JP3107986B2 - Optical fiber magnetic sensor - Google Patents

Optical fiber magnetic sensor

Info

Publication number
JP3107986B2
JP3107986B2 JP07041470A JP4147095A JP3107986B2 JP 3107986 B2 JP3107986 B2 JP 3107986B2 JP 07041470 A JP07041470 A JP 07041470A JP 4147095 A JP4147095 A JP 4147095A JP 3107986 B2 JP3107986 B2 JP 3107986B2
Authority
JP
Japan
Prior art keywords
optical fiber
magnetic
magnetostrictive material
magnetic sensor
magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07041470A
Other languages
Japanese (ja)
Other versions
JPH08233923A (en
Inventor
陵沢 佐藤
孝治 土橋
弘志 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP07041470A priority Critical patent/JP3107986B2/en
Publication of JPH08233923A publication Critical patent/JPH08233923A/en
Application granted granted Critical
Publication of JP3107986B2 publication Critical patent/JP3107986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、センシング部の温度変
動による雑音を抑制した干渉型光ファイバ磁気センサの
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an interference type optical fiber magnetic sensor which suppresses noise caused by temperature fluctuation of a sensing unit.

【0002】[0002]

【従来の技術】干渉型光ファイバセンサは磁気、加速度
等の物理量を検出するセンサである。従来、このような
磁気を検出する干渉型光ファイバセンサとしては、例え
ば、「Frank Bucholtz,K.P.Ko
o,George H Sigel,Jr.,and
Anthony Dandridge,“Optimi
zation of the Fiber/Metal
lic Glass Bond in Fiber−o
ptic Magnetic Sensors”,Jo
urnal of Lightwave Techno
logy,vol.LT−3.No.4,August
1985,pp814−817」に示されるようなも
のがあった。特に、この文献の図1に干渉型光ファイバ
センサの概略構成図が開示されている。
2. Description of the Related Art An interference type optical fiber sensor is a sensor for detecting physical quantities such as magnetism and acceleration. Conventionally, as an interference type optical fiber sensor for detecting such magnetism, for example, “Frank Bucholtz, KP Ko”
o, George H Sigel, Jr. , And
Anthony Dutchridge, “Optimi
Zation of the Fiber / Metal
lic Glass Bond in Fiber-o
optic Magnetic Sensors, ”Jo
urnal of Lightwave Techno
logic, vol. LT-3. No. 4, August
1985, pp 814-817 ". In particular, FIG. 1 of this document discloses a schematic configuration diagram of an interference type optical fiber sensor.

【0003】レーザ光源から出力された光を、光ファイ
バセンサに注入した後、光カプラで2つに分け、一方を
センシング光、もう一方をリファレンス光とし、センシ
ング光を通すセンシングファイバは、磁歪材料〔上記文
献ではアモルファス磁歪材料(Metallic Gl
ass)が使用されている〕に接着しておく。そこで、
磁歪材料に加わる磁界が変化すると、磁歪材料が歪むた
め、センシングファイバが伸び縮みし、センシングファ
イバを通過するセンシング光の位相が変化する。センシ
ングファイバを通過したセンシング光とリファレンス光
を干渉させ、O/E変換すると、O/E出力の位相も磁
界に比例して変化するので、これを復調して磁界を検出
する。
After injecting light output from a laser light source into an optical fiber sensor, the light is split into two by an optical coupler, one of which is used as sensing light, the other is used as reference light, and a sensing fiber through which sensing light passes is made of a magnetostrictive material. [In the above document, an amorphous magnetostrictive material (Metallic Gl
ass) is used]. Therefore,
When the magnetic field applied to the magnetostrictive material changes, the magnetostrictive material is distorted, so that the sensing fiber expands and contracts, and the phase of the sensing light passing through the sensing fiber changes. If the sensing light and the reference light that have passed through the sensing fiber interfere with each other and undergo O / E conversion, the phase of the O / E output also changes in proportion to the magnetic field, and this is demodulated to detect the magnetic field.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の光ファイバ磁気センサでは、センシングファイ
バとリファレンスファイバの温度変動や磁歪材料の線膨
張でも、センシング光とリファレンス光の位相が大きく
変化する。特に、検出する磁界の周波数帯とセンサの温
度変動の周波数帯が同じ場合には、検出しようとする磁
界による位相変化が温度変動による位相変化にマスクさ
れ、検出できなくなることがあるといった問題があっ
た。
However, in the above-mentioned conventional optical fiber magnetic sensor, even if the temperature of the sensing fiber and the reference fiber fluctuates or the linear expansion of the magnetostrictive material, the phase of the sensing light and the reference light greatly changes. In particular, when the frequency band of the magnetic field to be detected is the same as the frequency band of the temperature fluctuation of the sensor, the phase change due to the magnetic field to be detected is masked by the phase change due to the temperature fluctuation, and the detection may not be possible. Was.

【0005】本発明は、上記問題点を除去し、センシン
グ部の温度変動による雑音を抑制することができるとと
もに、感度の高い光ファイバ磁気センサを提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical fiber magnetic sensor which eliminates the above problems, suppresses noise caused by temperature fluctuations of the sensing unit, and has high sensitivity.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 (1)光ファイバ磁気センサにおいて、少なくともバイ
アス磁界を加える磁石と、前記バイアス磁界が相反する
方向に加えられるように配置される一対の磁歪材料を有
する閉じた磁気回路と、前記一対の磁歪材料に個別に接
着される一対の同じ長さの光ファイバとを設けるように
したものである。
According to the present invention, there is provided an optical fiber magnetic sensor comprising: a magnet for applying at least a bias magnetic field; and a magnet for applying the bias magnetic field in opposite directions. A closed magnetic circuit having a pair of magnetostrictive materials disposed and a pair of optical fibers of the same length individually bonded to the pair of magnetostrictive materials are provided.

【0007】(2)上記(1)記載の光ファイバ磁気セ
ンサにおいて、前記光ファイバは前記磁歪材料に巻回さ
れるコイルである。 (3)上記(1)記載の光ファイバ磁気センサにおい
て、前記磁石は、永久磁石または電磁石である。 (4)上記(1)記載の光ファイバ磁気センサにおい
て、前記磁気回路は、磁石と磁歪材料と強磁性体を有す
る。
(2) In the optical fiber magnetic sensor according to the above (1), the optical fiber is a coil wound around the magnetostrictive material. (3) In the optical fiber magnetic sensor according to (1), the magnet is a permanent magnet or an electromagnet. (4) In the optical fiber magnetic sensor according to (1), the magnetic circuit includes a magnet, a magnetostrictive material, and a ferromagnetic material.

【0008】[0008]

【作用】本発明によれば、光ファイバ磁気センサにおい
て、磁歪材料または磁歪材料と強磁性体で閉じた磁気回
路を構成し、永久磁石または電磁石でバイアス磁界を加
え、磁歪材料の相反する方向にバイアス磁石が加わって
いる部分に、ほぼ同じ長さの一対の光ファイバを接着し
た構造により、磁気信号に対してのみプッシュ・プル動
作させることにより、温度変動等の外乱の影響を抑制す
ることができる。
According to the present invention, in an optical fiber magnetic sensor, a magnetic circuit closed by a magnetostrictive material or a magnetostrictive material and a ferromagnetic material is formed, a bias magnetic field is applied by a permanent magnet or an electromagnet, and a magnetic field is applied in a direction opposite to the magnetostrictive material. A structure in which a pair of optical fibers of approximately the same length is bonded to the part where the bias magnet is applied, the push-pull operation is performed only for the magnetic signal, thereby suppressing the influence of disturbance such as temperature fluctuation. it can.

【0009】特に、第1のファイバコイルと第2のファ
イバコイルのファイバ長が、ほぼ均一になるように構成
したので、2つの光ファイバコイル内で起こる温度変動
による位相変化が同量同方向になる。したがって、2つ
の光ファイバコイルを通過した光の位相差を検出する
と、温度変動による位相変化が抑制される。
In particular, since the first and second fiber coils are configured so that the fiber lengths thereof are substantially uniform, phase changes due to temperature fluctuations occurring in the two optical fiber coils are in the same direction in the same amount. Become. Therefore, when the phase difference between the lights passing through the two optical fiber coils is detected, the phase change due to the temperature fluctuation is suppressed.

【0010】また、磁気信号に対しては2つの光の位相
が相反する方向に変化するため感度が2倍になる。
Further, the sensitivity of the magnetic signal is doubled because the phases of the two lights change in opposite directions.

【0011】[0011]

【実施例】以下、本発明の実施例について図を参照しな
がら詳細に説明する。図1は本発明の第1実施例を示す
光ファイバ磁気センサの全体構成図である。この図に示
すように、コの字形の磁歪材料2と立方体形状の永久磁
石3で磁気回路1を構成する。そのコの字形磁歪材料2
は平行な2辺を形成する第1の磁歪部2aと第2の磁歪
部2bと共通な磁歪部2cからなっている。そのコの字
形磁歪材料2の平行な2辺を形成する第1の磁歪部2a
と第2の磁歪部2bに、それぞれ第1の光ファイバコイ
ル4と第2の光ファイバコイル5を接着する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an overall configuration diagram of an optical fiber magnetic sensor according to a first embodiment of the present invention. As shown in this figure, a magnetic circuit 1 is composed of a U-shaped magnetostrictive material 2 and a cubic permanent magnet 3. U-shaped magnetostrictive material 2
Is composed of a magnetostrictive portion 2c common to the first magnetostrictive portion 2a and the second magnetostrictive portion 2b forming two parallel sides. A first magnetostrictive portion 2a forming two parallel sides of the U-shaped magnetostrictive material 2
The first optical fiber coil 4 and the second optical fiber coil 5 are bonded to the first and second magnetostrictive portions 2b, respectively.

【0012】ここで、第1の光ファイバコイル4と第2
の光ファイバコイル5のファイバ長はほぼ均一にする。
第1,第2光ファイバコイル4,5の両端にそれぞれ光
カプラ6,7を接続し、一方の光カプラ6はレーザ光源
11の出力、もう一方の光カプラ7はO/E変換器12
の入力に接続する。O/E変換器12の出力にはパッシ
ブ・ホモダイン復調器13を接続する。
Here, the first optical fiber coil 4 and the second
The fiber length of the optical fiber coil 5 is made substantially uniform.
Optical couplers 6 and 7 are connected to both ends of the first and second optical fiber coils 4 and 5, respectively. One optical coupler 6 is an output of the laser light source 11, and the other optical coupler 7 is an O / E converter 12
Connect to the input of. The output of the O / E converter 12 is connected to a passive homodyne demodulator 13.

【0013】図2は本発明の第1実施例を示す光ファイ
バ磁気センサの磁気センシング部の動作原理を示す図で
ある。この図を参照しながら、2つの光ファイバコイル
4,5と2つの光カプラ6,7で構成された磁気センシ
ング部10(図1参照)の動作原理を説明する。コの字
形の磁歪材料2と永久磁石3で磁気回路を構成すると、
コの字形の磁歪材料2の平行な2辺を形成する第1の磁
歪部2aの領域Aと、第2の磁歪部2bの領域Bには永
久磁石3により相反する方向にバイアス磁界が加わって
いる。
FIG. 2 is a diagram showing the principle of operation of the magnetic sensing unit of the optical fiber magnetic sensor according to the first embodiment of the present invention. The operation principle of the magnetic sensing unit 10 (see FIG. 1) composed of two optical fiber coils 4 and 5 and two optical couplers 6 and 7 will be described with reference to FIG. When a magnetic circuit is formed by the U-shaped magnetostrictive material 2 and the permanent magnet 3,
A bias magnetic field is applied to the region A of the first magnetostrictive portion 2a and the region B of the second magnetostrictive portion 2b, which form two parallel sides of the U-shaped magnetostrictive material 2, by the permanent magnet 3 in opposite directions. I have.

【0014】そこで、このコの字形の磁歪材料2に磁気
信号が加わると、領域Aと領域Bの磁界が一方は強くな
り、もう一方は同じだけ弱くなる。このとき、コの字形
の磁歪材料2の磁歪により第1の光ファイバコイル4と
第2の光ファイバコイル5は一方は伸びる方向に、もう
一方は縮む方向に歪む。すると、レーザ光源11から出
力した光は、光カプラ6で2つに分かれ、一方は第1の
光ファイバコイル4、もう一方は第2の光ファイバコイ
ル5を通過する。この2つの光ファイバコイル4,5を
通過した光の位相は、光ファイバの歪みにより磁気信号
に比例した大きさで相反する方向に変化する。2つの光
ファイバコイル4,5を通過した光を2つ目の光カプラ
7で干渉させ、O/E変換器12でO/E変換すると、
その出力の位相に2つの光ファイバコイルを通過した光
の位相差が現れる。この位相差をパッシブ・ホモダイン
復調器13で復調することにより、磁気信号を検出する
ことができる。
Therefore, when a magnetic signal is applied to the U-shaped magnetostrictive material 2, one of the magnetic fields in the regions A and B becomes stronger and the other becomes weaker by the same amount. At this time, due to the magnetostriction of the U-shaped magnetostrictive material 2, one of the first optical fiber coil 4 and the second optical fiber coil 5 is distorted in the direction of extension and the other is contracted in the direction of contraction. Then, the light output from the laser light source 11 is split into two by the optical coupler 6, one passes through the first optical fiber coil 4 and the other passes through the second optical fiber coil 5. The phases of the light passing through the two optical fiber coils 4 and 5 change in opposite directions with a magnitude proportional to the magnetic signal due to distortion of the optical fiber. When light passing through the two optical fiber coils 4 and 5 is caused to interfere by the second optical coupler 7 and O / E converted by the O / E converter 12,
The phase difference of the light passing through the two optical fiber coils appears in the phase of the output. By demodulating this phase difference with the passive homodyne demodulator 13, a magnetic signal can be detected.

【0015】図3は本発明の第2実施例を示す光ファイ
バ磁気センサの全体構成図である。この図に示すよう
に、2本の棒状磁歪材料、つまり、第1の棒状磁歪材料
22aと第2の棒状磁歪材料22bを平行に配置し、そ
の両端にU字型永久磁石23a,23bを施すことによ
り、磁気回路21を構成する。第1の棒状磁歪材料22
aに、第1の光ファイバコイル24を、第2の棒状磁歪
材料22bに、第2の光ファイバコイル25をそれぞれ
接着する。
FIG. 3 is an overall configuration diagram of an optical fiber magnetic sensor according to a second embodiment of the present invention. As shown in this figure, two rod-shaped magnetostrictive materials, that is, a first rod-shaped magnetostrictive material 22a and a second rod-shaped magnetostrictive material 22b are arranged in parallel, and U-shaped permanent magnets 23a and 23b are applied to both ends thereof. Thus, the magnetic circuit 21 is configured. First rod-shaped magnetostrictive material 22
a, the first optical fiber coil 24 is bonded to the second rod-shaped magnetostrictive material 22b, and the second optical fiber coil 25 is bonded to the second rod-shaped magnetostrictive material 22b.

【0016】ここで、第1の光ファイバコイル24と第
2の光ファイバコイル25のファイバ長はほぼ均一にす
る。第1,第2の光ファイバコイル24,25の両端に
それぞれ光カプラ26,27を接続し、一方の光カプラ
26はレーザ光源31の出力、もう一方の光カプラ27
にはO/E変換器32の入力にそれぞれ接続する。O/
E変換器32の出力には、パッシブ・ホモダイン復調器
33を接続する。
Here, the fiber lengths of the first optical fiber coil 24 and the second optical fiber coil 25 are made substantially uniform. Optical couplers 26 and 27 are connected to both ends of the first and second optical fiber coils 24 and 25, respectively. One optical coupler 26 is the output of the laser light source 31 and the other optical coupler 27 is
Are connected to the input of the O / E converter 32, respectively. O /
A passive homodyne demodulator 33 is connected to the output of the E converter 32.

【0017】U字型永久磁石23a,23bにより、相
反する方向にバイアス磁界が加わっている2本の棒状磁
歪材料22a,22bに磁気信号が加わると、例えば、
第1の棒状磁歪材料22a内の磁界は弱くなり、第2の
棒状磁歪材料22b内の磁界は同じだけ強くなる。すな
わち、磁歪材料内の磁界が一方は強くなり、もう一方は
同じだけ弱くなる。
When magnetic signals are applied to the two rod-shaped magnetostrictive materials 22a and 22b to which bias magnetic fields are applied in opposite directions by the U-shaped permanent magnets 23a and 23b, for example,
The magnetic field in the first rod-shaped magnetostrictive material 22a becomes weaker, and the magnetic field in the second rod-shaped magnetostrictive material 22b becomes stronger by the same amount. That is, the magnetic field in the magnetostrictive material is stronger on one side and weaker on the other side.

【0018】すると、磁歪材料の磁歪により、光ファイ
バコイルの一方は伸びる方向に、もう一方は縮む方向に
歪む。そこで、レーザ光源31から出力した光を、光カ
プラ26で2つに分け、その光を一方は第1の光ファイ
バコイル24を、もう一方は第2の光ファイバコイル2
5を通過させる。この2つの光ファイバコイル24,2
5を通過した光の位相は、光ファイバの歪みにより磁気
信号に比例した大きさで相反する方向に変化する。この
2つの光ファイバコイル24,25を通過した光を2つ
目の光カプラ27で干渉させ、O/E変換器32でO/
E変換すると、その出力の位相に2つの光ファイバコイ
ル24,25を通過した光の位相差が現れる。この位相
差をパッシブホモダイン復調器33で復調することによ
り、磁気信号を検出する。
Then, due to the magnetostriction of the magnetostrictive material, one of the optical fiber coils is distorted in the direction of extension and the other is distorted in the direction of contraction. Therefore, the light output from the laser light source 31 is divided into two by the optical coupler 26, and one of the lights is divided into the first optical fiber coil 24 and the other is divided into the second optical fiber coil 2.
Pass 5 These two optical fiber coils 24, 2
The phase of the light passing through 5 changes in opposite directions with a magnitude proportional to the magnetic signal due to distortion of the optical fiber. The light that has passed through the two optical fiber coils 24 and 25 is caused to interfere by the second optical coupler 27, and the O / E converter 32 performs O / E conversion.
When the E-conversion is performed, a phase difference between the lights passing through the two optical fiber coils 24 and 25 appears in the output phase. The phase difference is demodulated by a passive homodyne demodulator 33 to detect a magnetic signal.

【0019】磁気センシング部に第1の実施例ではコの
字形の磁歪材料と立方体形状の永久磁石、第2の実施例
では2本の棒状磁歪材料と2つのU字型永久磁石を設け
るように説明したが、これに限定されるものではなく、
磁歪材料や永久磁石の形は適宜変形することができ、永
久磁石と磁歪材料または永久磁石と磁歪材料と強磁性体
で閉じた磁気回路を構成すればよい。
In the first embodiment, a U-shaped magnetostrictive material and a cubic permanent magnet are provided in the magnetic sensing unit, and in the second embodiment, two bar-shaped magnetostrictive materials and two U-shaped permanent magnets are provided. Although explained, it is not limited to this,
The shape of the magnetostrictive material or the permanent magnet can be appropriately changed, and a magnetic circuit closed with the permanent magnet and the magnetostrictive material or the permanent magnet, the magnetostrictive material and the ferromagnetic material may be formed.

【0020】また、上記第1実施例及び第2実施例で
は、光ファイバコイルを磁歪材料の長手方向に巻き、接
着した例で説明したが、磁歪材料の周囲(円柱型磁歪材
料の場合は円周方向)に巻き、接着したものを用いるこ
ともできる。更に、上記第1実施例及び第2実施例で
は、磁歪材料に光ファイバコイルを接着した例で説明し
ているが、光ファイバをコイル状に巻いていなくてもよ
い。
Further, in the first and second embodiments, the optical fiber coil is wound in the longitudinal direction of the magnetostrictive material and is bonded, but the circumference of the magnetostrictive material (in the case of the cylindrical magnetostrictive material, the circular shape is used). It is also possible to use a material wound in the circumferential direction) and bonded. Furthermore, in the above-described first and second embodiments, an example in which the optical fiber coil is bonded to the magnetostrictive material has been described, but the optical fiber may not be wound in a coil shape.

【0021】また、上記実施例では永久磁石によりバイ
アス磁界を加えるようにしているが、これに代えて、電
磁石を用いるようにしてもよい。更に、上記第1実施例
及び第2実施例では、パッシブ・ホモダイン方式で復調
した例を説明したが、アクティブホモダイン方式、ヘテ
ロダイン方式等の他の復調方式を用いることもできる。
In the above embodiment, the bias magnetic field is applied by the permanent magnet, but an electromagnet may be used instead. Further, in the first and second embodiments, an example has been described in which demodulation is performed by the passive homodyne method. However, other demodulation methods such as an active homodyne method and a heterodyne method may be used.

【0022】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づき種々の変形が可能で
あり、それらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the gist of the present invention, and they are not excluded from the scope of the present invention.

【0023】[0023]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。光フ
ァイバ磁気センサにおいて、磁歪材料または磁歪材料と
強磁性体で閉じた磁気回路を構成し、永久磁石または電
磁石でバイアス磁界を加え、磁歪材料の相反する方向に
バイアス磁石が加わっている部分に、ほぼ同じ長さの一
対の光ファイバを接着した構造により、磁気信号に対し
てのみプッシュ・プル動作させることにより、温度変動
等の外乱の影響を抑制することができる。
As described above, according to the present invention, the following effects can be obtained. In the optical fiber magnetic sensor, a magnetic circuit closed with a magnetostrictive material or a magnetostrictive material and a ferromagnetic material is formed, a bias magnetic field is applied with a permanent magnet or an electromagnet, and a portion where a bias magnet is applied in a direction opposite to the magnetostrictive material, With a structure in which a pair of optical fibers having substantially the same length are bonded, a push-pull operation is performed only on a magnetic signal, so that the influence of disturbance such as temperature fluctuation can be suppressed.

【0024】特に、第1のファイバコイルと第2のファ
イバコイルのファイバ長が、ほぼ均一になるように構成
したので、2つの光ファイバコイル内で起こる温度変動
による位相変化が同量同方向になる。したがって、2つ
の光ファイバコイルを通過した光の位相差を検出する
と、温度変動による位相変化が抑制される。また、磁気
信号に対しては2つの光の位相が相反する方向に変化す
るため、感度が2倍になる。
In particular, since the fiber lengths of the first fiber coil and the second fiber coil are configured to be substantially uniform, phase changes due to temperature fluctuations occurring in the two optical fiber coils are generated in the same direction in the same amount. Become. Therefore, when the phase difference between the lights passing through the two optical fiber coils is detected, the phase change due to the temperature fluctuation is suppressed. In addition, the sensitivity is doubled because the phases of the two lights change in opposite directions with respect to the magnetic signal.

【0025】更に、磁気センシング部には電気回路を使
用していないため、深海などの悪条件下での磁気探知に
適している。また、光源とセンシング部、センシング部
とO/E変換器の間の伝送線に低損失な光ファイバを使
用しているため、遠隔地での磁気探知にも適している。
Further, since no electric circuit is used in the magnetic sensing unit, it is suitable for magnetic detection under bad conditions such as deep sea. In addition, since a low-loss optical fiber is used for the transmission line between the light source and the sensing unit and between the sensing unit and the O / E converter, it is suitable for magnetic detection in a remote place.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す光ファイバ磁気セン
サの全体構成図である。
FIG. 1 is an overall configuration diagram of an optical fiber magnetic sensor according to a first embodiment of the present invention.

【図2】本発明の第1実施例を示す光ファイバ磁気セン
サの磁気センシング部の動作原理を示す図である。
FIG. 2 is a diagram illustrating an operation principle of a magnetic sensing unit of the optical fiber magnetic sensor according to the first embodiment of the present invention.

【図3】本発明の第2実施例を示す光ファイバ磁気セン
サの全体構成図である。
FIG. 3 is an overall configuration diagram of an optical fiber magnetic sensor according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,21 磁気回路 2 コの字形の磁歪材料 2a 第1の磁歪部 2b 第2の磁歪部 2c 共通な磁歪部 3 永久磁石 4,24 第1の光ファイバコイル 5,25 第2の光ファイバコイル 6,7,26,27 光カプラ 10 磁気センシング部 11,31 レーザ光源 12,32 O/E変換器 13,33 パッシブ・ホモダイン復調器 22a 第1の棒状磁歪材料 22b 第2の棒状磁歪材料 23a,23b U字型永久磁石 1,21 Magnetic circuit 2 U-shaped magnetostrictive material 2a First magnetostrictive portion 2b Second magnetostrictive portion 2c Common magnetostrictive portion 3 Permanent magnet 4,24 First optical fiber coil 5,25 Second optical fiber coil 6, 7, 26, 27 Optical coupler 10 Magnetic sensing unit 11, 31 Laser light source 12, 32 O / E converter 13, 33 Passive homodyne demodulator 22a First rod-shaped magnetostrictive material 22b Second rod-shaped magnetostrictive material 23a, 23b U-shaped permanent magnet

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−156178(JP,A) 特開 平1−274084(JP,A) 特開 昭64−74477(JP,A) 特開 平2−293680(JP,A) 特開 平9−54148(JP,A) 特開 平8−248107(JP,A) 特開 平8−223924(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 33/00 - 33/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-156178 (JP, A) JP-A-1-274804 (JP, A) JP-A-64-74477 (JP, A) JP-A-2- 293680 (JP, A) JP-A-9-54148 (JP, A) JP-A-8-248107 (JP, A) JP-A-8-223924 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01R 33/00-33/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a)少なくともバイアス磁界を加える磁
石と、前記バイアス磁界が相反する方向に加えられるよ
うに配置される一対の磁歪材料を有する閉じた磁気回路
と、(b)前記一対の磁歪材料に個別に接着される一対
の同じ長さの光ファイバとを具備することを特徴とする
光ファイバ磁気センサ。
1. A closed magnetic circuit comprising: (a) a magnet for applying at least a bias magnetic field; and a pair of magnetostrictive materials arranged so that the bias magnetic field is applied in opposite directions; and (b) the pair of magnetostrictions. An optical fiber magnetic sensor comprising: a pair of equal length optical fibers individually bonded to a material.
【請求項2】 請求項1記載の光ファイバ磁気センサに
おいて、前記光ファイバは前記磁歪材料に巻回されるコ
イルである光ファイバ磁気センサ。
2. The optical fiber magnetic sensor according to claim 1, wherein said optical fiber is a coil wound around said magnetostrictive material.
【請求項3】 請求項1記載の光ファイバ磁気センサに
おいて、前記磁石は、永久磁石または電磁石である光フ
ァイバ磁気センサ。
3. The optical fiber magnetic sensor according to claim 1, wherein said magnet is a permanent magnet or an electromagnet.
【請求項4】 請求項1記載の光ファイバ磁気センサに
おいて、前記磁気回路は、磁石と磁歪材料と強磁性体を
有する光ファイバ磁気センサ。
4. The optical fiber magnetic sensor according to claim 1, wherein the magnetic circuit has a magnet, a magnetostrictive material, and a ferromagnetic material.
JP07041470A 1995-03-01 1995-03-01 Optical fiber magnetic sensor Expired - Fee Related JP3107986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07041470A JP3107986B2 (en) 1995-03-01 1995-03-01 Optical fiber magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07041470A JP3107986B2 (en) 1995-03-01 1995-03-01 Optical fiber magnetic sensor

Publications (2)

Publication Number Publication Date
JPH08233923A JPH08233923A (en) 1996-09-13
JP3107986B2 true JP3107986B2 (en) 2000-11-13

Family

ID=12609262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07041470A Expired - Fee Related JP3107986B2 (en) 1995-03-01 1995-03-01 Optical fiber magnetic sensor

Country Status (1)

Country Link
JP (1) JP3107986B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175746A (en) * 2007-01-19 2008-07-31 Oki Electric Ind Co Ltd Interference optical fiber sensor system and sensing method
JP2016099242A (en) * 2014-11-21 2016-05-30 住友電気工業株式会社 Interference type optical fiber sensor system and interference type optical fiber sensor head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175746A (en) * 2007-01-19 2008-07-31 Oki Electric Ind Co Ltd Interference optical fiber sensor system and sensing method
JP2016099242A (en) * 2014-11-21 2016-05-30 住友電気工業株式会社 Interference type optical fiber sensor system and interference type optical fiber sensor head

Also Published As

Publication number Publication date
JPH08233923A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
Yoshino et al. Fiber-optic Fabry-Perot interferometer and its sensor applications
US4456377A (en) Multimode fiber optic rotation sensor
AU777637B2 (en) Fiber-optic current sensor
US5493623A (en) PZT fiber optic modulator having a robust mounting and method of making same
EP0098875A4 (en) Quadrature fiber-optic interferometer matrix.
US4516021A (en) Fiber optic magnetic field sensor
WO2015055438A1 (en) Magnetic sensor arrangement
US4471219A (en) Amplitude mode magnetic sensors
US6043648A (en) Method for temperature calibration of an optical magnetic field measurement array and measurement array calibrated by the method
JP3107986B2 (en) Optical fiber magnetic sensor
CA2055978A1 (en) Optical fibre coil assemblies
US4656421A (en) Magnetic field sensors
JPH04216428A (en) Method for shielding magnetic elastic torque converter
NZ208276A (en) Optical polarisation variation sensor with compensating optical path
JP3030358B2 (en) Optical fiber magnetic sensor
JP3493552B2 (en) Optical fiber magnetic sensor
Mentzer Fiber optic sensors
JP4993782B2 (en) Optical fiber magnetic sensor
JP2001056348A (en) Optical fiber current sensor and electric line monitoring system to use the same
EP0092367B1 (en) Sensor using fiber interferometer
JPH08248107A (en) Interference type optical fiber sensor
US5331272A (en) Optical sensor for detecting an electric field via the Faraday effect
JPH0740061B2 (en) Optical fiber magnetic field sensor
JPH0740063B2 (en) Optical fiber magnetic field sensor
JPH04364420A (en) Light phase modulator and interference sensor using it

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees