, and still oils through the primary and secondary condensation tanks 9 and 10 as condensers. Impurities including chlorine that are harmful to the undecomposed gas that could not be removed are removed while passing through the liquid W in the gas cleaning tank 26. Therefore, the gas from which harmful components have been removed is supplied to the gas burner 4 and completely combusted in the heating furnace 2, and can contribute to the heating action of the pyrolysis kettle 1 and is economical. In addition, it can be processed without generating harmful gas components such as dioxin in addition to the normal combustion exhaust gas during combustion, and is particularly burned at a high temperature in the heating furnace 2, thus preventing the generation of dioxins. In addition, the so-called environment-friendly undecomposed gas treatment can be performed.

しかも、未分解ガスは上記ガス洗浄タンク26の液体Wでもってガス流通管路27,28間の連通接続が完全に解かれるので、圧力変動に際してもガスが逆流現象を起こすことはない。また、このためガス洗浄タンク26を経た未分解ガスは特に当初は低圧力であるため、そのまま直ちに加熱炉2に送りガスバーナ4にて燃焼させることは容易でない。つまり低圧力であるため、ガスの火炎としては弱くて不十分で熱分解釜1を効果的に加熱するまで届かなかったり、むしろバックファイアの危険性もあるなど安定した燃焼作用が期待できないのである。   In addition, since the undissolved gas is completely disconnected from the gas circulation pipes 27 and 28 by the liquid W in the gas cleaning tank 26, the gas does not cause a reverse flow phenomenon even when the pressure fluctuates. For this reason, since the undecomposed gas that has passed through the gas cleaning tank 26 is initially at a low pressure, it is not easy to immediately send it directly to the heating furnace 2 and burn it in the gas burner 4. In other words, because of the low pressure, it is weak and inadequate as a gas flame, and it cannot reach until the pyrolysis kettle 1 is heated effectively, or there is a risk of backfire, so a stable combustion action cannot be expected. .

しかるに、本実施例ではガス調整手段として設けたガス圧力調整タンク29は、洗浄後の低圧力の未分解ガスが所定値に達したことを条件に、ガスバーナ4側に送り且つブロワ31を駆動して燃焼させるようにした。これにより、常に安定した燃焼作用が得られ熱分解釜1の加熱作用としても効果的に寄与して経済的な加熱分解運転が期待できる。   However, in this embodiment, the gas pressure adjusting tank 29 provided as a gas adjusting means sends the gas pressure to the gas burner 4 and drives the blower 31 on condition that the low-pressure undecomposed gas after cleaning reaches a predetermined value. And let it burn. As a result, a stable combustion action is always obtained, and it can be effectively contributed as a heating action of the pyrolysis vessel 1 and an economical thermolysis operation can be expected.

一方、上記未分解ガスを洗浄した後の塩素分等を含む水は、適宜清浄な水と交換されるとともに、その排水処理に際して一次貯留可能な排水タンク35にて消石灰(苛性ソーダ)などの中和剤により中和した後、蒸発タンク38に送られ排気熱により蒸発させて大気中に放出する気化処理が行なわれる。因みに、この蒸発タンク38を設けた排気ダクト5は、高温度の燃焼排気ガスにより例えば約700〜800度Cまでに達することから、蒸発タンク38内の水は容易に気化され、且つ特に有害な成分を空気中に排出することなく処理できるとともに、排気熱を有効利用できて装置の簡素化が図れコスト的にも頗る有利である。   On the other hand, the water containing chlorine after washing the undecomposed gas is appropriately replaced with clean water, and neutralized with slaked lime (caustic soda) in the drainage tank 35 that can be primarily stored during the wastewater treatment. After neutralization with the agent, a vaporization process is performed in which the gas is sent to the evaporation tank 38, evaporated by exhaust heat, and released into the atmosphere. Incidentally, since the exhaust duct 5 provided with the evaporation tank 38 reaches, for example, about 700 to 800 ° C. by the high-temperature combustion exhaust gas, the water in the evaporation tank 38 is easily vaporized and is particularly harmful. The components can be processed without being discharged into the air, and the exhaust heat can be used effectively, which simplifies the apparatus and is advantageous in terms of cost.

そして、分解油を生成した以降の油化器材である凝縮器たる凝縮タンク9,10や油水分離タンク16,18等を支持固定する支持基台24は、各油化器材を分解油の流れに沿って上段から下段の複数段に配置する構成としていて、まず大型化する凝縮器たる凝縮タンク9,10を最上段H2に配置するとともに、中段H1たるその下方の空間スペースに前記油水分離タンク16,18及びガス洗浄タンク26を配置する構成とし、更に最下位H0には前記貯油タンク17,19及び排水タンク35を設置し、謂わば縦方向に3段の配置構成とした。   And the support base 24 which supports and fixes the condensation tanks 9 and 10 and the oil / water separation tanks 16 and 18 which are the condensers after the generation of the cracked oil is used as a flow of the cracked oil. The upper and lower condenser tanks 9 and 10 are arranged in the uppermost stage H2, and the oil-water separation tank 16 is disposed in the space below the middle stage H1. , 18 and the gas cleaning tank 26 are arranged, and the oil storage tanks 17 and 19 and the drainage tank 35 are installed at the lowest level H0, so that a so-called vertical three-stage arrangement is adopted.

これにより、最も大型化する凝縮器を最上段に配置して下方の空間スペースを他の油化器材の配置に有効活用でき、従来のように横長配置で多くの占有面積を占めることなくコンパクトに構成できる。この場合、凝縮器が例えば加熱炉2よりも高位置にあっても、乾留ガスの圧力は高く十分に上昇しながら流通する。しかも、油化器材は分解油が流通する順に沿って配置したので、落差を利用した分解油の流通は円滑に流れ、ポンプなどを極力不要にして簡易な構成にて提供できる。また、油化されずガス洗浄タンク26を経た未分解ガスは、加熱炉2にて燃焼処理し、且つこのガス洗浄に使用した液体は最終的に蒸発タンク38の排気熱を利用して気化するようにしたので、別個に処理器材を設ける場合に比し油化装置の全体構成としても、構成の簡素化とコンパクト化が十分に達成できるとともに、取扱いも極めて容易となる利点を有する。   As a result, the condenser with the largest size can be placed at the top and the lower space can be used effectively for the placement of other liquefier equipment. Can be configured. In this case, even if the condenser is at a higher position than the heating furnace 2, for example, the pressure of the dry distillation gas is high and flows while sufficiently rising. In addition, since the liquefier equipment is arranged in the order in which the cracked oil flows, the cracked oil circulation using the head flows smoothly, and a pump or the like can be provided with a simple configuration as much as possible. Further, the undecomposed gas that has not been liquefied and has passed through the gas cleaning tank 26 is combusted in the heating furnace 2, and the liquid used for the gas cleaning is finally vaporized using the exhaust heat of the evaporation tank 38. Since it did in this way, compared with the case where a processing equipment is provided separately, even if it is the whole structure of an oil-ized apparatus, it has the advantage that it can fully achieve the simplification and compactness of a structure, and handling becomes also very easy.

尚、本考案は上記し且つ図面に示した実施例に限定されず、例えばガス洗浄タンク26は水中をガスが潜り抜けることで水と接触させる構成としたが、ガスに水(例えば、ミスト状)を吹き付けて接触し不純物を除去するよう変形して実施することも可能である(以下、シャワーリング方式と称す)。図4は、その概略構成を示したもので、ガス洗浄タンク40は支持基台25の中段H1の支持部24aに配置され、そのタンク内に前記ガス流通管路27から流入した未分解ガスは、該タンク内に設けられた複数の噴霧ノズル41から吹出されるミスト状の噴霧中を潜り抜けることで水と接触し、塩素分等の不純物が除去され洗浄される。   The present invention is not limited to the embodiment described above and shown in the drawings. For example, the gas cleaning tank 26 is configured to come into contact with water by allowing the gas to pass through the water. It is also possible to carry out a modification so as to remove impurities by spraying (hereinafter referred to as showering method). FIG. 4 shows a schematic configuration thereof, and the gas cleaning tank 40 is disposed in the support portion 24a of the middle stage H1 of the support base 25, and the undecomposed gas flowing into the tank from the gas distribution pipe 27 is By passing through the mist-like spray blown from the plurality of spray nozzles 41 provided in the tank, it comes into contact with water, and impurities such as chlorine are removed and washed.

