JP3113907B2 - Multistage solid phase for concentrating components in water and method for concentrating components in water using the same - Google Patents

Multistage solid phase for concentrating components in water and method for concentrating components in water using the same

Info

Publication number
JP3113907B2
JP3113907B2 JP09254469A JP25446997A JP3113907B2 JP 3113907 B2 JP3113907 B2 JP 3113907B2 JP 09254469 A JP09254469 A JP 09254469A JP 25446997 A JP25446997 A JP 25446997A JP 3113907 B2 JP3113907 B2 JP 3113907B2
Authority
JP
Japan
Prior art keywords
phase
adsorbent
adsorbed
solid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09254469A
Other languages
Japanese (ja)
Other versions
JPH1190102A (en
Inventor
貴子 相澤
建英 胡
泰基 眞柄
Original Assignee
国立公衆衛生院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立公衆衛生院長 filed Critical 国立公衆衛生院長
Priority to JP09254469A priority Critical patent/JP3113907B2/en
Publication of JPH1190102A publication Critical patent/JPH1190102A/en
Application granted granted Critical
Publication of JP3113907B2 publication Critical patent/JP3113907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、環境水、排水、水
道水といった各種の水中に含まれる微量有機物質を濃縮
する場合に好適に使用される水中の成分濃縮用多段式固
相に関する。また、本発明は、上記多段式固相を用いた
水中の成分濃縮方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multistage solid phase for concentrating components in water, which is suitably used for concentrating trace organic substances contained in various kinds of water such as environmental water, wastewater and tap water. The present invention also relates to a method for concentrating components in water using the multistage solid phase.

【0002】[0002]

【従来の技術】環境水、排水、水道水といった各種の水
中には、農薬等の多種類の有害有機物質が低濃度レベル
で残留している。これらの微量有機物質を高感度で分析
するためには、微量有機物質の固相抽出法による濃縮が
有効である。一方、上述した水中に含まれる微量有機物
質の極性は広範囲にわたって分布しており、上記水中に
は低極性物質から高極性物質までの極性が異なる種々の
微量有機物質が共存しているのが通常である。
2. Description of the Related Art Various kinds of harmful organic substances such as pesticides remain at low concentration levels in various types of water such as environmental water, drainage water and tap water. In order to analyze these trace organic substances with high sensitivity, it is effective to concentrate the trace organic substances by solid phase extraction. On the other hand, the polarities of the trace organic substances contained in the water described above are distributed over a wide range, and it is usual that various trace organic substances having different polarities from low polar substances to high polar substances coexist in the water. It is.

【0003】試料水中に含まれる極性が異なる種々の微
量有機物質を固相抽出法によって濃縮する場合、全ての
微量有機物質を同時に濃縮することが分析効率等の点で
好ましい。しかし、1種類の吸着剤を用いた固相によっ
て上記のような試料水中の微量有機物質の濃縮を行った
場合、吸着剤には被吸着物質の極性による一定の吸着範
囲があるため、全ての微量有機物質を同時に濃縮するこ
とはできない。
When various trace organic substances having different polarities contained in sample water are concentrated by a solid phase extraction method, it is preferable to simultaneously concentrate all the trace organic substances from the viewpoint of analysis efficiency and the like. However, when a trace amount of organic substance in the sample water is concentrated by the solid phase using one kind of adsorbent, the adsorbent has a certain adsorption range depending on the polarity of the substance to be adsorbed. Trace organic substances cannot be concentrated simultaneously.

【0004】そこで、従来、極性が異なる種々の微量有
機物質が共存している試料水中の微量有機物質を固相抽
出法によって同時に濃縮する方法として、互いに種類が
異なる固相吸着剤を充填した複数の固相カートリッジを
直列に連結し、これら複数の固相カートリッジに試料水
を連続的に通水する方法(以下、この方法をカートリッ
ジ連結法ということもある)が提案されている(後記図
3参照)。
Therefore, conventionally, as a method for simultaneously concentrating trace organic substances in sample water in which various trace organic substances having different polarities coexist by a solid phase extraction method, a plurality of solid organic adsorbents filled with different types of solid adsorbents are used. (Hereinafter, this method is sometimes referred to as a cartridge connection method) has been proposed in which solid phase cartridges are connected in series and sample water is continuously passed through the plurality of solid phase cartridges (FIG. 3 described later). reference).

【0005】[0005]

【発明が解決しようとする課題】しかし、前述したカー
トリッジ連結法は、以下の欠点を有するものであった。 カートリッジ連結法では、濃縮操作の前に複数の固相
カートリッジを連結する作業が必要となる。また、各カ
ートリッジから固相に保持された被吸着物質の溶出を行
う場合、カートリッジの連結を解除した後、各カートリ
ッジ毎に溶媒を流して溶出を行う必要がある。これは、
溶出に適した溶媒の種類が各カートリッジの固相毎に異
なるからである。そのため、カートリッジ連結法では、
カートリッジの連結作業、カートリッジの連結解除作
業、各カートリッジ毎の溶出操作が必要となり、濃縮操
作が非常に煩雑になる。
However, the above-described cartridge connecting method has the following disadvantages. In the cartridge connection method, an operation of connecting a plurality of solid phase cartridges is required before the concentration operation. Further, when eluting the substance to be adsorbed held on the solid phase from each cartridge, it is necessary to release the connection of the cartridges and then to elute by flowing a solvent for each cartridge. this is,
This is because the type of the solvent suitable for elution differs for each solid phase of each cartridge. Therefore, in the cartridge connection method,
The operation of connecting the cartridge, the operation of releasing the connection of the cartridge, and the elution operation for each cartridge are required, and the concentration operation becomes very complicated.

【0006】カートリッジ連結法では、前述したよう
に各カートリッジ毎に溶出操作を行うので、多量の溶出
溶媒が必要となる。
In the cartridge connection method, since the elution operation is performed for each cartridge as described above, a large amount of elution solvent is required.

【0007】カートリッジ連結法では、各カートリッ
ジ毎に溶出操作を行うので、各カートリッジからの溶出
成分をLC/MS法またはGC/MS法等によって別々
に測定する必要が生じ、そのため分析操作が煩雑にな
る。
In the cartridge connection method, since the elution operation is performed for each cartridge, it is necessary to separately measure the elution components from each cartridge by the LC / MS method or the GC / MS method, which makes the analysis operation complicated. Become.

【0008】カートリッジ連結法では、試料水中に含
まれる1つの被吸着物質の全部が1つのカートリッジの
固相に保持されず、1つの被吸着物質が2つ以上のカー
トリッジの固相に分かれて保持されることがある。この
ような場合、1つの被吸着物質が2つ以上のカートリッ
ジの固相から溶出するので、分析精度が低下する。すな
わち、カートリッジ連結法では、前記のように各カート
リッジからの溶出成分をLC/MS法またはGC/MS
法等によって別々に測定するが、1つの被吸着物質が2
つ以上のカートリッジから溶出した場合、各カートリッ
ジ毎の測定結果を合算して目的成分の濃度を算出する必
要があり、その結果分析精度が低下するものである。
In the cartridge connection method, all of one substance to be adsorbed contained in the sample water is not held in the solid phase of one cartridge, but one substance to be adsorbed is divided and held in the solid phases of two or more cartridges. May be done. In such a case, since one substance to be adsorbed is eluted from the solid phase of two or more cartridges, the analysis accuracy is reduced. That is, in the cartridge connection method, the components eluted from each cartridge are analyzed by the LC / MS method or the GC / MS method as described above.
Are measured separately by a method such as
When eluting from one or more cartridges, it is necessary to calculate the concentration of the target component by summing the measurement results for each cartridge, and as a result, the analysis accuracy is reduced.

【0009】カートリッジ連結法では、複数の固相カ
ートリッジを直列に連結しているので、ある吸着剤層と
次の吸着剤層との間には空気が存在している。したがっ
て、試料水や溶出溶媒が吸着剤層の間を移動するときに
試料水や溶出溶媒に空気が混入し、次の吸着剤層では空
気が混入した試料水や溶出溶媒と吸着剤とが接触する。
その結果、試料水や溶出溶媒と吸着剤との接触効率が低
下し、試料水や溶出溶媒の必要量が増大する。
In the cartridge connecting method, since a plurality of solid phase cartridges are connected in series, air exists between one adsorbent layer and the next adsorbent layer. Therefore, air enters the sample water and the elution solvent when the sample water and the elution solvent move between the adsorbent layers, and the adsorbent comes into contact with the sample water and the elution solvent containing the air in the next adsorbent layer. I do.
As a result, the contact efficiency between the sample water or the elution solvent and the adsorbent decreases, and the required amount of the sample water or the elution solvent increases.

【0010】本発明は、上記事情に鑑みてなされたもの
で、固相抽出法によって水中の成分を濃縮するための固
相であって、極性が異なる複数種の被吸着成分が共存し
ている試料水中の複数種の被吸着成分を簡便な操作で同
時に濃縮することができるとともに、溶出溶媒の使用量
を低減させることができ、しかも分析精度の向上を図る
ことが可能な水中の成分濃縮用多段式固相を提供するこ
とを目的とする。また、本発明は、上記多段式固相を用
いた水中の成分濃縮方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is a solid phase for concentrating components in water by a solid phase extraction method, in which a plurality of types of adsorbed components having different polarities coexist. For concentrating multiple types of components to be adsorbed in sample water simultaneously with a simple operation, reducing the amount of elution solvent used, and improving analysis accuracy It is an object to provide a multi-stage solid phase. Another object of the present invention is to provide a method for concentrating components in water using the multistage solid phase.

【0011】[0011]

【課題を解決するための手段】本発明は、前記目的を達
成するため、所定のオクタノール/水分配係数を有する
被吸着物質に対する親和性が互いに異なる複数種の逆相
固相吸着剤を用いた水中の成分濃縮用固相であって、前
記複数種の逆相固相吸着剤が単一の管内に前記被吸着物
質に対する親和性の強さの順で多段に充填されているこ
とを特徴とする水中の成分濃縮用多段式固相を提供す
る。
In order to achieve the above object, the present invention uses a plurality of types of reversed-phase solid-phase adsorbents having different affinities for substances to be adsorbed having a predetermined octanol / water partition coefficient. A solid phase for concentrating components in water, wherein the plurality of types of reversed-phase solid phase adsorbents are filled in a single tube in multiple stages in the order of the affinity for the substance to be adsorbed. To provide a multi-stage solid phase for concentrating components in water.

【0012】また、本発明は、上述した本発明の多段式
固相に、被吸着物質に対する親和性が弱い吸着剤から強
い吸着剤に向かう方向に複数種の被吸着物質を含む試料
水を流すことにより吸着剤に試料水中の複数種の被吸着
物質を保持させた後、該多段式固相に溶出溶媒を流すこ
とにより吸着剤から複数種の被吸着物質を溶出させるこ
とを特徴とする水中の成分濃縮方法を提供する。
According to the present invention, a sample water containing a plurality of kinds of substances to be adsorbed is caused to flow from the adsorbent having a weak affinity for the substance to be adsorbed to the strong adsorbent to the multistage solid phase of the present invention. After allowing the adsorbent to retain a plurality of types of substances to be adsorbed in the sample water, the elution solvent is allowed to flow through the multistage solid phase to elute the plurality of types of substances to be adsorbed from the adsorbent. And a method of concentrating the components.

【0013】本発明の多段式固相は、下記の利点を有す
るものである。 (1)1つの管内に充填した吸着剤によって被吸着物質の
濃縮を行うので、カートリッジ連結法のようなカートリ
ッジの連結作業、カートリッジの連結解除作業、各カー
トリッジ毎の溶出操作が不要となり、測定対象成分の濃
縮操作が非常に簡便になる。
The multi-stage solid phase of the present invention has the following advantages. (1) Since the substance to be adsorbed is concentrated by the adsorbent filled in one tube, the operation of connecting and disconnecting cartridges as in the cartridge connection method and the operation of elution for each cartridge are not required, and the measurement target The operation of concentrating the components becomes very simple.

【0014】(2)1つの管からの溶出操作を行えばよい
ので、溶出溶媒の使用量を大きく低減させることができ
る。
(2) Since the elution operation from one tube only needs to be performed, the amount of the elution solvent used can be greatly reduced.

【0015】(3)1つの管からの溶出成分をLC/MS
法またはGC/MS法等によって1回で測定できるの
で、分析操作が非常に簡単になる。
(3) LC / MS of eluted components from one tube
Since the measurement can be performed once by the GC method or the GC / MS method, the analysis operation becomes very simple.

【0016】(4)1つの管内に充填した吸着剤によって
被吸着物質の濃縮を行うので、カートリッジ連結法のよ
うに1つの被吸着物質が2つ以上のカートリッジから溶
出することはなく、そのため分析精度を向上させること
ができる。すなわち、本発明の多段式固相によれば、前
記のように1つの管からの溶出成分をLC/MS法また
はGC/MS法等によって1回で測定できるので、複数
の測定結果を合算して目的成分の濃度を算出する必要は
なく、その結果分析精度が向上するものである。
(4) Since the substance to be adsorbed is concentrated by the adsorbent filled in one tube, one substance to be adsorbed is not eluted from two or more cartridges as in the cartridge connection method. Accuracy can be improved. That is, according to the multi-stage solid phase of the present invention, the elution components from one tube can be measured at once by the LC / MS method or the GC / MS method as described above. Therefore, it is not necessary to calculate the concentration of the target component, thereby improving the analysis accuracy.

【0017】(5)複数種の吸着剤が多段に充填され、各
吸着剤層の間には隙間がないので、ある吸着剤層と次の
吸着剤層との間には空気が存在していない。したがっ
て、試料水や溶出溶媒が吸着剤層の間を移動するときに
試料水や溶出溶媒に空気が混入することがなく、次の吸
着剤層における試料水や溶出溶媒と吸着剤との接触効率
が向上する。そのため、試料水や溶出溶媒の必要量を低
減させることができる。
(5) Since a plurality of types of adsorbents are filled in multiple stages and there is no gap between each adsorbent layer, air exists between one adsorbent layer and the next adsorbent layer. Absent. Therefore, when the sample water or the elution solvent moves between the adsorbent layers, air does not enter the sample water or the elution solvent, and the contact efficiency between the sample water and the elution solvent and the adsorbent in the next adsorbent layer is reduced. Is improved. Therefore, the required amounts of the sample water and the elution solvent can be reduced.

【0018】また、本発明に係る水中の成分濃縮方法に
よれば、前述した本発明の多段式固相を用い、被吸着物
質に対する親和性が弱い吸着剤から強い吸着剤に向かう
方向に複数種の被吸着物質を含む試料水を流すことによ
り、試料水中に含まれている吸着剤に吸着されやすい物
質(通常は低極性物質)を先に上流側に存在する被吸着
物質に対する親和性が弱い吸着剤に吸着させた後、上流
側の吸着剤に一部しか吸着されない被吸着物質(通常は
中極性物質)及び上流側の吸着剤に全く吸着されない被
吸着物質(通常は高極性物質)を下流側に存在する被吸
着物質に対する親和性が強い吸着剤に吸着させることが
でき、その結果低極性物質から高極性物質までの極性が
異なる種々の被吸着物質を1つの管内の吸着剤に一斉に
保持させることができる。そして、この多段式固相に溶
出溶媒を流すことにより、吸着剤から複数種の被吸着物
質を溶出させることができる。
Further, according to the method for concentrating components in water according to the present invention, the above-mentioned multi-stage solid phase of the present invention is used, and a plurality of types are used in a direction from an adsorbent having a weak affinity for a substance to be adsorbed toward a strong adsorbent. By flowing the sample water containing the substance to be adsorbed, the substance (usually a low-polarity substance) that is easily adsorbed by the adsorbent contained in the sample water has low affinity for the substance to be adsorbed that is present upstream first. After being adsorbed by the adsorbent, the substance to be adsorbed (usually a medium polar substance) that is only partially adsorbed by the adsorbent on the upstream side and the substance to be adsorbed (usually high polar substance) that is not adsorbed at all by the adsorbent on the upstream side Adsorbents with a strong affinity for the substance present on the downstream side can be adsorbed. As a result, various substances having different polarities, from low-polarity substances to high-polarity substances, can be simultaneously adsorbed in one tube. Can be held Kill. By flowing the elution solvent through the multi-stage solid phase, a plurality of kinds of substances to be adsorbed can be eluted from the adsorbent.

【0019】以下、本発明につきさらに詳しく説明す
る。まず、オクタノール/水分配係数について説明す
る。オクタノール/水分配係数(logPow)とは、
n−オクタノールの有機層と水層とを用いた液/液抽出
法において、物質が有機層と水層のどちらに分配し易い
かを示す係数である。物質のlogPow値は、n−オ
クタノールの有機層と水層とを用いた液/液抽出法によ
って決定することができる。また、物質のlogPow
値と逆相液体クロマトグラフィーでの保持時間との間に
は相関があるため、液/液抽出法で測定したlogPo
w値と逆相液体クロマトグラフィーでの保持時間(R
T)との相関式を算出すれば、logPow値の測定さ
れていない物質でも、RTを測定することによってlo
gPow値を求めることができる。logPow値は物
質の極性と相関を有しており、logPow値が大きく
なるほど極性は低くなり、logPow値が小さくなる
ほど極性は高くなる。
Hereinafter, the present invention will be described in more detail. First, the octanol / water partition coefficient will be described. Octanol / water partition coefficient (logPow)
In a liquid / liquid extraction method using an organic layer and an aqueous layer of n-octanol, it is a coefficient indicating whether a substance is more easily distributed to the organic layer or the aqueous layer. The logPow value of a substance can be determined by a liquid / liquid extraction method using an organic layer and an aqueous layer of n-octanol. Also, the log Pow of the substance
Since there is a correlation between the value and the retention time in reversed-phase liquid chromatography, logPo determined by the liquid / liquid extraction method is used.
w value and retention time in reverse phase liquid chromatography (R
By calculating the correlation equation with T), even for a substance for which the log Pow value has not been measured, the lo
The gPow value can be determined. The logPow value has a correlation with the polarity of the substance. The higher the logPow value, the lower the polarity, and the lower the logPow value, the higher the polarity.

【0020】本発明の多段式固相では、所定の前記lo
gPow値を有する被吸着物質に対する親和性が互いに
異なる複数種の逆相固相吸着剤を用いる。この場合、吸
着しようとする被吸着物質あるいは吸着されると予想さ
れる被吸着物質のlogPow値に応じて複数種の吸着
剤を選択すればよい。例えば、本発明の多段式固相を用
いて濃縮を行う試料水中には低極性物質から高極性物質
までの極性が異なる種々の微量有機物質が共存している
のが通常であるが、その種々の微量有機物質のlogP
ow値が所定の範囲(例えば−3〜9)に分布している
場合、その範囲のlogPow値を有する被吸着物質に
対する親和性が互いに異なる複数種の逆相固相吸着剤を
選択すればよい。
In the multistage solid phase of the present invention, the predetermined lo
A plurality of types of reversed-phase solid-phase adsorbents having different affinities for the substance to be adsorbed having a gPow value are used. In this case, a plurality of types of adsorbents may be selected according to the logPow value of the substance to be adsorbed or the substance to be adsorbed which is expected to be adsorbed. For example, in the sample water for concentration using the multi-stage solid phase of the present invention, it is usual that various trace organic substances having different polarities from low polar substances to high polar substances coexist. LogP of trace organic substances
When the ow value is distributed in a predetermined range (for example, −3 to 9), a plurality of types of reversed-phase solid-phase adsorbents having mutually different affinities for the substance to be adsorbed having a log Pow value in that range may be selected. .

【0021】逆相固相吸着剤の種類に限定はなく、例え
ば、シリカゲルを基材とした吸着剤(例えばC2、C
8、C18)、スチレンジビニルベンゼン共重合体(P
S/DVB)系の吸着剤(例えばPS/DVB、親水性
メタクリル酸エステル重合PS/DVB)、活性炭系の
吸着剤(例えばカーボンモレキュラーシーブ)等から適
宜選択することができる。
The type of the reversed-phase solid-phase adsorbent is not limited. For example, an adsorbent based on silica gel (for example, C2, C
8, C18), styrene divinylbenzene copolymer (P
An S / DVB-based adsorbent (eg, PS / DVB, hydrophilic PS / DVB polymerized with methacrylate), an activated carbon-based adsorbent (eg, carbon molecular sieve) and the like can be appropriately selected.

【0022】本発明の多段式固相では、前記複数種の逆
相固相吸着剤を、単一の管内に被吸着物質に対する親和
性の強さの順で多段、通常は2段〜5段程度に充填す
る。この場合、各吸着剤層の間に隙間が存在しないよう
に充填するものである。また、各吸着剤層の界面付近に
おいて、異種の吸着剤が互いに混合しないようにするこ
とが望ましい。
In the multi-stage solid phase of the present invention, the plurality of types of reversed-phase solid phase adsorbents are multi-staged in a single tube in the order of the affinity for the substance to be adsorbed, usually two to five stages. Fill to the extent. In this case, filling is performed so that no gap exists between the adsorbent layers. Further, it is desirable that different types of adsorbents are not mixed with each other near the interface between the respective adsorbent layers.

【0023】本発明に係る水中の成分濃縮方法は、前述
した本発明の多段式固相に、被吸着物質に対する親和性
が弱い吸着剤から強い吸着剤に向かう方向に試料水を流
して吸着剤に試料水中の被吸着物質を保持させた後、該
多段式固相に溶出溶媒を流して被吸着物質を溶出させる
ものである。
In the method for concentrating components in water according to the present invention, the sample water is caused to flow through the multistage solid phase of the present invention in a direction from an adsorbent having a weak affinity for a substance to be adsorbed toward a strong adsorbent. After the substance to be adsorbed is retained in the sample water, the eluting solvent is passed through the multistage solid phase to elute the substance to be adsorbed.

【0024】この場合、試料水としては、例えば環境
水、排水、水道水等を挙げることができるが、これらに
限定されるものではない。また、試料水には適宜前処理
を施してもよい。溶出溶媒は、使用した複数種の逆相固
相吸着剤の種類、これら逆相固相吸着剤と被吸着物質と
の親和性などを勘案して適宜選定すればよい。なお、溶
出溶媒は1種類を用いてもよく、複数種の溶出溶媒を多
段式固相に順次流してもよい。
In this case, examples of the sample water include environmental water, drainage water, tap water, and the like, but are not limited thereto. The sample water may be appropriately subjected to a pretreatment. The elution solvent may be appropriately selected in consideration of the types of the plural kinds of reversed-phase solid-phase adsorbents used, the affinity between the reversed-phase solid-phase adsorbent and the substance to be adsorbed, and the like. In addition, one kind of elution solvent may be used, and a plurality of kinds of elution solvents may be sequentially passed through a multistage solid phase.

【0025】本発明では、多段式固相において、吸着剤
の被吸着物質に対する親和性が強くなるにしたがって吸
着剤の充填量を低減させることが好ましい。そして、こ
の多段式固相に、被吸着物質に対する親和性が弱い吸着
剤から強い吸着剤に向かう方向に複数種の被吸着物質を
含む試料水を流すことにより吸着剤に試料水中の複数種
の被吸着物質を保持させた後、該多段式固相に試料水と
逆方向に溶出溶媒を流すことにより吸着剤から複数種の
被吸着物質を溶出させることが好ましい。
In the present invention, it is preferable to reduce the amount of the adsorbent in the multistage solid phase as the affinity of the adsorbent for the substance to be adsorbed increases. Then, by flowing a sample water containing a plurality of kinds of substances to be adsorbed in a direction from the adsorbent having a weak affinity for the substance to be adsorbed to the strong adsorbent on the multi-stage solid phase, a plurality of kinds of water in the sample water are flown into the adsorbent. After holding the substance to be adsorbed, it is preferable to elute a plurality of kinds of substances to be adsorbed from the adsorbent by flowing an elution solvent in the opposite direction to the sample water through the multistage solid phase.

【0026】すなわち、上流側に存在する被吸着物質に
対する親和性が弱い吸着剤は吸着性が弱く、保持された
被吸着物質を溶出させるのが容易であるため、上流側の
吸着剤の充填量を多くし、この吸着剤に試料水中の被吸
着物質をできるだけ多く保持させることにより、下流側
の吸着剤の充填量を少なくして吸着剤全体の使用量を低
減させることができるきるとともに、溶出溶媒による溶
出効率を向上させて溶出溶媒の使用量の低減を図ること
ができる。この場合、2段目以降の吸着剤の充填量は、
その前段の吸着剤の1/2以下の重量、特に1/10〜
3/10の重量とすることが適当である。
That is, since the adsorbent having a low affinity for the substance to be adsorbed existing on the upstream side has a low adsorptivity and it is easy to elute the retained substance to be adsorbed, the amount of the adsorbent on the upstream side is filled. By allowing the adsorbent to retain as much of the substance to be adsorbed in the sample water as possible, the amount of adsorbent on the downstream side can be reduced and the amount of the entire adsorbent used can be reduced. The elution efficiency of the solvent can be improved, and the amount of the elution solvent used can be reduced. In this case, the filling amount of the adsorbent in the second and subsequent stages is
1/2 weight or less of the adsorbent in the preceding stage, especially 1/10
A weight of 3/10 is appropriate.

【0027】[0027]

【発明の実施の形態】図1は、本発明に係る水中の成分
濃縮用多段式固相の一実施形態例を示す正面図である。
本例の多段式固相は、互いに種類の異なる第1の逆相固
相吸着剤2及び第2の逆相固相吸着剤4を管6内に上下
2段に充填したものである。この場合、所定のlogP
ow値を有する被吸着物質に対する親和性は、第2の逆
相固相吸着剤4の方が第1の逆相固相吸着剤2よりも強
い。また、第2の逆相固相吸着剤4の充填重量は、第1
の逆相固相吸着剤2の充填重量よりも少ない。なお、図
中8は試料水導入口、10は試料水排出口を示す。
FIG. 1 is a front view showing one embodiment of a multistage solid phase for concentrating components in water according to the present invention.
The multi-stage solid phase of this example is a tube 6 in which a first reversed-phase solid-phase adsorbent 2 and a second reversed-phase solid-phase adsorbent 4 of different types are filled in a tube 6 in two upper and lower stages. In this case, the given logP
The affinity for the substance to be adsorbed having an ow value is stronger in the second reversed-phase solid-phase adsorbent 4 than in the first reversed-phase solid-phase adsorbent 2. The filling weight of the second reversed-phase solid phase adsorbent 4 is the first
Is smaller than the filling weight of the reverse-phase solid-phase adsorbent 2. In the drawing, reference numeral 8 denotes a sample water inlet, and 10 denotes a sample water outlet.

【0028】本例の多段式固相を用いて例えば極性が異
なる複数種の微量有機物質が共存している試料水中の微
量有機物質を濃縮する場合、必要に応じ吸着剤2,4の
コンディショニングを行った後、管6内に試料水を下向
流で流すことにより、吸着剤2,4に試料水中の極性が
異なる複数種の微量有機物質を保持させた後、管6内に
溶出溶媒を上向流で流すことにより、吸着剤から複数種
の微量有機物質を溶出させるものである。
In the case of concentrating a trace organic substance in a sample water in which plural kinds of trace organic substances having different polarities coexist, for example, by using the multi-stage solid phase of the present example, conditioning of the adsorbents 2 and 4 is performed as necessary. After that, the sample water is caused to flow downward in the tube 6 to allow the adsorbents 2 and 4 to hold a plurality of kinds of trace organic substances having different polarities in the sample water. By flowing in an upward flow, plural kinds of trace organic substances are eluted from the adsorbent.

【0029】本例の多段式固相として、具体的には、ポ
リマー系逆相固相吸着剤と活性炭系逆相固相吸着剤とを
単一の管内に2段に充填した多段式固相を挙げることが
できる。この場合、ポリマー系逆相固相吸着剤が親水性
メタクリル酸エステル重合PS/DVBであり、活性炭
系逆相固相吸着剤がカーボンモレキュラーシーブである
このが好ましい。かかる多段式固相によれば、logP
ow値が−3〜9、特に−1〜6の範囲に分布している
複数種の微量有機物質を含む試料水の微量有機物質を良
好に濃縮することができる。
As the multistage solid phase of this example, specifically, a multistage solid phase in which a polymer-based reversed-phase solid-phase adsorbent and an activated carbon-based reversed-phase solid-phase adsorbent are filled in a single tube in two stages. Can be mentioned. In this case, it is preferable that the polymer-based reversed-phase solid-phase adsorbent is a hydrophilic methacrylate ester-polymerized PS / DVB, and the activated carbon-based reversed-phase solid-phase adsorbent is a carbon molecular sieve. According to such a multistage solid phase, logP
It is possible to satisfactorily concentrate trace organic substances in a sample water containing a plurality of kinds of trace organic substances whose ow values are distributed in the range of -3 to 9, particularly -1 to 6.

【0030】なお、本例では所定のlogPow値を有
する被吸着物質に対する親和性が弱い吸着剤を上段、強
い吸着剤を下段にしたが、この上下を逆にして、管6内
に試料水を上向流で流し、溶出溶媒を下向流で流すよう
にしてもよい。また、本例では吸着剤を2段に充填した
が、3段以上としてもよい。
In the present embodiment, the adsorbent having a low affinity for the substance to be adsorbed having a predetermined log Pow value is placed in the upper stage and the strong adsorbent is located in the lower stage. You may make it flow by an upward flow, and let an elution solvent flow by a downward flow. In this example, the adsorbent is filled in two stages, but may be three or more stages.

【0031】[0031]

【実施例】下記実施例及び比較例1〜4の実験を行って
本発明の効果を確認した。試料水としては、logPo
w値が−0.17〜5.43の範囲に分布している17
種の微量有機物質をそれぞれ1μg/lの濃度で含むも
のを用いた。
EXAMPLES The effects of the present invention were confirmed by conducting experiments in the following Examples and Comparative Examples 1 to 4. As the sample water, logPo
w values are distributed in the range of -0.17 to 5.43 17
Those containing each kind of trace organic substance at a concentration of 1 μg / l were used.

【0032】実施例 実施例では、図1に示した多段式固相を用いた。この場
合、上段の第1の逆相固相吸着剤2としては、logP
ow値が−0.17〜5.43の有機物質に対する親和
性が弱いポリマー系逆相固相吸着剤(材質:親水性メタ
クリル酸エステル重合PS/DVB、充填重量:500
mg)を用いた。第2の逆相固相吸着剤4としては、上
記親和性が強い活性炭系逆相固相吸着剤(材質:カーボ
ンモレキュラーシーブ、充填重量:250mg)を用い
た。吸着剤のコンディションニングを行った後、pH=
3.5に調整した1リットルの試料水を真空吸引によっ
て上記多段式固相に下向流で通水した。窒素ガスで吸着
剤を乾燥させた後、0.25mlのメタノールを用いて
上向流で溶出を行い、次いで3mlのCH2Cl2/CH
3OH(容積比80:20)を用いて上向流で溶出を行
った。溶出液中のジクロロメタンが完全に無くなるまで
窒素ガスでパージし、純水で溶出液を1mlに濃縮した
後、溶出液の測定をLC/MS法によって行い、各物質
の回収率を求めた。同じ実験を3回行った。結果を表1
に示す。
[0032] In the embodiment example, using a multistage solid phase shown in FIG. In this case, as the first reversed-phase solid-phase adsorbent 2 in the upper stage, logP
Polymer-based reversed-phase solid-phase adsorbent having low affinity for organic substances having an ow value of -0.17 to 5.43 (material: hydrophilic methacrylate polymerized PS / DVB, filling weight: 500
mg) was used. As the second reversed-phase solid-phase adsorbent 4, the above-mentioned activated carbon-based reversed-phase solid-phase adsorbent having high affinity (material: carbon molecular sieve, filling weight: 250 mg) was used. After conditioning the adsorbent, pH =
One liter of the sample water adjusted to 3.5 was passed through the multistage solid phase in a downward flow by vacuum suction. After drying the adsorbent with nitrogen gas, elution was carried out in the upward flow with 0.25 ml of methanol and then 3 ml of CH 2 Cl 2 / CH
Elution was carried out with 3 OH (80:20 by volume) in upward flow. After purging with nitrogen gas until the dichloromethane in the eluate completely disappeared, and concentrating the eluate to 1 ml with pure water, the eluate was measured by the LC / MS method to determine the recovery of each substance. The same experiment was performed three times. Table 1 shows the results
Shown in

【0033】比較例1 比較例1では、1つの管内に1種類の逆相固相吸着剤を
充填した固相を用いた。この場合、吸着剤としては、シ
リカゲル基材にオクタデシルシランを結合させた吸着剤
(C18、充填重量:500mg)を用いた。吸着剤の
コンディションニングを行った後、pH=3.5に調整
した1リットルの試料水を真空吸引によって上記固相に
下向流で通水した。窒素ガスで吸着剤を乾燥させた後、
3mlのメタノールを用いて下向流で溶出を行った。窒
素ガスパージにより溶出液を1mlに濃縮した後、溶出
液の測定をLC/MS法によって行い、各物質の回収率
を求めた。同じ実験を3回行った。結果を表1に示す。
Comparative Example 1 In Comparative Example 1, a solid phase in which one type of reversed phase solid phase adsorbent was filled in one tube was used. In this case, an adsorbent (C18, filling weight: 500 mg) in which octadecylsilane was bonded to a silica gel substrate was used as the adsorbent. After conditioning of the adsorbent, 1 liter of sample water adjusted to pH = 3.5 was passed down through the solid phase by vacuum suction. After drying the adsorbent with nitrogen gas,
Elution was carried out with 3 ml of methanol in a downward flow. After concentrating the eluate to 1 ml by purging with nitrogen gas, the eluate was measured by LC / MS to determine the recovery of each substance. The same experiment was performed three times. Table 1 shows the results.

【0034】比較例2 比較例2では、1つの管内に1種類の逆相固相吸着剤を
充填した固相を用いた。この場合、吸着剤としては、ポ
リマー系逆相固相吸着剤(材質:親水性メタクリル酸エ
ステル重合PS/DVB、充填重量:500mg)を用
いた。吸着剤のコンディションニングを行った後、pH
=3.5に調整した1リットルの試料水を真空吸引によ
って上記固相に下向流で通水した。窒素ガスで吸着剤を
乾燥させた後、3mlのメタノールを用いて下向流で溶
出を行った。窒素ガスパージにより溶出液を1mlに濃
縮した後、溶出液の測定をLC/MS法によって行い、
各物質の回収率を求めた。同じ実験を3回行った。結果
を表1に示す。
Comparative Example 2 In Comparative Example 2, a solid phase in which one tube was filled with one type of reversed-phase solid phase adsorbent was used. In this case, a polymer-based reversed-phase solid-phase adsorbent (material: hydrophilic methacrylate polymerized PS / DVB, filling weight: 500 mg) was used as the adsorbent. After conditioning the adsorbent, the pH
1 liter of sample water adjusted to 3.5 was passed down through the solid phase by vacuum suction. After drying the adsorbent with nitrogen gas, elution was performed in a downward flow using 3 ml of methanol. After the eluate was concentrated to 1 ml by nitrogen gas purge, the eluate was measured by LC / MS method,
The recovery of each substance was determined. The same experiment was performed three times. Table 1 shows the results.

【0035】比較例3 比較例3では、1つの管内に1種類の逆相固相吸着剤を
充填した固相を用いた。この場合、吸着剤としては、活
性炭系逆相固相吸着剤(材質:カーボンモレキュラーシ
ーブ、充填重量:500mg)を用いた。吸着剤のコン
ディションニングを行った後、pH=3.5に調整した
1リットルの試料水を真空吸引によって上記固相に下向
流で通水した。窒素ガスで吸着剤を乾燥させた後、0.
5mlのメタノールを用いて上向流で溶出を行い、次い
で6mlのCH2Cl2/CH3OH(容積比80:2
0)を用いて上向流で溶出を行った。溶出液中のジクロ
ロメタンが完全に無くなるまで窒素ガスでパージし、純
水で溶出液を1mlに濃縮した後、溶出液の測定をLC
/MS法によって行い、各物質の回収率を求めた。同じ
実験を3回行った。結果を表1に示す。
Comparative Example 3 In Comparative Example 3, a solid phase in which one type of reversed-phase solid phase adsorbent was filled in one tube was used. In this case, an activated carbon reverse phase solid phase adsorbent (material: carbon molecular sieve, filling weight: 500 mg) was used as the adsorbent. After conditioning of the adsorbent, 1 liter of sample water adjusted to pH = 3.5 was passed down through the solid phase by vacuum suction. After drying the adsorbent with nitrogen gas, the adsorbent is dried.
Elution was carried out in an upward flow with 5 ml of methanol and then 6 ml of CH 2 Cl 2 / CH 3 OH (80: 2 by volume).
Elution was carried out in the upward flow using 0). The eluate was purged with nitrogen gas until the dichloromethane in the eluate completely disappeared, and the eluate was concentrated to 1 ml with pure water.
/ MS method to determine the recovery of each substance. The same experiment was performed three times. Table 1 shows the results.

【0036】比較例4 比較例4では、前述したカートリッジ連結法を実施し
た。すなわち、図3に示すように、互いに種類が異なる
固相吸着剤を充填した第1の固相カートリッジ12と第
2の固相カートリッジ14とを直列に連結し、第1及び
第2の固相カートリッジ12,14に試料水を連続的に
通水した。この場合、吸着剤は実施例と同様のものを用
いた。すなわち、第1の固相カートリッジ12の吸着剤
16としては、ポリマー系逆相固相吸着剤(材質:親水
性メタクリル酸エステル重合PS/DVB、充填重量:
500mg)を用いた。第2の固相カートリッジ14の
吸着剤18としては、活性炭系逆相固相吸着剤(材質:
カーボンモレキュラーシーブ、充填重量:500mg)
を用いた。
Comparative Example 4 In Comparative Example 4, the above-described cartridge connection method was performed. That is, as shown in FIG. 3, a first solid phase cartridge 12 and a second solid phase cartridge 14 filled with different types of solid phase adsorbents are connected in series, and the first and second solid phase cartridges are connected. Sample water was continuously passed through the cartridges 12 and 14. In this case, the same adsorbent as in the example was used. That is, as the adsorbent 16 of the first solid-phase cartridge 12, a polymer-based reverse-phase solid-phase adsorbent (material: hydrophilic methacrylate polymerized PS / DVB, filling weight:
500 mg). As the adsorbent 18 of the second solid-phase cartridge 14, an activated carbon-based reversed-phase solid-phase adsorbent (material:
(Carbon molecular sieve, filling weight: 500mg)
Was used.

【0037】吸着剤16,18のコンディションニング
を行った後、pH=3.5に調整した1リットルの試料
水を真空吸引によって上記両カートリッジ12,14に
連続的に下向流で通水した。次に、両カートリッジ1
2,14の連結を解除し、窒素ガスで第1のカートリッ
ジ12の吸着剤16を乾燥させた後、3mlのメタノー
ルを用いて下向流で溶出を行った。窒素ガスパージによ
り溶出液を1mlに濃縮した後、溶出液の測定をLC/
MS法によって行い、各物質の回収率を求めた。また、
窒素ガスで第2のカートリッジ14の吸着剤18を乾燥
させた後、0.5mlのメタノールを用いて上向流で溶
出を行い、次いで6mlのCH2Cl2/CH3OH(容
積比80:20)を用いて上向流で溶出を行った。溶出
液中のジクロロメタンが完全に無くなるまで窒素ガスで
パージし、純水で溶出液を1mlに濃縮した後、溶出液
の測定をLC/MS法によって行い、各物質の回収率を
求めた。同じ実験を3回行った。第1のカートリッジ1
2による結果を表1、第2のカートリッジ14による結
果を表2に示す。
After conditioning the adsorbents 16 and 18, 1 liter of sample water adjusted to pH = 3.5 was continuously passed through the cartridges 12 and 14 in a downward flow by vacuum suction. . Next, both cartridges 1
The connection between 2 and 14 was released, the adsorbent 16 of the first cartridge 12 was dried with nitrogen gas, and then eluted in a downward flow using 3 ml of methanol. After the eluate was concentrated to 1 ml by nitrogen gas purge, the eluate was measured by LC /
The recovery rate of each substance was determined by the MS method. Also,
After drying the adsorbent 18 of the second cartridge 14 with nitrogen gas, elution is carried out in an upward flow using 0.5 ml of methanol, and then 6 ml of CH 2 Cl 2 / CH 3 OH (volume ratio: 80: Elution was performed in an upward flow using the method described in 20). After purging with nitrogen gas until the dichloromethane in the eluate completely disappeared, and concentrating the eluate to 1 ml with pure water, the eluate was measured by the LC / MS method to determine the recovery of each substance. The same experiment was performed three times. First cartridge 1
Table 2 shows the results obtained with the second cartridge 14, and Table 2 shows the results obtained with the second cartridge 14.

【0038】[0038]

【表1】 [Table 1]

【表2】 [Table 2]

【0039】表から分かるように、1つの管内に1種類
の逆相固相吸着剤を充填した固相を用いた場合、高極性
から低極性までの微量有機物質を一斉に濃縮することは
できなかった(比較例1,2,3)。また、カートリッ
ジ連結法は、溶出溶媒の使用量が全量で9mlと多く、
しかも測定精度が悪かった。(比較例4)。これに対
し、本発明の多段式固相では、高極性から低極性までの
微量有機物質を一斉に濃縮することができる上、溶出溶
媒の使用量が少なく、しかも測定精度が高かった。ま
た、比較例4におけるLC/MSクロマトグラムの一例
を図2に示す。図2から分かるように、カートリッジ連
結法では1つの被吸着物質、すなわちOxamyl、Methmy
l、Monocrotophosが2つのカートリッジの固相から溶出
していた。
As can be seen from the table, when a solid phase filled with one kind of reversed-phase solid phase adsorbent in one tube is used, it is possible to simultaneously concentrate trace amounts of organic substances from high polarity to low polarity. None (Comparative Examples 1, 2, 3). In addition, in the cartridge connection method, the amount of the elution solvent used is as large as 9 ml in total,
Moreover, the measurement accuracy was poor. (Comparative Example 4). On the other hand, in the multistage solid phase of the present invention, a trace amount of organic substances from high polarity to low polarity can be simultaneously concentrated, the amount of the elution solvent used is small, and the measurement accuracy is high. FIG. 2 shows an example of the LC / MS chromatogram in Comparative Example 4. As can be seen from FIG. 2, in the cartridge connection method, one substance to be adsorbed, namely, Oxamyl, Methmy
l, Monocrotophos was eluted from the solid phase of the two cartridges.

【0040】[0040]

【発明の効果】本発明に係る水中の成分濃縮用多段式固
相及びそれを用いた水中の成分濃縮方法によれば、極性
が異なる複数種の被吸着成分が共存している試料水中の
複数種の被吸着成分を簡便な操作で同時に濃縮すること
ができるとともに、溶出溶媒の使用量を低減させること
ができ、しかも分析精度の向上を図ることができる。
According to the multistage solid phase for concentrating components in water according to the present invention and the method for concentrating components in water using the same, a plurality of sample components having different polarities coexist in the sample water. The species to be adsorbed can be simultaneously concentrated by a simple operation, the amount of the elution solvent used can be reduced, and the analysis accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る水中の成分濃縮用多段式固相の一
実施形態例を示す正面図である。
FIG. 1 is a front view showing one embodiment of a multistage solid phase for concentrating components in water according to the present invention.

【図2】カートリッジ連結法における固相カートリッジ
の連結態様を示す正面図である。
FIG. 2 is a front view showing a connection mode of the solid phase cartridge in the cartridge connection method.

【図3】比較例4におけるLC/MSクロマトグラムの
一例である。
FIG. 3 is an example of an LC / MS chromatogram in Comparative Example 4.

【符号の説明】[Explanation of symbols]

2 第1の逆相固相吸着剤 4 第2の逆相固相吸着剤 6 管 2 First reversed phase solid phase adsorbent 4 Second reversed phase solid phase adsorbent 6 Tube

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−239293(JP,A) 特開 平5−256841(JP,A) 特開 平4−334546(JP,A) 特開 昭51−79952(JP,A) 特開 昭50−138645(JP,A) 特開 昭48−75476(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 15/00 G01N 30/48 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-10-239293 (JP, A) JP-A-5-256841 (JP, A) JP-A-4-334546 (JP, A) JP-A-51- 79952 (JP, A) JP-A-50-138645 (JP, A) JP-A-48-75476 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 15/00 G01N 30 / 48

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定のオクタノール/水分配係数を有す
る被吸着物質に対する親和性が互いに異なる複数種の逆
相固相吸着剤を用いた水中の成分濃縮用固相であって、
前記複数種の逆相固相吸着剤が単一の管内に前記被吸着
物質に対する親和性の強さの順で多段に充填されている
ことを特徴とする水中の成分濃縮用多段式固相。
1. A solid phase for concentrating components in water using a plurality of types of reversed-phase solid-phase adsorbents having mutually different affinities for a substance to be adsorbed having a predetermined octanol / water partition coefficient,
A multistage solid phase for concentrating components in water, wherein the plurality of types of reversed-phase solid phase adsorbents are packed in a single tube in multiple stages in the order of the affinity for the substance to be adsorbed.
【請求項2】 吸着剤の被吸着物質に対する親和性が強
くなるにしたがって吸着剤の充填量を低減させた請求項
1に記載の多段式固相。
2. The multistage solid phase according to claim 1, wherein the filling amount of the adsorbent is reduced as the affinity of the adsorbent for the substance to be adsorbed becomes stronger.
【請求項3】 請求項1に記載の多段式固相に、被吸着
物質に対する親和性が弱い吸着剤から強い吸着剤に向か
う方向に複数種の被吸着物質を含む試料水を流すことに
より吸着剤に試料水中の複数種の被吸着物質を保持させ
た後、該多段式固相に溶出溶媒を流すことにより吸着剤
から複数種の被吸着物質を溶出させることを特徴とする
水中の成分濃縮方法。
3. Adsorption by flowing sample water containing a plurality of types of substances to be adsorbed on the multistage solid phase according to claim 1 in a direction from an adsorbent having a weak affinity for the substance to be adsorbed toward a strong adsorbent. A plurality of kinds of substances to be adsorbed in the sample water are retained in the adsorbent, and then a plurality of kinds of substances to be adsorbed are eluted from the adsorbent by flowing an elution solvent through the multistage solid phase. Method.
【請求項4】 請求項2に記載の多段式固相に、被吸着
物質に対する親和性が弱い吸着剤から強い吸着剤に向か
う方向に複数種の被吸着物質を含む試料水を流すことに
より吸着剤に試料水中の複数種の被吸着物質を保持させ
た後、該多段式固相に試料水と逆方向に溶出溶媒を流す
ことにより吸着剤から複数種の被吸着物質を溶出させる
ことを特徴とする水中の成分濃縮方法。
4. Adsorption by flowing a sample water containing a plurality of kinds of substances to be adsorbed on the multistage solid phase according to claim 2 in a direction from an adsorbent having a weak affinity for the substance to be adsorbed toward a strong adsorbent. After a plurality of types of substances to be adsorbed in sample water are retained by the agent, the elution solvent is eluted from the adsorbent by flowing an elution solvent in the opposite direction to the sample water on the multistage solid phase. A method for concentrating components in water.
【請求項5】 ポリマー系逆相固相吸着剤と活性炭系逆
相固相吸着剤とが単一の管内に2段に充填されているこ
とを特徴とする水中の成分濃縮用多段式固相。
5. A multistage solid phase for concentrating components in water, characterized in that a polymer-based reversed-phase solid-phase adsorbent and an activated carbon-based reversed-phase solid-phase adsorbent are packed in two stages in a single tube. .
【請求項6】 ポリマー系逆相固相吸着剤が親水性メタ
クリル酸エステル重合スチレンジビニルベンゼン共重合
体であり、活性炭系逆相固相吸着剤がカーボンモレキュ
ラーシーブである請求項5に記載の多段式固相。
6. The multi-stage reverse-phase solid-phase adsorbent according to claim 5, wherein the polymer-type reverse phase solid-phase adsorbent is a hydrophilic methacrylate ester-polymerized styrene-divinylbenzene copolymer, and the activated carbon-based reverse phase solid-phase adsorbent is carbon molecular sieve. Formula solid phase.
【請求項7】 活性炭系逆相固相吸着剤の充填重量がポ
リマー系逆相固相吸着剤の充填重量の1/2以下である
請求項5又は6に記載の多段式固相。
7. The multistage solid phase according to claim 5, wherein the filling weight of the activated carbon-based reversed-phase solid-phase adsorbent is not more than 充填 of the filling weight of the polymer-based reversed-phase solid-phase adsorbent.
【請求項8】 請求項5、6又は7の多段式固相に、ポ
リマー系逆相固相吸着剤から活性炭系逆相固相吸着剤に
向かう方向に複数種の被吸着物質を含む試料水を流すこ
とにより両吸着剤に試料水中の複数種の被吸着物質を保
持させた後、該多段式固相に試料水と逆方向に溶出溶媒
を流すことにより両吸着剤から複数種の被吸着物質を溶
出させることを特徴とする水中の成分濃縮方法。
8. A sample water containing a plurality of kinds of substances to be adsorbed on the multistage solid phase according to claim 5, 6 or 7, in a direction from the polymer-based reversed-phase solid-phase adsorbent to the activated carbon-based reversed-phase solid-phase adsorbent. After allowing a plurality of substances to be adsorbed in the sample water to be retained in both adsorbents by flowing the eluent, a plurality of kinds of adsorbed substances can be adsorbed from the both adsorbents by flowing the elution solvent in the opposite direction to the sample water in the multistage solid phase A method for concentrating components in water, comprising eluting a substance.
【請求項9】 試料水が、オクタノール/水分配係数が
−3〜9の範囲に分布している複数種の微量有機物質を
含む請求項8に記載の濃縮方法。
9. The method according to claim 8, wherein the sample water contains a plurality of trace organic substances having an octanol / water partition coefficient in the range of -3 to 9.
JP09254469A 1997-09-19 1997-09-19 Multistage solid phase for concentrating components in water and method for concentrating components in water using the same Expired - Lifetime JP3113907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09254469A JP3113907B2 (en) 1997-09-19 1997-09-19 Multistage solid phase for concentrating components in water and method for concentrating components in water using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09254469A JP3113907B2 (en) 1997-09-19 1997-09-19 Multistage solid phase for concentrating components in water and method for concentrating components in water using the same

Publications (2)

Publication Number Publication Date
JPH1190102A JPH1190102A (en) 1999-04-06
JP3113907B2 true JP3113907B2 (en) 2000-12-04

Family

ID=17265477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09254469A Expired - Lifetime JP3113907B2 (en) 1997-09-19 1997-09-19 Multistage solid phase for concentrating components in water and method for concentrating components in water using the same

Country Status (1)

Country Link
JP (1) JP3113907B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285387B2 (en) * 2004-03-31 2009-06-24 財団法人雑賀技術研究所 Solid phase extraction cartridge
CA2583081A1 (en) * 2004-06-16 2006-01-19 Bio-Rad Laboratories, Inc. Multichemistry fractionation
WO2018189871A1 (en) * 2017-04-13 2018-10-18 株式会社島津製作所 Sample analysis method using liquid chromatography–mass spectrometry

Also Published As

Publication number Publication date
JPH1190102A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
Hagen et al. Membrane approach to solid-phase extractions
Tolosa et al. Comparison of the performance of solid-phase extraction techniques in recovering organophosphorus and organochlorine compounds from water
Ahel et al. Determination of alkylphenols and alkylphenol mono-and diethoxylates in environmental samples by high-performance liquid chromatography
US10317377B2 (en) Monolithic column chromatography
Battista et al. Extraction and isolation of triazine herbicides from water and vegetables by a double trap tandem system
Subra et al. Recovery of organic compounds from large-volume aqueous samples using on-line liquid chromatographic preconcentration techniques
Masqué et al. Solid-phase extraction of phenols and pesticides in water with a modified polymeric resin
Möller et al. Determination of a flame retardant hydrolysis product in human urine by SPE and LC–MS. Comparison of molecularly imprinted solid-phase extraction with a mixed-mode anion exchanger
Wang et al. Molecularly imprinted monolith coupled on-line with high performance liquid chromatography for simultaneous quantitative determination of cyromazine and melamine
Faraji β-Cyclodextrin-bonded silica particles as the solid-phase extraction medium for the determination of phenol compounds in water samples followed by gas chromatography with flame ionization and mass spectrometry detection
Slobodnik et al. Solid-phase extraction of polar pesticides from environmental water samples on graphitized carbon and Empore-activated carbon disks and on-line coupling to octadecyl-bonded silica analytical columns
Di Corcia et al. Rapid determination of simazine and atrazine in water at the parts per trillion (1012) level: Extraction by a miniaturized carbopack B trap followed by high-performance liquid chromatography
Chen et al. Sensitive mercury speciation analysis in water by high-performance liquid chromatography–atomic fluorescence spectrometry coupling with solid-phase extraction
JP3113907B2 (en) Multistage solid phase for concentrating components in water and method for concentrating components in water using the same
Shahwan et al. Liquid chromatography of phenols on an 8-quinolinol silica gel—iron (III) stationary phase
Corbera et al. Extraction and preconcentration of the herbicide glyphosate and its metabolite AMPA using anion-exchange solid phases
Yamini et al. Extraction and determination of crown ethers from water samples using a membrane disk and gas chromatography
Ma et al. Bamboo charcoal as adsorbent for SPE coupled with monolithic column-HPLC for rapid determination of 16 polycyclic aromatic hydrocarbons in water samples
Vreuls et al. Ethyl acetate for the desorption of a liquid chromatographic precolumn on‐line into a gas chromatograph
Smith et al. LC Enrichment, Separation, and Determination of Chlorophenols and Phenoxyacetic Acids on PRP-1
Rasmussen et al. Solid-phase extraction and high-performance liquid chromatographic determination of flumequine and oxolinic acid in salmon plasma
Lal et al. Multiresidue analysis of pesticides in fruits and vegetables using solid-phase extraction and gas chromatographic methods
Liška et al. Comparison of sorbents for solid-phase extraction of polar compounds from water
Van der Wal et al. On-line trace enrichment—column liquid chromatography of polar pollutants in surface water using bifunctional membrane-based extraction-disk cartridges
Kvistad et al. Determination of alkylphenols in water samples by solid-phase extraction on to poly (styrene-divinylbenzene) and quantification by liquid chromatography with UV-detection

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term