JP3113903U - Infrared spectrophotometer - Google Patents

Infrared spectrophotometer Download PDF

Info

Publication number
JP3113903U
JP3113903U JP2005004662U JP2005004662U JP3113903U JP 3113903 U JP3113903 U JP 3113903U JP 2005004662 U JP2005004662 U JP 2005004662U JP 2005004662 U JP2005004662 U JP 2005004662U JP 3113903 U JP3113903 U JP 3113903U
Authority
JP
Japan
Prior art keywords
sealed chamber
mirror
sealed space
infrared
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005004662U
Other languages
Japanese (ja)
Inventor
哲生 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005004662U priority Critical patent/JP3113903U/en
Application granted granted Critical
Publication of JP3113903U publication Critical patent/JP3113903U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

【課題】 赤外分光光度計で用いられる潮解性の光学素子が空気中の湿気により潮解するのを防ぐ。
【解決手段】
光学系を収容している密閉空間の一部に、変形自在な膨張部を設け、密閉空間内の気体が、温度変化により膨張した際には密閉空間内の体積が大きくなり、収縮する際には体積が小さくなることで、密閉空間内の圧力変化を起こらなくする。それにより、密閉空間内部への外気の侵入を防ぐことができ、密閉空間内部に設置されている潮解性を持つ素子が潮解してしまうことを防ぐことができる。

【選択図】 図2
PROBLEM TO BE SOLVED: To prevent a deliquescent optical element used in an infrared spectrophotometer from deliquescent by moisture in the air.
[Solution]
When a deformable expansion part is provided in a part of the sealed space containing the optical system, when the gas in the sealed space expands due to a temperature change, the volume in the sealed space increases and contracts. Since the volume is reduced, the pressure in the sealed space does not change. Thereby, intrusion of outside air into the sealed space can be prevented, and deliquescent elements installed in the sealed space can be prevented.

[Selection] Figure 2

Description

本考案は、試料の赤外光吸収スペクトルを測定することにより物質の定性および定量分析を行う赤外分光光度計に関するものである。  The present invention relates to an infrared spectrophotometer which performs qualitative and quantitative analysis of a substance by measuring an infrared absorption spectrum of a sample.

赤外分光光度計は、試料に赤外光を照射し、被測定試料中を透過した光のスペクトルを測定し、試料に吸収された光の波長または透過した光の波長を調べることにより試料成分を分析する。このような赤外分光光度計を用いて、気体、液体、固体の多種多様な試料の赤外光吸収スペクトルを測定することができる。 An infrared spectrophotometer irradiates a sample with infrared light, measures the spectrum of light transmitted through the sample to be measured, and examines the wavelength of the light absorbed by the sample or the wavelength of the transmitted light. Analyze. Using such an infrared spectrophotometer, it is possible to measure infrared light absorption spectra of a wide variety of samples such as gases, liquids, and solids.

フーリエ変換型の赤外分光光度計(FTIR)には、赤外干渉光を作るために干渉計が備えられているが、そこには、ビームスプリッタなどの光学素子として臭化カリウム(KBr)など、潮解性(空気中の水分を吸収して溶解する性質)を有する光学材料が用いられている。この光学材料が潮解してしまうと、満足な測定を行うことができなくなるため、外気と遮断された気密空間内に干渉計を配設するなど、潮解を防ぐための様々な方法が検討されている。 A Fourier transform type infrared spectrophotometer (FTIR) is equipped with an interferometer for producing infrared interference light, and there is potassium bromide (KBr) as an optical element such as a beam splitter. An optical material having deliquescent properties (a property of absorbing and dissolving moisture in the air) is used. When this optical material is deliquescent, satisfactory measurement cannot be performed. Therefore, various methods for preventing deliquescation such as an interferometer in an airtight space blocked from the outside air have been studied. Yes.

素子の潮解を防ぐためには、潮解性を持つ素子を、低湿度にした気密空間内に収容し、完全に外気と遮断して水蒸気の出入りがないようにすればよいが、現実的には、長期間気密状態を保つことができる気密空間を形成するのは困難で、非常にコストがかかる。一般的には、光学素子を含む干渉計は、密閉室内に収容されており、その密閉室内部の湿度を低く保つために、乾燥空気をパージする、水蒸気を除去しうるシリカゲル等の乾燥剤を内蔵する、水分を系外へ排出する除湿機を設ける、などの方法が利用されている。 In order to prevent the deliquescence of the element, it is only necessary to house the element with deliquescence in an airtight space with low humidity and completely shut off the outside air to prevent the entry and exit of water vapor. It is difficult to form an airtight space that can maintain an airtight state for a long period of time, which is very expensive. In general, an interferometer including an optical element is accommodated in a sealed chamber. In order to keep the humidity in the sealed chamber low, a desiccant such as silica gel that purges dry air and removes water vapor is used. Methods such as incorporating a dehumidifier that discharges moisture out of the system are used.

例えば、潮解性を有する光学材料と赤外光源用ヒータとを使用する干渉計を入れた密閉室で、赤外光源用ヒータの近傍に乾燥剤を入れた箱体を配置し、この箱体には、大気側と連通する第1開口及び密閉室と連通する第2開口とを設け、この2つの開口のいずれか片方のみを開くようにする連動弁を備えたものが提案されている(特許文献1参照)。 For example, in a sealed chamber containing an interferometer that uses a deliquescent optical material and an infrared light source heater, a box containing a desiccant is placed in the vicinity of the infrared light source heater. Has been proposed that includes a first opening that communicates with the atmosphere side and a second opening that communicates with the sealed chamber and includes an interlocking valve that opens only one of the two openings (patent) Reference 1).

特開平10−253454号公報JP-A-10-253454

FTIRで用いられる光源は、赤外領域の光を発生する光源であり、熱を発している。したがって、一般的にFTIRの装置は、電源が入っているときには光源により暖められて室温よりも高温になり、電源を切ると室温に戻る。このときの温度差により、密閉された干渉計の内部の気体は、膨張、収縮を繰り返していると考えられる。 A light source used in FTIR is a light source that generates light in the infrared region, and generates heat. Therefore, in general, the FTIR apparatus is warmed by the light source when the power is turned on and becomes higher than room temperature, and returns to room temperature when the power is turned off. It is considered that the gas inside the sealed interferometer is repeatedly expanded and contracted due to the temperature difference at this time.

したがって、密閉室内の圧力は変化しており、温度が上がり密閉室内の圧力が高くなった際には、密閉室内の気体が一部、外部へ漏れ出していると考えられる。その後、室温に戻れば、密閉室内の圧力は下がり、外部の空気が密閉室内へ侵入し、同時に水蒸気が導入され、湿度が高くなる原因となる。またこのとき、外部の空気中には、水蒸気以外にも、赤外分光測定の妨害となる有機溶媒などが含まれている可能性があり、外部空気による汚染が起こることも考えられる。 Therefore, the pressure in the sealed chamber is changed, and it is considered that a part of the gas in the sealed chamber leaks to the outside when the temperature rises and the pressure in the sealed chamber increases. After that, when the temperature returns to room temperature, the pressure in the sealed chamber decreases, and external air enters the sealed chamber, and at the same time, water vapor is introduced, leading to an increase in humidity. At this time, in addition to water vapor, the outside air may contain an organic solvent that interferes with infrared spectroscopic measurement, and contamination by external air may occur.

また、除湿機により常時密閉室内の水蒸気を系外へ排出させて、低い湿度に保つことも考えられるが、一般的に、除湿機は高価であり、また、除湿機を動作させるための電力も必要である。 In addition, it is conceivable that the dehumidifier always discharges the water vapor in the sealed room out of the system and keeps it at a low humidity, but in general, the dehumidifier is expensive, and the power for operating the dehumidifier is also low. is necessary.

また、電源を常に通電しておき、装置の温度を一定にしておくことで、密閉室内の気体の膨張収縮を防ぐことも考えられるが、この場合には、常時通電により電気代がかかったり、部品の寿命が短くなるなどの欠点があり、必要時のみ通電することが望まれる。 In addition, it may be possible to prevent the expansion and contraction of the gas in the sealed chamber by always energizing the power source and keeping the temperature of the device constant. There are drawbacks such as shortening the life of parts, and it is desirable to energize only when necessary.

本考案の赤外分光光度計は、内部に、潮解性を持つ光学素子と、赤外光源とを備えた密閉室をもつ赤外分光光度計に係る考案であって、前記密閉室は、その一部に膨張部を備えたことを特徴とする。 An infrared spectrophotometer according to the present invention is an idea related to an infrared spectrophotometer having a sealed chamber provided with an optical element having deliquescence and an infrared light source inside, the sealed chamber being A part is provided with an inflating part.

本考案のFTIRでは、潮解性を有する材料にて構成される素子を収容している密閉空間は、その一部に膨張部を備えており、その膨張部が変形することで内部の体積は自由に変化することができる。密閉空間内の気体が温度変化により膨張した際には、膨張部が変形して空間内の体積が増加する。反対に内部の気体が収縮した際にも膨張部が変形して空間内の体積が減少する。このとき、密閉室内と外気で圧力がほぼ同じに保たれたまま、空間内の体積は変化するため、密閉空間内への外気の進入を防ぐことができる。 In the FTIR of the present invention, the sealed space containing the element composed of a material having deliquescence has an expansion part in a part thereof, and the internal part is free by deformation of the expansion part. Can be changed. When the gas in the sealed space expands due to a temperature change, the expansion portion is deformed and the volume in the space increases. Conversely, when the gas inside contracts, the expanding portion is deformed and the volume in the space is reduced. At this time, since the volume in the space changes while the pressure is kept substantially the same between the sealed chamber and the outside air, it is possible to prevent the outside air from entering the sealed space.

したがって、密閉室内に水蒸気が進入することがなく、密閉空間内は低湿度に保たれ、素子が潮解するのを防ぐことができる。また同時に、外気中に含まれる汚染原因となるガスが侵入することもない。 Therefore, water vapor does not enter the sealed chamber, the inside of the sealed space is kept at a low humidity, and the device can be prevented from deliquescent. At the same time, the gas that causes contamination contained in the outside air does not enter.

その結果、通常の乾燥剤や除湿機を設けなくすることもでき、乾燥剤と併用した場合でも、乾燥剤の交換頻度を下げることが可能となる。また、常時通電する必要もない。 As a result, a normal desiccant or a dehumidifier can be omitted, and even when used in combination with a desiccant, it is possible to reduce the frequency of replacement of the desiccant. Moreover, it is not necessary to energize constantly.

以下、本考案の実施例について図面を参照して説明する。図1は本考案の一実施例のFTIRの概略構成図であり、図2はその干渉計部分の断面図を示している。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of an FTIR according to an embodiment of the present invention, and FIG. 2 is a sectional view of an interferometer portion thereof.

図1において、干渉計は、赤外光源11、集光鏡12、コリメータ鏡13、ビームスプリッタ14、固定鏡15、移動鏡16等から構成され、スペクトル測定を行うための干渉赤外光を生成する。すなわち、赤外光源11から出射された赤外光は、集光鏡12、コリメータ鏡13を介してビームスプリッタ14に照射され、ここで固定鏡15及び移動鏡16の二方向に分割される。固定鏡15及び移動鏡16にてそれぞれ反射した光はビームスプリッタ14によって再び合一され、放物面鏡21へ向かう光路に送られる。このとき、移動鏡16は前後(図1中の矢印Mの方向)に往復移動しているため、合一された光は時間的に振幅が変動する干渉光(インターフェログラム)となる。放物面鏡21にて集光された光は試料室22内に照射され、試料室22に配置された試料23を通過した光は楕円面鏡24により赤外光検出器25へ集光される。 In FIG. 1, the interferometer includes an infrared light source 11, a condensing mirror 12, a collimator mirror 13, a beam splitter 14, a fixed mirror 15, a moving mirror 16, and the like, and generates interfering infrared light for spectrum measurement. To do. That is, the infrared light emitted from the infrared light source 11 is applied to the beam splitter 14 through the condensing mirror 12 and the collimator mirror 13, and is divided into two directions, a fixed mirror 15 and a moving mirror 16. The lights reflected by the fixed mirror 15 and the movable mirror 16 are combined again by the beam splitter 14 and sent to the optical path toward the parabolic mirror 21. At this time, since the movable mirror 16 reciprocates back and forth (in the direction of the arrow M in FIG. 1), the combined light becomes interference light (interferogram) whose amplitude varies with time. The light collected by the parabolic mirror 21 is irradiated into the sample chamber 22, and the light that has passed through the sample 23 disposed in the sample chamber 22 is condensed by the ellipsoidal mirror 24 onto the infrared light detector 25. The

また、干渉計内部には、レーザ光源17、レーザ用ミラー18、ビームスプリッタ14、固定鏡15、移動鏡16が備えられ、干渉縞信号を得るためのレーザ干渉光を発生させている。すなわち、レーザ光源17から出射された光はレーザ用ミラー18を介してビームスプリッタ14に照射され、上記赤外光と同様に干渉光となって放物面鏡21の方向へ送られる。このレーザ干渉光は非常に小さな径の光束となって進行するため、光路中に挿入されたレーザ用ミラー19により反射されてレーザ検出器20に導入される。 The interferometer includes a laser light source 17, a laser mirror 18, a beam splitter 14, a fixed mirror 15, and a movable mirror 16, and generates laser interference light for obtaining an interference fringe signal. That is, the light emitted from the laser light source 17 is applied to the beam splitter 14 via the laser mirror 18 and is transmitted to the parabolic mirror 21 as interference light in the same manner as the infrared light. Since this laser interference light travels as a light beam having a very small diameter, it is reflected by the laser mirror 19 inserted in the optical path and introduced into the laser detector 20.

レーザ検出器20の受光信号、つまりレーザ光干渉縞信号は、赤外干渉光に対する受光信号をサンプリングするためのパルス信号として利用される。なお、このレーザ光干渉縞信号は安定した移動鏡の摺動制御を行うためにも利用される。赤外光検出器25で得られた受光信号はデータ処理部30へ送られ、スペクトルを作成する。 The light reception signal of the laser detector 20, that is, the laser light interference fringe signal is used as a pulse signal for sampling the light reception signal with respect to the infrared interference light. This laser beam interference fringe signal is also used to perform stable sliding control of the movable mirror. The received light signal obtained by the infrared light detector 25 is sent to the data processing unit 30 to create a spectrum.

上記干渉計を構成する光源11やビームスプリッタ14は密閉室1内に配置されており、外気と遮断されている。これは、主として、ビームスプリッタ14が潮解性を有するKBrを用いて構成されているため、気密室内部の湿度を低く保っておく必要があるためである。さらに、密閉室1内部には、乾燥剤を備えているのが好ましい。 The light source 11 and the beam splitter 14 constituting the interferometer are arranged in the sealed chamber 1 and are blocked from the outside air. This is mainly because the humidity in the airtight chamber needs to be kept low because the beam splitter 14 is configured using KBr having deliquescence. Furthermore, it is preferable to provide a desiccant inside the sealed chamber 1.

図2は、本考案の一実施例によるFTIRの断面図である。密閉室1は干渉計を収容する密閉室で、筐体下部7および筐体上部6内に配設されている。密閉室1内には、図1に示されるように赤外光源11、移動鏡16、ビームスプリッタ14などが設置されている。密閉室1は、その下部に袋3を備えており、内部は外気から遮断された密閉空間を構成している。密閉室1は、金属製のベース4上にカバー5が設置され、ベース4に設けられた穴部2を介して、袋3が連通されることにより構成されている。ベース4とカバー5の接続部分は、樹脂製のパッキン等でシールされている。袋3は、特に限定はされないが、変形させるために必要な力ができるだけ小さくなるような材質、例えば、内側に不透性の高いナイロン系樹脂をラミネートしたフィルムにより構成されるのが好ましい。大きさや形状についても、特に限定されず、容易に膨張/収縮可能な、大きな力がかからなくても内部の容積が変化し得る形状であればよく、筒状で内部にシリンダを持ち、空気の膨張、収縮によりこのシリンダの位置が変化するような構造になったものであってもよい。 FIG. 2 is a cross-sectional view of an FTIR according to an embodiment of the present invention. The sealed chamber 1 is a sealed chamber that houses the interferometer, and is disposed in the lower housing portion 7 and the upper housing portion 6. In the sealed chamber 1, as shown in FIG. 1, an infrared light source 11, a movable mirror 16, a beam splitter 14 and the like are installed. The sealed chamber 1 includes a bag 3 at the lower portion thereof, and the inside constitutes a sealed space that is shielded from the outside air. The sealed chamber 1 is configured by a cover 5 installed on a metal base 4 and a bag 3 communicating with each other through a hole 2 provided in the base 4. The connecting portion between the base 4 and the cover 5 is sealed with resin packing or the like. The bag 3 is not particularly limited, but is preferably composed of a material that minimizes the force required for deformation, for example, a film in which a highly impervious nylon resin is laminated. There is no particular limitation on the size and shape, and any shape that can be easily expanded / contracted and that can change the internal volume without applying a large force can be used. It may be structured such that the position of the cylinder changes due to expansion and contraction.

本装置を使用していない(電源が入っていない)状態では、図2(a)のように袋3は中に気体がなく、つぶれている。使用に際し電源を入れると、赤外用の光源11は発熱するため、密閉室1内の気体は暖められ、膨張し始めることになる。このとき、袋部3は変形自在な柔らかな材質により形成されているため、膨張によって体積が増えた密閉室内の気体は、穴部2を通って袋3へ流入していき、図2(b)に示すように袋3が膨らんだ状態になる。このとき、密閉室内部と外気には、ほとんど圧力差はないと考えられ、仮に完全な気密状態ではなくても、密閉室内部の気体が外気へ流出することはない。 When the apparatus is not used (the power is not turned on), the bag 3 is crushed because there is no gas inside as shown in FIG. When the power is turned on during use, the infrared light source 11 generates heat, so that the gas in the sealed chamber 1 is warmed and begins to expand. At this time, since the bag portion 3 is formed of a soft material that can be deformed, the gas in the sealed chamber whose volume has increased due to the expansion flows into the bag 3 through the hole portion 2, and FIG. ), The bag 3 is inflated. At this time, it is considered that there is almost no pressure difference between the inside of the sealed chamber and the outside air, and the gas inside the sealed chamber does not flow out to the outside air even if it is not completely airtight.

電源を切ると光源は発熱しなくなるので、密閉室内部の気体は装置の周囲の温度により冷やされることとなり、収縮し始める。収縮によって気体の体積が減ると、図2(c)に示されるように、袋3内の気体がケース側へ流入し、その結果、袋3は再びつぶれた状態になる。このとき、密閉室内部と外気には、ほとんど圧力差はないと考えられ、密閉室内部に外部の気体が流入することはない。 Since the light source does not generate heat when the power is turned off, the gas in the sealed chamber is cooled by the ambient temperature of the apparatus and begins to contract. When the volume of the gas is reduced by the contraction, as shown in FIG. 2C, the gas in the bag 3 flows into the case, and as a result, the bag 3 is crushed again. At this time, it is considered that there is almost no pressure difference between the inside of the sealed chamber and the outside air, and no external gas flows into the inside of the sealed chamber.

このとき、袋3は柔らかな素材により形成されているため、密閉室内の気体が膨張、収縮しても容易に変形し、密閉室内部と外気での圧力差は生じないので、気体の移動は起こらない。したがって、密閉室外の空気(水蒸気)が密閉室内へ導入されることはない。 At this time, since the bag 3 is made of a soft material, it easily deforms even when the gas in the sealed chamber expands and contracts, and there is no pressure difference between the inside of the sealed chamber and the outside air. Does not happen. Therefore, air (water vapor) outside the sealed chamber is not introduced into the sealed chamber.

本考案の一実施例によるFTIRの概略構成図。The schematic block diagram of FTIR by one Example of this invention. 本考案の一実施例によるFTIRの断面図。1 is a cross-sectional view of an FTIR according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 ・・・密閉室
2 ・・・穴部
3 ・・・袋部
4 ・・・ベース
5 ・・・カバー
6 ・・・筐体上部
7 ・・・筐体下部
11・・・光源
12・・・集光鏡
13・・・コリメータ鏡
14・・・ビームスプリッタ
15・・・固定鏡
16・・・移動鏡
17・・・レーザ光源
18・・・レーザ用ミラー
19・・・レーザ用ミラー
20・・・レーザ検出器
21・・・放物面鏡
22・・・試料室
23・・・サンプル
24・・・楕円面鏡
25・・・赤外光検出器
30・・・データ処理部
DESCRIPTION OF SYMBOLS 1 ... Sealed chamber 2 ... Hole part 3 ... Bag part 4 ... Base 5 ... Cover 6 ... Case upper part 7 ... Case lower part 11 ... Light source 12 ... · Condensing mirror 13 ··· Collimator mirror 14 ··· Beam splitter 15 · · · Fixed mirror 16 · · · Moving mirror 17 · · · Laser light source 18 · · · Laser mirror 19 · · · Laser mirror 20 · · · ..Laser detector 21 ... parabolic mirror 22 ... sample chamber 23 ... sample 24 ... ellipsoidal mirror 25 ... infrared light detector 30 ... data processing unit