そして、その排水管26bは下方に位置する前記排水タンク35に連通接続されていて、上記同様に落差を利用した排水処理が実行される。また、洗浄後のガスは例えば前記ガス流通管路28を介してガス圧力タンク29に移送される。この場合、該ガスは湿気を多分に含むため、例えばガス圧力タンク29に乾燥機能を付加した構成として乾いた適正なガス状態に調整した後、加熱炉2に送り燃焼処理を実行するようにする。このように、シャワーリング方式でも不純物の除去洗浄が有効に行なわれるとともに、その洗浄後の水やガスの処理なども含め簡易な構成にてコンパクトに提供できる。尚、洗浄動作は、洗浄水を循環しつつ噴霧ノズル41から噴霧するようにし、随時清浄な水と置換する構成とすることも可能であるなど、水との接触により不純物を除去する手段は種々変更して実施可能である。   The drain pipe 26b is connected in communication with the drain tank 35 positioned below, and the drainage treatment using the head is performed in the same manner as described above. Further, the cleaned gas is transferred to the gas pressure tank 29 through the gas flow pipe 28, for example. In this case, since the gas contains a lot of moisture, for example, the gas pressure tank 29 is adjusted to a dry and appropriate gas state by adding a drying function, and then sent to the heating furnace 2 to execute the combustion process. . In this manner, impurities can be removed and cleaned effectively even in the showering system, and can be provided in a compact configuration with a simple configuration including treatment of water and gas after the cleaning. The cleaning operation is such that the cleaning water is sprayed from the spray nozzle 41 while circulating the cleaning water, and can be replaced with clean water as needed. Various means for removing impurities by contact with water are available. It can be implemented with changes.

その他、例えば上記実施例の如く1次,2次油化生成ラインの構成とする必要はなく、1次のみの油化生成ライン、つまりは1個の凝縮器を有する油化装置であってもよいし、加熱源の形態もオイルバーナとガスバーナを常設して熱分解に併用し、これに加えて未分解ガスを随時燃焼処理するようにしてもよいなど、実施に際して本考案の要旨を逸脱しない範囲内で種々変更して実施できる。   In addition, for example, it is not necessary to configure the primary and secondary oil production lines as in the above-described embodiment, and even a primary oil production line, that is, an oil generator having one condenser may be used. Also, the form of the heating source may be an oil burner and a gas burner that are used together for thermal decomposition, and in addition to this, undecomposed gas may be combusted as needed, so that it does not depart from the gist of the present invention. Various modifications can be made within the range.

本考案の一実施例を示す油化装置全体の構成図The block diagram of the whole oil-ized apparatus which shows one Example of this invention ガス洗浄タンクの構成を概略的に示す拡大断面図Enlarged sectional view schematically showing the configuration of the gas cleaning tank ガスバーナの構成を概略的に示す拡大断面図Expanded sectional view schematically showing the configuration of the gas burner 他の変形例を示す図2相当図FIG. 2 equivalent view showing another modified example

符号の説明Explanation of symbols

図中、1は熱分解釜、2は加熱炉、3はオイルバーナ、4はガスバーナ、5は排気ダクト、9,10は1次,2次凝縮タンク(凝縮器)、11はクーリングタワー、16,18は1次,2次油水分離タンク、17,19は1次,2次油回収タンク、24は支持基台、26,40はガス洗浄タンク、29はガス圧力調整タンク、31はブロワ、及び38は蒸発タンクを示す。   In the figure, 1 is a pyrolysis kettle, 2 is a heating furnace, 3 is an oil burner, 4 is a gas burner, 5 is an exhaust duct, 9 and 10 are primary and secondary condensation tanks (condensers), 11 is a cooling tower, 18 is a primary and secondary oil / water separation tank, 17 and 19 are primary and secondary oil recovery tanks, 24 is a support base, 26 and 40 are gas cleaning tanks, 29 is a gas pressure adjustment tank, 31 is a blower, and Reference numeral 38 denotes an evaporation tank.

Claims (1)

廃プラスチックなどを収容した熱分解釜を加熱手段を備えた加熱炉にて加熱し、発生する乾留ガスを凝縮器を介して液化して分解油を生成するとともに、この分解油を油水分離タンクを経て油回収タンクに貯留し、また前記凝縮器にて油化されず通過した未分解ガスの不純物を洗浄除去するガス洗浄タンクを具備し、且つ前記凝縮器や油水分離タンク等の油化器材を支持固定する支持基台を備えたものにおいて、
前記支持基台は、前記油化器材を上下複数段に支持する構成にあって、そのうち前記凝縮器を最上段に配置するとともに、その下方空間スペースに前記油水分離タンク及びガス洗浄タンクを配置する構成とし、更に最下位には前記油回収タンクを設置したことを特徴とする熱分解油化装置。

A pyrolysis kettle containing waste plastic is heated in a heating furnace equipped with heating means, and the generated dry distillation gas is liquefied through a condenser to produce cracked oil. It is stored in an oil recovery tank, and is equipped with a gas cleaning tank that cleans and removes impurities of undecomposed gas that has not passed through the condenser and has passed through, and is equipped with oiling equipment such as the condenser and oil-water separation tank. In those equipped with a support base to support and fix,
The support base is configured to support the oil generator equipment in a plurality of upper and lower stages, of which the condenser is disposed at the uppermost stage, and the oil / water separation tank and the gas washing tank are disposed in a space below the condenser. A pyrolysis oil converting apparatus characterized in that the oil recovery tank is installed at the lowest position.

JP2005007757U 2005-09-21 2005-09-21 Pyrolysis oil generator Expired - Fee Related JP3116906U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007757U JP3116906U (en) 2005-09-21 2005-09-21 Pyrolysis oil generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007757U JP3116906U (en) 2005-09-21 2005-09-21 Pyrolysis oil generator

Publications (1)

Publication Number Publication Date
JP3116906U true JP3116906U (en) 2005-12-22

Family

ID=43279097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007757U Expired - Fee Related JP3116906U (en) 2005-09-21 2005-09-21 Pyrolysis oil generator

Country Status (1)

Country Link
JP (1) JP3116906U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004484A1 (en) * 2006-07-03 2008-01-10 Allmighty Co., Ltd. Waste plastic pyrolizing apparatus and method of pyrolysis
US9637687B2 (en) 2013-11-27 2017-05-02 Yoichiro Yamanobe Infectious medical waste treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004484A1 (en) * 2006-07-03 2008-01-10 Allmighty Co., Ltd. Waste plastic pyrolizing apparatus and method of pyrolysis
US9637687B2 (en) 2013-11-27 2017-05-02 Yoichiro Yamanobe Infectious medical waste treatment system

Similar Documents

Publication Publication Date Title
US9446376B2 (en) Apparatus for pyrolysis using molten metal
JP2791985B2 (en) Waste heat treatment equipment and method of operating the equipment
JP5176363B2 (en) Waste pyrolysis gasification method and apparatus
JP2009172546A (en) Organic waste treatment apparatus
JP2008285523A (en) Liquefaction apparatus for polymer-based waste
JP3116906U (en) Pyrolysis oil generator
JP5611448B2 (en) Combustion device
JP4217762B2 (en) Method and apparatus for processing undecomposed gas in oil refiner
JP2000328072A (en) Cooling jacket structure of high temperature gasification furnace in waste gasification treatment equipment
JP2010222547A (en) Waste polymer liquefaction plant
KR19990072140A (en) Solid waste treatment method and equipment by pyrolysis
JP4724053B2 (en) Pyrolysis treatment equipment
JP4504475B2 (en) Equipment for removing carbon deposits on solid objects
JP2006231301A (en) Gasification apparatus of waste
JP4799072B2 (en) Pyrolysis oil generator
KR20010000782A (en) Waste water disposal plant
WO2022118738A1 (en) Waste-plastic oil creation device and oil creation method
JP2016519276A (en) Drying device with thermal decomposition function
WO2017135134A1 (en) Melting system and method for controlling melting system
JP2002326076A (en) Method for treating waste and equipment therefor
JP2007099850A (en) Method for making oil from waste plastic and apparatus therefor
JP4080755B2 (en) Waste liquid combustion apparatus and combustion method
KR20120097804A (en) Deodorization boiler and sludge treating apparatus including the same
JP2003279014A (en) Pyrolytic equipment
JP2018099635A (en) Organic waste treatment system and organic waste treatment method

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees