JP3116042B1 - Liquid circulation system equipment - Google Patents

Liquid circulation system equipment

Info

Publication number
JP3116042B1
JP3116042B1 JP11289764A JP28976499A JP3116042B1 JP 3116042 B1 JP3116042 B1 JP 3116042B1 JP 11289764 A JP11289764 A JP 11289764A JP 28976499 A JP28976499 A JP 28976499A JP 3116042 B1 JP3116042 B1 JP 3116042B1
Authority
JP
Japan
Prior art keywords
water
water supply
oxygen
tank
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11289764A
Other languages
Japanese (ja)
Other versions
JP2001116207A (en
Inventor
善一 西
誠治 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohzai Chemical Industry Co Ltd
Original Assignee
Tohzai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohzai Chemical Industry Co Ltd filed Critical Tohzai Chemical Industry Co Ltd
Priority to JP11289764A priority Critical patent/JP3116042B1/en
Application granted granted Critical
Publication of JP3116042B1 publication Critical patent/JP3116042B1/en
Publication of JP2001116207A publication Critical patent/JP2001116207A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

【要約】 【課題】 循環水と脱酸素剤の混合時間を長くして脱酸
素反応時間をかせぎ、循環水中の溶存酸素との反応効率
を向上させて脱酸素効果を高め、循環経路を形成する配
管の腐食を防止できる液体循環系設備を提供する。 【解決手段】 給水タンクFの水を熱交換器Xに給水す
る給水ポンプPを設け、熱交換器Xから取り出した熱エ
ネルギーを消費する熱消費装置Yを設け、給水タンクF
から熱交換器X及び熱消費装置Yを通って再び給水タン
クFに水を循環させる循環経路Vを備え、前記水の循環
により前記循環経路V内で不足した水を前記給水タンク
Fへ補給する補給水経路Vを備えた液体循環系設備にお
いて、前記補給水経路Vの途中箇所から脱酸素剤を供給
する脱酸素剤供給装置Aを設ける。
Abstract: PROBLEM TO BE SOLVED: To increase a mixing time of circulating water and an oxygen scavenger to increase a deoxygenation reaction time, to improve a reaction efficiency with dissolved oxygen in circulating water to enhance a deoxidizing effect, and to form a circulation path. Provided is a liquid circulation system that can prevent corrosion of piping. A water supply pump (P) for supplying water from a water supply tank (F) to a heat exchanger (X) is provided, and a heat consuming device (Y) for consuming heat energy extracted from the heat exchanger (X) is provided.
And a circulation path V for circulating water again to the water supply tank F through the heat exchanger X and the heat consuming device Y, and replenishes the water supply tank F with water shortage in the circulation path V due to the circulation of the water. In the liquid circulating system equipment provided with the makeup water path V, an oxygen absorber supply device A for supplying the oxygen absorber from an intermediate point of the makeup water path V is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、給水タンクの水を
熱交換器に給水する給水ポンプを設け、熱交換器から取
り出した熱エネルギーを消費する熱消費装置を設け、給
水タンクから熱交換器及び熱消費装置を通って再び給水
タンクに水を循環させる循環経路を備えた液体循環系設
備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply pump for supplying water from a water supply tank to a heat exchanger, a heat consuming device for consuming heat energy extracted from the heat exchanger, and a heat exchanger from the water supply tank. and a liquid circulation system facilities example Bei a circulation path for circulating the water in the water tank again through the heat consuming device.

【0002】[0002]

【従来の技術】例えば、ボイラ水に含まれている酸素に
よって循環経路を形成する配管の腐食を防止するため
に、酸素と反応してその酸素を除去する脱酸素剤をボイ
ラ水に供給する必要があり、ボイラの運転に伴って、必
要量の脱酸素剤溶液を脱酸素剤供給装置からボイラ水に
供給するようにしている。前記液体循環系設備におい
て、給水タンク内の水が空気と接触し易いのと、溶存酸
素を多く含んだまま補給される補給水のため、特に、給
水タンクから熱交換器に供給される供給水内の溶存酸素
量が多くなりがちになるから、給水タンクから熱交換器
までの配管に腐食を起こし易くなり、前記配管の腐食を
防止するためには給水ポンプよりも上手側の給水タンク
近くの配管から脱酸素剤を供給するのが良いのである
が、脱酸素剤はアルカリ性であるので、給水ポンプの上
手側の配管内へ供給した場合、前記脱酸素剤のアルカリ
によって給水ポンプ内のインペラーがアルカリ腐食を起
こして早期に劣化及び破損する虞がある。また、ポンプ
負圧により脱酸素剤が吸引されてその供給量が増大する
虞があり、より給水ポンプの劣化及び破損の原因となっ
ていた。このような事態を防止するために、従来、この
種の液体循環系設備としては、図4に示すように、前記
給水ポンプPの下手側のボイラ給水路K内へ脱酸素剤を
供給する構成を採って、給水ポンプPのインペラーの保
護及び給水ポンプPの負圧による脱酸素剤の供給量の増
大防止を図りつつボイラ給水路Kの腐食防止を行ってい
た。
2. Description of the Related Art For example, in order to prevent corrosion of piping forming a circulation path due to oxygen contained in boiler water, it is necessary to supply an oxygen scavenger which reacts with oxygen to remove the oxygen to the boiler water. The required amount of oxygen scavenger solution is supplied to the boiler water from the oxygen scavenger supply device with the operation of the boiler. In the liquid circulation system, the water in the water supply tank is easily brought into contact with air, and the makeup water is replenished while containing a large amount of dissolved oxygen. Because the amount of dissolved oxygen in the water tends to increase, it is easy to cause corrosion in the piping from the water supply tank to the heat exchanger, and in order to prevent the corrosion of the piping, close to the water supply tank closer to the water supply pump than the water supply pump It is good to supply the oxygen scavenger from the pipe, but since the oxygen scavenger is alkaline, when supplied to the pipe on the upstream side of the water supply pump, the impeller in the water supply pump is actuated by the alkali of the oxygen scavenger. Alkaline corrosion may occur and cause early deterioration and breakage. In addition, the oxygen scavenger may be sucked by the negative pressure of the pump and the supply amount thereof may increase, thus causing deterioration and breakage of the water supply pump. Conventionally, in order to prevent such a situation, a liquid circulating system of this type is configured to supply an oxygen scavenger into a boiler water supply passage K on the lower side of the water supply pump P as shown in FIG. To prevent corrosion of the boiler water supply passage K while protecting the impeller of the water supply pump P and preventing an increase in the supply amount of the oxygen scavenger due to the negative pressure of the water supply pump P.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の液体循
環系設備によれば、給水ポンプ内のインペラーがアルカ
リ腐食を起こしたり、ポンプ負圧により脱酸素剤の供給
量が増大するといったことが防止されるものの、給水ポ
ンプの下手側の配管内へ脱酸素剤を供給する構成が採ら
れている関係上、その分熱交換器までの配管距離が短く
なり、脱酸素剤との混合時間が短くなって脱酸素処理時
間を長く取ることができず、脱酸素効率の低いものとな
っていた。
According to the above-mentioned conventional liquid circulating system equipment, it is possible to prevent the impeller in the water supply pump from being corroded by an alkali or the supply amount of the oxygen scavenger from being increased by the negative pressure of the pump. However, due to the configuration that supplies the oxygen scavenger into the pipe on the lower side of the water supply pump, the piping distance to the heat exchanger is shortened accordingly, and the mixing time with the oxygen scavenger is shortened. As a result, it was not possible to take a long time for the deoxidizing treatment, and the deoxidizing efficiency was low.

【0004】従って、本発明の目的は、上記問題点を解
消し、循環水と脱酸素剤の混合時間を長くして脱酸素反
応時間をかせぎ、循環水中の溶存酸素との反応効率を向
上させて脱酸素効果を高め、循環経路を形成する配管の
腐食を防止できる液体循環系設備を提供するところにあ
る。
Accordingly, an object of the present invention is to solve the above-mentioned problems, increase the mixing time of the circulating water and the oxygen scavenger, increase the deoxidation reaction time, and improve the reaction efficiency with the dissolved oxygen in the circulating water. The purpose of the present invention is to provide a liquid circulating system capable of enhancing the deoxidizing effect and preventing corrosion of piping forming a circulation path.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

〔構成〕 請求項1の発明の特徴構成は図1に例示するごとく、給
水タンクFの水を熱交換器に給水する給水ポンプPを設
け、熱交換器Xから取り出した熱エネルギーを消費する
熱消費装置Yを設け、給水タンクFから熱交換器X及び
熱消費装置Yを通って再び給水タンクFに水を循環させ
る循環経路Zを備え、前記水の循環により前記循環経路
Z内で不足した水を前記給水タンクFへ補給する補給水
経路Vを備え、加水分解型タンニンまたはその中性塩を
貯留する第1液体貯留タンクQと、アルカリ金属水酸化
物を貯留する第2液体貯留タンクRとを備え、前記第
1,第2液体貯留タンクからの薬液を混合する混合器M
を介して脱酸素剤を生成して、前記給水タンクF又は前
記補給水経路Vの途中箇所に前記脱酸素剤を供給する脱
酸素剤供給装置Aを設けてあるところにある。
[Configuration] As shown in FIG. 1, a characteristic configuration of the invention according to claim 1 is to provide a water supply pump P for supplying water from a water supply tank F to a heat exchanger, and to consume heat energy extracted from the heat exchanger X. A consuming apparatus Y is provided, and a circulation path Z for circulating water from the water supply tank F to the water supply tank F again through the heat exchanger X and the heat consuming apparatus Y is provided, and the circulation of the water causes shortage in the circulation path Z. A water supply path V for supplying water to the water supply tank F is provided , and a hydrolyzable tannin or a neutral salt thereof is
First liquid storage tank Q for storage and alkali metal hydroxide
A second liquid storage tank R for storing an object.
1, a mixer M for mixing a chemical solution from a second liquid storage tank
The generates a deoxidizer through, in the place where the middle portion of the water supply tank F or the makeup water path V wherein is provided an oxygen scavenger feeder A for supplying an oxygen scavenger.

【0006】尚、上述のように、図面との対照を便利に
するために符号を記したが、該記入により本発明は添付
図面の構成に限定されるものではない。
[0006] As described above, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the accompanying drawings.

【0007】〔作用及び効果〕 請求項1の発明により、加水分解型タンニンまたはその
中性塩を貯留する第1液体貯留タンクと、アルカリ金属
水酸化物を貯留する第2液体貯留タンクとを備え、前記
第1,第2液体貯留タンクからの薬液を混合する混合器
を介して脱酸素剤を生成して、前記給水タンク又は前記
補給水経路の途中箇所に前記脱酸素剤を供給する脱酸素
剤供給装置を設けてあるから、脱酸素処理効率を向上さ
せることができると共に、脱酸素剤を生成する薬液を安
定な状態のまま貯留して保管することができる。つま
り、溶存酸素量の多い補給水を貯留した給水タンク又は
補給水経路内へ脱酸素剤を供給するから、脱酸素反応が
効果的に行われると共に、給水タンク内で脱酸素剤が滞
留するから、給水タンク内で脱酸素処理時間をかせぐこ
とができ、脱酸素処理効率を向上させることができる。
また、脱酸素剤のアルカリが、給水タンク内で薄められ
るので、給水タンクよりも下流側に設けた給水ポンプ内
のインペラーがアルカリ腐食をおこしたり、給水ポンプ
の負圧により脱酸素剤の供給量が増大するといったこと
が防止できる。加水分解型タンニンまたはその中性塩と
アルカリ金属水酸化物とを混合反応させると、非常に酸
素と反応しやすい没食子酸塩とアルコール化合物からな
る脱酸 素剤が生成される。この脱酸素剤は、水中の溶存
酸素だけでなく空気中の酸素をも吸収して反応するため
貯留する場合には空気と接触しないようにして貯留する
必要があり、貯留タンクの構造が煩雑化すると共に、取
り扱いが難しいものとなっていた。 ところが、加水分解
型タンニンまたはその中性塩とアルカリ金属水酸化物と
はともに単体のままだと脱酸素反応を起こすことがない
ので、本発明では、加水分解型タンニンまたはその中性
塩とアルカリ金属水酸化物を別々の貯留タンクで貯留
し、必要なときに混合器を介して加水分解型タンニンま
たはその中性塩とアルカリ金属水酸化物とを混合して没
食子酸塩とアルコール化合物からなる脱酸素剤を生成し
て補給水経路へ供給する構成にしてあるから、脱酸素剤
を生成する薬液を安定な状態のまま貯留して保管するこ
とができる。その結果、配管の腐食防止性能を向上させ
ることができると共に、貯留タンクの構造が単純化で
き、その取り扱いが容易となるだけでなく、脱酸素反応
を劣化させることなく有効に起こすことができるように
なった。
[Action and Effect] According to the invention of claim 1, the hydrolyzable tannin or its tannin
A first liquid storage tank for storing neutral salts, and an alkali metal
A second liquid storage tank for storing hydroxide,
Mixer for mixing chemicals from first and second liquid storage tanks
The generated oxygen scavengers through the from is provided deoxidation agent supply device for supplying the oxygen scavenger in the middle portion of said water supply tank or the makeup water path, improving the deoxidation efficiency As well as a chemical solution that produces oxygen scavengers.
It can be stored and kept in a fixed state . In other words, since the oxygen absorber is supplied into the water supply tank or the water supply path storing the supply water with a large amount of dissolved oxygen, the oxygen removal reaction is effectively performed, and the oxygen absorber stays in the water supply tank. The time required for the deoxidation treatment in the water supply tank can be increased, and the efficiency of the deoxidation treatment can be improved.
In addition, since the alkali of the oxygen scavenger is diluted in the water supply tank, the impeller in the water supply pump provided downstream of the water supply tank may cause alkali corrosion, or the supply amount of the oxygen scavenger due to the negative pressure of the water supply pump. Can be prevented from increasing. With hydrolyzable tannin or its neutral salt
When mixed reaction with alkali metal hydroxide, very acid
Gallic acid and alcohol compounds that react easily with sulfur
That deoxidation Motozai is generated. This oxygen absorber dissolves in water
Because it reacts by absorbing not only oxygen but also oxygen in the air
When storing, keep away from air
Required, making the structure of the storage tank complicated and
Was difficult to handle. However, hydrolysis
Type tannin or its neutral salt and alkali metal hydroxide
Will not cause a deoxygenation reaction if both are used alone
Therefore, in the present invention, the hydrolyzable tannin or its neutral
Salt and alkali metal hydroxide stored in separate storage tanks
When necessary, the hydrolyzable tannin is passed through a mixer.
Or a mixture of the neutral salt and alkali metal hydroxide
Produces oxygen scavenger consisting of citrate and alcohol compounds
To supply water to the makeup water path.
Storage and storage of chemicals that produce
Can be. As a result, the corrosion prevention performance of the piping can be improved , and the storage tank structure can be simplified.
Not only makes it easier to handle, but also
Can be effectively caused without deteriorating .

【0008】[0008]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。尚、図面において従来例と同一の
符号で表示した部分は、同一又は相当の部分を示してい
る。図1は、ボイラ水に含まれている酸素による配管の
腐食を防止するために、本発明に係わる液体循環系設備
の一例としての脱酸素剤供給装置Aを備えたボイラ設備
の概略フローを示し、給水タンクFの水をボイラ給水路
Kを通してボイラB(熱交換器Xの一例)に給水する給
水ポンプPを設け、前記ボイラBにより生じた蒸気(熱
エネルギーの一例)を蒸気路Lを通して蒸気ためCから
蒸気タービンD(熱消費装置Yの一例)に導入されて運
動エネルギーに変換され、その後、前記運動エネルギー
に変換された後の廃蒸気が復水器Eで凝結されて水に戻
され、復水路Iを通って再び給水タンクFに返還され
る。前記ボイラ給水路Kと前記蒸気路Lと前記復水路I
とで循環経路Zが形成され、ボイラ水の循環により前記
循環経路Z内で不足した水を、補給水タンクG内の補給
水を補給水ポンプJにより軟水装置Hから給水タンクF
に補給する補給水経路Vを備え、前記補給水経路Vの途
中箇所に脱酸素剤を供給する脱酸素剤供給装置Aが設け
られている。
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, portions denoted by the same reference numerals as those of the conventional example indicate the same or corresponding portions. FIG. 1 shows a schematic flow of a boiler facility provided with a deoxidizer supply device A as an example of a liquid circulating system facility according to the present invention, in order to prevent corrosion of piping due to oxygen contained in boiler water. A water supply pump P for supplying water from a water supply tank F to a boiler B (an example of a heat exchanger X) through a boiler water supply path K, and steam (an example of heat energy) generated by the boiler B is passed through a steam path L Therefore, the steam is introduced from C into a steam turbine D (an example of the heat consuming device Y) and converted into kinetic energy. After that, the waste steam converted into the kinetic energy is condensed in the condenser E and returned to water. Is returned to the water supply tank F again through the condensate channel I. The boiler water supply channel K, the steam channel L, and the condensate channel I
A circulation path Z is formed by the boiler water, and the shortage of water in the circulation path Z due to the circulation of the boiler water is supplied to the supply water in the supply water tank G by the supply water pump J from the water softener H to the water supply tank F.
A replenishing water path V for replenishing the replenishing water is provided, and an oxygen-absorbing agent supply device A for supplying an oxygen-absorbing agent is provided at an intermediate position of the replenishing water path V.

【0009】前記脱酸素剤供給装置Aは、加水分解型タ
ンニンまたはその中性塩を貯留する第1液体貯留タンク
Qと、アルカリ金属水酸化物を貯留する第2液体貯留タ
ンクRとを備え、第1,第2液体貯留タンクからの薬液
を混合する混合器Mを介して脱酸素剤溶液を生成し、前
記補給水経路Vの途中箇所から脱酸素剤を供給するよう
に形成されている。図中Nは、第1液体貯留タンクQか
ら加水分解型タンニンまたはその中性塩を前記混合器M
を介して前記補給水経路Vへ供給する第1ポンプであ
り、図中Oは、第2液体貯留タンクRからアルカリ金属
水酸化物を前記混合器を介して前記補給水経路Vへ供給
する第2ポンプである。
The oxygen scavenger supply device A includes a first liquid storage tank Q for storing a hydrolyzable tannin or a neutral salt thereof, and a second liquid storage tank R for storing an alkali metal hydroxide. An oxygen scavenger solution is generated through a mixer M for mixing the chemicals from the first and second liquid storage tanks, and is formed so as to supply the oxygen scavenger from an intermediate point of the makeup water path V. Have been. In the figure, N denotes a hydrolyzable tannin or a neutral salt thereof from the first liquid storage tank Q.
Is a first pump for supplying alkali water hydroxide from the second liquid storage tank R to the makeup water path V via the mixer. Two pumps.

【0010】前記脱酸素剤溶液は、加水分解型タンニン
またはその中性塩とアルカリ金属水酸化物とを混合反応
させて、酸素と反応しやすい没食子酸塩とアルコール化
合物を生成させたもので、その没食子酸塩をボイラ水に
含まれる酸素と反応させて、配管の腐食の原因になる酸
素を除去するようにしてある。
The oxygen scavenger solution is obtained by mixing and reacting a hydrolyzable tannin or a neutral salt thereof with an alkali metal hydroxide to produce a gallic acid salt and an alcohol compound which easily react with oxygen. The gallate is reacted with oxygen contained in boiler water to remove oxygen which causes corrosion of the piping.

【0011】尚、加水分解型タンニンとしては、5倍子
タンニン、没食子タンニン、タラタンニン、チェスナッ
トタンニン、スマックタンニンのうちのいずれを使用し
ても良く、また、加水分解型タンニンをアルカリ性タン
ニン溶液として調整するためのアルカリ剤としては、ナ
トリウムアルカリやカリウムアルカリ、アンモニアアル
カリ等のいずれを使用しても良いが、ナトリウムアルカ
リやカリウムアルカリをアルカリ剤として、強アルカリ
性タンニン溶液として調整するのが望ましい。
As the hydrolyzable tannin, any of quintuple tannin, gallic tannin, tara tannin, chestnut tannin and smack tannin may be used. Any of sodium alkali, potassium alkali, ammonia alkali and the like may be used as the alkali agent for adjusting the temperature. However, it is preferable to use sodium alkali or potassium alkali as an alkali agent and adjust the solution as a strongly alkaline tannin solution.

【0012】〔別実施形態〕 以下に他の実施形態を説明する。 〈1〉脱酸素剤供給装置Aは先の実施形態で説明した加
水分解型タンニンまたはその中性塩を貯留する第1液体
貯留タンクQと、アルカリ金属水酸化物を貯留する第2
液体貯留タンクRとを備え、供給直前に両者を混合する
混合器Mを介して脱酸素剤を供給するものに限るもので
はなく、例えば、図2に示すように、予め両者を混合し
て没食子酸塩とアルコール化合物からなる脱酸素剤の状
態にしたものを一つの貯留タンクT内に貯留する構成で
あっても良い。但しこの構成を採った場合、非常に酸素
と反応し易い没食子酸塩が、貯留タンクT内に貯留され
ている間に空気と連続的に反応して脱酸素能力を失って
しまうから、貯留タンクT内に窒素ガスを充填して空気
中の酸素との接触を防止するか、貯留液体の液面全面を
何らかの方法で覆って空気との接触を防止する必要があ
る。 〈2〉脱酸素剤供給装置Aからの脱酸素剤の供給量は、
例えば、図3に示すように、補給水経路Vにおける脱酸
素剤供給箇所よりも上手側に補給水の流量を計る流量計
センサWを設け、前記流量計センサWの検出結果に基づ
いて前記脱酸素剤の前記補給水経路Vへの供給量を制御
する制御装置Sを備えた構成であっても良い。また、補
給水の流量だけでなく、補給水及び給水タンク内の水の
pHを検出して加水分解型タンニンまたはその中性塩を
貯留する第1液体貯留タンクと、アルカリ金属水酸化物
を貯留する第2液体貯留タンクからの供給量を制御して
一定のpHに保つ構成のものであっても良い。これだ
と、より効果的に給水ポンプや配管に負担をかけること
なく脱酸素処理を行うことができる。 〈3〉液体循環系設備は先の実施形態で説明したボイラ
設備に限るものではなく、例えば、ヒートポンプであっ
ても良い。要するに液体中の酸素により配管が腐食され
るのを防止したい配管系を有した設備に対して適用可能
である。 〈4〉脱酸素剤として使用される薬剤は、先の実施例で
説明した加水分解型タンニンにアルカリ金属水酸化物と
を混合する構成のものに限らず、ヒドラジン、エリソル
ビン酸ソーダ、アスコルビン酸ソーダ、亜硫酸ソーダ等
を使用しても良い。 〈5〉補給水の供給は、先の実施形態で説明した補給水
タンクから補給水ポンプにより供給する構成のものに限
らず、水道から直接補給水を供給する構成のものであっ
ても良い。これだと、予め水道水に圧力がかかっている
ので補給水ポンプを設けなくても供給タンクへ補給水を
供給することができる。 〈6〉脱酸素剤の供給箇所は、先の実施形態で説明した
補給水経路の途中箇所から供給するものに限らず、給水
タンクに直接脱酸素剤を供給する構成のものであっても
良い。
[Another Embodiment] Another embodiment will be described below. <1> The oxygen scavenger supply device A includes the first liquid storage tank Q for storing the hydrolyzable tannin or its neutral salt described in the previous embodiment, and the second liquid storage tank Q for storing the alkali metal hydroxide.
It is not limited to the one provided with the liquid storage tank R and supplying the oxygen scavenger via the mixer M which mixes the two immediately before the supply. For example, as shown in FIG. A configuration in which a deoxygenating agent composed of an acid salt and an alcohol compound is stored in one storage tank T may be used. However, when this configuration is employed, gallate which is very liable to react with oxygen continuously reacts with air while being stored in the storage tank T and loses the deoxidizing ability. It is necessary to fill T with nitrogen gas to prevent contact with oxygen in the air, or to cover the entire surface of the stored liquid by some method to prevent contact with air. <2> The supply amount of the oxygen absorber from the oxygen absorber supply device A is:
For example, as shown in FIG. 3, a flow meter sensor W for measuring the flow rate of the makeup water is provided on the makeup water path V on the upstream side of the deoxidizer supply point, and the flow rate sensor W is provided based on the detection result of the flow meter sensor W. A configuration including a control device S for controlling the supply amount of the oxygen agent to the makeup water path V may be provided. In addition, a first liquid storage tank for storing the hydrolysis type tannin or its neutral salt by detecting not only the flow rate of the makeup water but also the pH of the makeup water and the water in the water supply tank, and storing the alkali metal hydroxide. It may be configured to control the supply amount from the second liquid storage tank to maintain a constant pH. With this, the deoxygenation process can be performed more effectively without imposing a load on the water supply pump and the piping. <3> The liquid circulation system equipment is not limited to the boiler equipment described in the above embodiment, and may be, for example, a heat pump. In short, the present invention can be applied to equipment having a piping system in which piping is desired to be prevented from being corroded by oxygen in a liquid. <4> The chemical used as the oxygen scavenger is not limited to the composition in which the alkali metal hydroxide is mixed with the hydrolyzable tannin described in the previous embodiment, but may be hydrazine, sodium erythorbate, sodium ascorbate. And sodium sulfite may be used. <5> The supply of the makeup water is not limited to the configuration in which the makeup water is supplied from the makeup water tank by the makeup water pump described in the above embodiment, and may be a configuration in which the makeup water is directly supplied from the water supply. In this case, since the pressure is applied to the tap water in advance, the makeup water can be supplied to the supply tank without providing the makeup water pump. <6> The supply point of the oxygen scavenger is not limited to the one supplied from the middle part of the makeup water path described in the above embodiment, and may be a configuration in which the oxygen scavenger is directly supplied to the water supply tank. .

【0013】[0013]

【実施例】(実施例1) 室温における用水中の溶存酸素除去を110mlのフラ
ン瓶内で攪拌しながら確認を行った。使用した溶存酸素
計は攪拌装置が付属されたセントラル科学(株)製のU
D−1を用いた。用水は室温で爆気したイオン交換純水
を使用した。 実施例1:五倍子タンニン(加水分解型タンニン) 2
4% 、水酸化ナトリウム 7% の溶液を調整した
後、すぐに500mg/mlをフラン瓶に添加した。 実施例2:タラタンニン(加水分解型タンニン) 24
% 、水酸化カリウム10% の溶液を調整した後、すぐ
に500mg/mlをフラン瓶に添加した。 実施例3:没食子タンニン 24% 、水酸化ナトリ
ウム 2.4%の溶液を調整した(溶液のpHは9.1
である)、すぐに725mg/mlをフラン瓶に添加し
た。 実施例4 :五倍子タンニン(加水分解型タンニン) 2
2 % 、水酸化ナトリウム 9 % の溶液を調整した
後、すぐに1 00mg/mlをフラン瓶に添加した。 比較例1:50%濃度の五倍子タンニン(加水分解型タ
ンニン)溶液を700mg/ml添加して測定した。 比較例2:ケブラチオタンニン(縮合型タンニン) 2
4% 、水酸化ナトリウム 7% の溶液を調整した
後、すぐに500mg/mlをフラン瓶に添加した。 比較例3:五倍子タンニン(加水分解型タンニン) 2
4% 、水酸化ナトリウム 7% の溶液を50ml調
整した後5日間50mlのビーカに解法放置したもの5
00mg/mlをフラン瓶に添加した。 比較例4:五倍子タンニン(加水分解型タンニン) 2
4% 、水酸化ナトリウム 1%の溶液を調整した(溶
液のpHは8.5である)、すぐに725mg/mlを
フラン瓶に添加した。フラン瓶内の添加濃度を一覧にす
ると表1.の如くとなる
EXAMPLES (Example 1) The removal of dissolved oxygen in service water at room temperature was confirmed while stirring in a 110 ml furan bottle. The dissolved oxygen meter used was manufactured by Central Science Co., Ltd.
D-1 was used. Ion exchange pure water exploded at room temperature was used as the service water. Example 1: Fivefold tannin (hydrolyzed tannin) 2
Immediately after adjusting the solution of 4% and 7% of sodium hydroxide, 500 mg / ml was added to the furan bottle. Example 2: Taratannin (hydrolyzed tannin) 24
Immediately after preparing a solution containing 5% potassium hydroxide and 500% potassium hydroxide, 500 mg / ml was added to a furan bottle. Example 3 A solution of 24% of gallic tannin and 2.4% of sodium hydroxide was prepared (pH of the solution was 9.1).
725 mg / ml was immediately added to the furan bottle. Example 4: Five-fold tannin (hydrolyzed tannin) 2
Immediately after adjusting the solution of 2% and 9% of sodium hydroxide, 100 mg / ml was added to the furan bottle. COMPARATIVE EXAMPLE 1 The measurement was performed by adding 700 mg / ml of a 50% concentration quintuple tannin (hydrolyzed tannin) solution. Comparative Example 2: Kevlarthiotannin (condensed tannin) 2
Immediately after adjusting the solution of 4% and 7% of sodium hydroxide, 500 mg / ml was added to the furan bottle. Comparative Example 3: Fivefold tannin (hydrolyzed tannin) 2
After adjusting 50 ml of a 4% solution of 7% sodium hydroxide, the solution was left standing in a 50 ml beaker for 5 days.
00 mg / ml was added to the furan bottle. Comparative Example 4: Fivefold tannin (hydrolyzed tannin) 2
A solution of 4% and 1% sodium hydroxide was prepared (pH of the solution was 8.5) and 725 mg / ml was immediately added to the furan bottle. Table 1 shows the additive concentration in the flan bottle. Like

【0014】[0014]

【表1】 [Table 1]

【0015】各添加薬剤の脱酸素効果を表2.に示し
た。
Table 2 shows the deoxidizing effect of each additive. It was shown to.

【0016】[0016]

【表2】 [Table 2]

【0017】表2から明らかなように、加水分解型タン
ニンでないとアルカリで没食子酸の効果が得られず(比
較例2と各実施例との比較により)、アルカリ剤と混合
直後の方が効果が大であり(実施例1と比較例3との比
較により)、アルカリ剤の混合量がpH9以上でないと
効果が弱いこと(実施例3と比較例3との比較により)
が明らかである。実施例4より五倍子タンニンの3mg
/lが溶存酸素1mgO2 /lを除去できるという結果
をも得られている。
As is evident from Table 2, the effect of gallic acid cannot be obtained with alkali unless it is a hydrolyzable tannin (comparison between Comparative Example 2 and each Example). Is large (from the comparison between Example 1 and Comparative Example 3), and the effect is weak unless the mixing amount of the alkali agent is pH 9 or more (from the comparison between Example 3 and Comparative Example 3).
Is evident. 3 mg of quintuple tannin from Example 4
/ L can also remove 1 mgO 2 / l of dissolved oxygen.

【0018】(実施例2) 実際の工場で使用されているボイラ給水ラインにて本発
明の実施を行った。 給水ラインの条件は 給水タンク温度 60℃ 復水の回収率 60% 軟水の溶存酸素 7.2mgO2 /l 注入は軟水補給時に軟水量に対しての注入率で添加され
た。 溶存酸素計 東亜電波工業(株)製DO−14型 pH計 東亜電波工業(株)製HM−14P型 試験は、五倍子タンニンと水酸化ナトリウムを用いて、
ミキシング機構のあるなしで実施した。 実施例5:五倍子タンニン 25部 、水酸化ナトリウ
ム 10部 の混合溶液となるように薬注混合比を調整
し、ミキシング装置無しで合わせただけで、五倍子タン
ニン 25mg/l、水酸化ナトリウム 10mg/l
の軟水量に対する注入量で給水タンクの軟水補給ライ
ンに添加を行った。 実施例6:五倍子タンニン 25部 、水酸化ナトリウ
ム 10部 の混合溶液となるように薬注混合比を調整
し、ミキシング装置を利用して混合した後に、五倍子タ
ンニン 25mg/l、水酸化ナトリウム 10mg/
l の軟水量に対する注入量で給水タンクの軟水補給ラ
インに添加を行った。 実施例7:五倍子タンニン 25部 、水酸化ナトリウ
ム 20部 の混合溶液となるように薬注混合比を調整
し、ミキシング装置を利用して混合した後に、五倍子タ
ンニン 25mg/l、水酸化ナトリウム 20mg/
l の軟水量に対する注入量で給水タンクの軟水補給ラ
インに添加を行った。 比較例5:一切のタンニン化合物を添加せずに給水タン
クを運転した。結果を表3に示す。
Example 2 The present invention was implemented in a boiler water supply line used in an actual factory. The conditions of the water supply line were as follows: water supply tank temperature 60 ° C. recovery rate of condensed water 60% dissolved oxygen 7.2 mg O 2 / l Injection was performed at the rate of injection relative to the amount of soft water when replenishing soft water. Dissolved oxygen meter Toa Denpa Kogyo Co., Ltd. DO-14 type pH meter Toa Denpa Kogyo Co., Ltd. HM-14P type The test was carried out using quintuple tannin and sodium hydroxide.
The test was performed with and without a mixing mechanism. Example 5: The mixing ratio of chemical injection was adjusted so as to obtain a mixed solution of 25 parts of quintuple tannin and 10 parts of sodium hydroxide, and only the combination was carried out without a mixing device, so that quintuple tannin 25 mg / l and sodium hydroxide 10 mg / l
Was added to the soft water replenishment line of the water supply tank at an injection amount relative to the soft water amount of the water. Example 6: The mixing ratio was adjusted by using a mixing device so as to obtain a mixed solution of 25 parts of quintuple tannin and 10 parts of sodium hydroxide, and then mixed using a mixing device.
1 was added to the soft water replenishment line of the water supply tank at an injection amount relative to the soft water amount. Example 7: The mixing ratio was adjusted so that a mixed solution of 25 parts of quintuple tannin and 20 parts of sodium hydroxide was obtained, and after mixing using a mixing device, quintuple tannin 25 mg / l and sodium hydroxide 20 mg / l
1 was added to the soft water replenishment line of the water supply tank at an injection amount relative to the soft water amount. Comparative Example 5: The water supply tank was operated without adding any tannin compound. Table 3 shows the results.

【0019】[0019]

【表3】 [Table 3]

【0020】表3から明らかなように、五倍子タンニン
25mg/lで、軟水中の溶存酸素をほぼ除去してしま
っており(比較例5と各実施例との比較により)、アル
カリ量の添加、タンニンとアルカリ剤との混合効率を高
めて没食子酸の生成度を高めること(実施例5と実施例
6,7との比較により)で良好な溶存酸素除去が可能と
なった。更に、本発明のタンニンを添加しなかった時に
は復水タンクに集められた蒸気凝縮水の中の鉄イオンが
0.8mg/l存在していたが、実施例7にまで溶存酸
素を除去してボイラに給水することによって復水タンク
の凝縮水の鉄イオンは0.2mg/lまで減少した。給
水配管、ボイラ缶内での腐食防止のみならず、蒸気ライ
ンの凝縮水による腐食までも低減させる効果を生んだ。
As is clear from Table 3, the dissolved oxygen in the soft water was almost completely removed by the quintuple tannin 25 mg / l (comparison between Comparative Example 5 and each Example). By increasing the mixing efficiency of the tannin and the alkali agent and increasing the degree of gallic acid production (comparing Example 5 with Examples 6 and 7), good dissolved oxygen removal became possible. Furthermore, when the tannin of the present invention was not added, the iron ion in the steam condensate collected in the condensate tank was present at 0.8 mg / l, but the dissolved oxygen was removed up to Example 7. By feeding the boiler, the condensate in the condensate tank was reduced to 0.2 mg / l of iron ions. This not only prevents corrosion in the water supply pipes and boiler cans, but also reduces the corrosion caused by condensed water in the steam line.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すボイラ設備の概略フ
ロー図
FIG. 1 is a schematic flowchart of a boiler facility showing an embodiment of the present invention.

【図2】本発明の別実施形態を示すボイラ設備の概略フ
ロー図
FIG. 2 is a schematic flow chart of a boiler facility showing another embodiment of the present invention.

【図3】本発明の別実施形態を示すボイラ設備の概略フ
ロー図
FIG. 3 is a schematic flow chart of a boiler facility showing another embodiment of the present invention.

【図4】従来のボイラ設備の概略フロー図FIG. 4 is a schematic flowchart of a conventional boiler facility.

【符号の説明】[Explanation of symbols]

P 給水ポンプ F 給水タンク X 熱交換機 Y 熱消費装置 Z 循環路 V 補給水経路 A 脱酸素剤供給装置 T 貯留タンク Q 第1貯留タンク R 第2貯留タンク W 流量計センサ S 制御装置 P water pump F water tank X heat exchanger Y heat consuming device Z circulation path V makeup water path A deoxidizer supply device T storage tank Q first storage tank R second storage tank W flow meter sensor S controller

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−89981(JP,A) 実開 昭61−8707(JP,U) 社団法人日本ボイラ協会編,「ボイラ 技術講座 ボイラの水管理」,初版,共 立出版株式会社,昭和44年10月5日, p.143−158 木脇充明著,「ボイラー給水とその処 理」,第4版,株式会社白亜書房,昭和 40年5月25日,p.206−208 (58)調査した分野(Int.Cl.7,DB名) F22D 11/00 F22B 37/00 F22B 37/52 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-89981 (JP, A) JP-A-61-8707 (JP, U) Japan Boiler Association, “Boiler Technology Course, Boiler Water Management” , First Edition, Kyoritsu Shuppan Co., Ltd., October 5, 1969, p. 143-158 Mitsuaki Kiwaki, "Boiler Water Supply and Treatment", 4th edition, Chira Shobo Co., Ltd., May 25, 1965, p. 206-208 (58) Field surveyed (Int.Cl. 7 , DB name) F22D 11/00 F22B 37/00 F22B 37/52

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 給水タンクの水を熱交換器に給水する給
水ポンプを設け、熱交換器から取り出した熱エネルギー
を消費する熱消費装置を設け、給水タンクから熱交換器
及び熱消費装置を通って再び給水タンクに水を循環させ
る循環経路を備え、前記水の循環により前記循環経路内
で不足した水を前記給水タンクへ補給する補給水経路を
備え、加水分解型タンニンまたはその中性塩を貯留する
第1液体貯留タンクと、アルカリ金属水酸化物を貯留す
る第2液体貯留タンクとを備え、前記第1,第2液体貯
留タンクからの薬液を混合する混合器を介して脱酸素剤
を生成して、前記給水タンク又は前記補給水経路の途中
箇所に前記脱酸素剤を供給する脱酸素剤供給装置を設け
てある液体循環系設備。
1. A water supply pump for supplying water from a water supply tank to a heat exchanger, a heat consuming device for consuming heat energy extracted from the heat exchanger, and a heat consuming device passing from the water supply tank through the heat exchanger and the heat consuming device. comprising a circulation path for circulating the water in the water tank again Te, a water shortage in the circulation path by circulating the water with a makeup water path for supplying to the water tank, the hydrolyzable tannins or a neutral salt Store
First liquid storage tank and stores alkali metal hydroxide
A second liquid storage tank, wherein the first and second liquid storage tanks are provided.
Oxygen absorber through a mixer that mixes the chemical from the storage tank
To generate, the water supply tank or the oxygen absorber feeder liquid circulation system equipment is provided for supplying an oxygen scavenger in the middle portion of the makeup water path.
JP11289764A 1999-10-12 1999-10-12 Liquid circulation system equipment Expired - Lifetime JP3116042B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11289764A JP3116042B1 (en) 1999-10-12 1999-10-12 Liquid circulation system equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11289764A JP3116042B1 (en) 1999-10-12 1999-10-12 Liquid circulation system equipment

Publications (2)

Publication Number Publication Date
JP3116042B1 true JP3116042B1 (en) 2000-12-11
JP2001116207A JP2001116207A (en) 2001-04-27

Family

ID=17747463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11289764A Expired - Lifetime JP3116042B1 (en) 1999-10-12 1999-10-12 Liquid circulation system equipment

Country Status (1)

Country Link
JP (1) JP3116042B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925371B1 (en) * 2015-09-18 2016-05-25 三菱日立パワーシステムズ株式会社 Water quality management device, water treatment system, water quality management method, and water treatment system optimization program
CN106103353A (en) * 2014-03-17 2016-11-09 栗田工业株式会社 Wet coating chamber circulating water inorganic agent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004203A (en) * 2001-06-20 2003-01-08 Miura Co Ltd Method for operating softened water specification steam boiler
JP2007263385A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
CN102374522B (en) * 2011-12-13 2013-07-10 长沙市中蓝清洗技术有限公司 Cleaning device for cleaning boiler

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
木脇充明著,「ボイラー給水とその処理」,第4版,株式会社白亜書房,昭和40年5月25日,p.206−208
社団法人日本ボイラ協会編,「ボイラ技術講座 ボイラの水管理」,初版,共立出版株式会社,昭和44年10月5日,p.143−158

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103353A (en) * 2014-03-17 2016-11-09 栗田工业株式会社 Wet coating chamber circulating water inorganic agent
US10793453B2 (en) 2014-03-17 2020-10-06 Kurita Water Industries Ltd. Wet paint booth circulating water treatment agent
JP5925371B1 (en) * 2015-09-18 2016-05-25 三菱日立パワーシステムズ株式会社 Water quality management device, water treatment system, water quality management method, and water treatment system optimization program

Also Published As

Publication number Publication date
JP2001116207A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
US6861032B2 (en) Oxygen scavenger and boiler water treatment chemical
US6402984B1 (en) Composition for preventing corrosion using a sulfite-based oxygen scavenger
US4192844A (en) Methoxypropylamine and hydrazine steam condensate corrosion inhibitor compositions and methods
JP3116042B1 (en) Liquid circulation system equipment
US20050156143A1 (en) Oxygen scavenger and the method for oxygen reduction treatment
US6368552B1 (en) Water treating agent and water treating method
JP2010181118A (en) Water treatment method in steam generation plant
EP0297916B1 (en) Control of corrosion in aqueous systems
JPH01155988A (en) Oxygen collecting agent for boiler water and use thereof
CA1105695A (en) Methoxypropylamine and hydrazine steam condensate corrosion inhibitor compositions
JP4110768B2 (en) Boiler water treatment agent
JP3356140B2 (en) Water treatment chemicals
JP6156494B2 (en) Water treatment method for steam generating equipment
JP4414714B2 (en) Oxygen scavenger
JP3838612B2 (en) Water-based anticorrosion method
JP2003004203A (en) Method for operating softened water specification steam boiler
JPH11123388A (en) Boiler water treatment agent
JP2003230890A (en) Method for removing dissolved oxygen of aqueous plant
JP2012193434A (en) Water treatment method of steam generation device
JP3389064B2 (en) Water-based anticorrosion agent and anticorrosion method
WO2013058115A1 (en) Method for inhibiting iron scale deposition on water side in steam generator
JP2001355804A (en) Method for controlling amount of injected condensed- water processing agent
JP2011147893A (en) Method for treating water of boiler water system
KR20240010348A (en) Ammonia treatment method and vessel
JPH07239159A (en) Absorption refrigerating machine and absorption liquid for it

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3116042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term