Claims (1)

内部に、潮解性を持つ光学素子と、赤外光源とを備えた密閉室をもつ赤外分光光度計であって、前記密閉室は、その一部に膨張収縮部を備えたことを特徴とする赤外分光光度計。 An infrared spectrophotometer having a sealed chamber provided with an optical element having deliquescence and an infrared light source inside, wherein the sealed chamber has an expansion / contraction part in a part thereof Infrared spectrophotometer.
JP2005004662U 2005-06-21 2005-06-21 Infrared spectrophotometer Expired - Fee Related JP3113903U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004662U JP3113903U (en) 2005-06-21 2005-06-21 Infrared spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004662U JP3113903U (en) 2005-06-21 2005-06-21 Infrared spectrophotometer

Publications (1)

Publication Number Publication Date
JP3113903U true JP3113903U (en) 2005-09-22

Family

ID=43276244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004662U Expired - Fee Related JP3113903U (en) 2005-06-21 2005-06-21 Infrared spectrophotometer

Country Status (1)

Country Link
JP (1) JP3113903U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534321A (en) * 2010-08-19 2013-09-02 パーキンエルマー・シンガポール・ピーティーイー・リミテッド Spectrometer
WO2023042454A1 (en) 2021-09-14 2023-03-23 株式会社島津製作所 Fourier transform infrared spectrophotometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534321A (en) * 2010-08-19 2013-09-02 パーキンエルマー・シンガポール・ピーティーイー・リミテッド Spectrometer
US9322703B2 (en) 2010-08-19 2016-04-26 Perkinelmer Singapore Pte Ltd. Spectroscopic instrument
WO2023042454A1 (en) 2021-09-14 2023-03-23 株式会社島津製作所 Fourier transform infrared spectrophotometer

Similar Documents

Publication Publication Date Title
US7797983B2 (en) Method and system for detecting one or more gases or gas mixtures and/or for measuring the concentration of one or more gases or gas mixtures
US5170064A (en) Infrared-based gas detector using a cavity having elliptical reflecting surface
US4557603A (en) Detection means for the selective detection of gases, based on optical spectroscopy
US8467051B2 (en) Widely-tunable semiconductor source integrated in windowed hermetic package
JP2002539447A (en) Infrared gas analyzer and method of operating the analyzer
US20230014558A1 (en) Self-calibrated spectroscopic and ai-based gas analyzer
DE102005031857B8 (en) Optical analyzer
US20180188213A1 (en) Photoacoustic gas analyzer
US10393591B2 (en) Electromagnetic radiation detector using a planar Golay cell
Buchholz et al. HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data
CA3025276A1 (en) Measuring device and method for sensing different gases and gas concentrations
JP3113903U (en) Infrared spectrophotometer
JP2010230370A (en) Infrared spectrophotometer and auxiliary device
Sang et al. Impact of H2O on atmospheric CH4 measurement in near-infrared absorption spectroscopy
JP2011169633A (en) Gas concentration calculation device and gas concentration measurement module
Wang et al. Monitoring ambient nitrate radical by open-path cavity-enhanced absorption spectroscopy
JP2009014465A (en) Infrared gas analyzer
US8729475B1 (en) Absorption biased single beam NDIR gas sensor
JP6201552B2 (en) Fourier transform infrared spectrophotometer
EP4191231B1 (en) Particle sensor
Graf Balloon-borne Atmospheric Water Vapor Measurement by Laser Absorption Spectroscopy
Theuss et al. Miniaturized photoacoustic gas sensor for CO 2
Gerlach et al. Non-dispersive Infrared Sensors
JP7406766B2 (en) gas analyzer
US11119037B2 (en) Small form factor spectrally selective absorber with high acceptance angle for use in gas detection

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees