JP3105992B2 - Fuel storage device - Google Patents
Fuel storage deviceInfo
- Publication number
- JP3105992B2 JP3105992B2 JP04083747A JP8374792A JP3105992B2 JP 3105992 B2 JP3105992 B2 JP 3105992B2 JP 04083747 A JP04083747 A JP 04083747A JP 8374792 A JP8374792 A JP 8374792A JP 3105992 B2 JP3105992 B2 JP 3105992B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- fuel storage
- pipe
- storage
- assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、原子炉に使用される
前、あるいは使用後の燃料体を収容する燃料貯蔵ラッ
ク、および燃料輸送・貯蔵容器等の燃料収納装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel storage rack for storing a fuel body before or after use in a nuclear reactor, and a fuel storage device such as a fuel transport / storage container.
【0002】[0002]
【従来の技術】一般に沸騰水型原子炉に使用される燃料
集合体は、図8の上要部斜視図に示すように、その上端
部には取扱い用のハンドル2が設けてあり、外周はチャ
ンネルボックス3で囲まれている。このチャンネルボッ
クス3はファスナ4によって一体に係止されている。2. Description of the Related Art A fuel assembly generally used in a boiling water reactor is provided with a handle 2 at an upper end thereof as shown in a perspective view of an upper part of FIG. It is surrounded by the channel box 3. The channel box 3 is integrally locked by a fastener 4.
【0003】またハンドル2の下のチャンネルボックス
3内には、図示しない多数の燃料棒が上部タイプレート
と下部タイプレート、およびスペーサによって規則正し
く配置されてバンドルが形成されており、そのバンドル
の上端に設けられた前記上部タイプレートにハンドル2
が取付けられて燃料集合体1が構成されている。[0003] In the channel box 3 below the handle 2, a number of fuel rods (not shown) are regularly arranged by an upper tie plate, a lower tie plate, and spacers to form a bundle. Handle 2 on the upper tie plate provided
Are attached to form the fuel assembly 1.
【0004】なお、以下の説明においては、多数の燃料
棒、上部タイプレート、下部タイプレートおよびスペー
サによって形成される前記バンドルを通常燃料バンドル
と称し、また、この燃料バンドルをチャンネルボックス
3内に収容してなるものを燃料集合体1と称する。さら
に、燃料バンドルと、この燃料集合体1とを総称して燃
料体と呼ぶものとする。In the following description, the bundle formed by a large number of fuel rods, an upper tie plate, a lower tie plate and spacers is called a normal fuel bundle, and this fuel bundle is housed in a channel box 3. This is referred to as a fuel assembly 1. Further, the fuel bundle and the fuel assembly 1 are collectively referred to as a fuel assembly.
【0005】原子炉に使用される以前、または使用済み
の燃料体は、原子炉施設の燃料貯蔵プール内に設置され
ている燃料貯蔵ラックに一定期間収容される。そして、
必要に応じて原子炉に装荷されたり、燃料輸送・貯蔵容
器等に収納される。前記燃料貯蔵ラックおよび燃料輸送
・貯蔵容器等の燃料収納装置に求められる機能は、充分
に燃料体の未臨界状態を維持しながら、多数の燃料集合
体を極力稠密に配置できることである。[0005] A fuel body before or used in a nuclear reactor is stored in a fuel storage rack installed in a fuel storage pool of a nuclear reactor facility for a certain period of time. And
If necessary, it is loaded into the reactor or stored in a fuel transport / storage container. The function required for the fuel storage device such as the fuel storage rack and the fuel transport / storage container is that a large number of fuel assemblies can be arranged as densely as possible while maintaining the subcritical state of the fuel body sufficiently.
【0006】図9の平面図および図10の上要部斜視図
は、燃料収納装置の一例である燃料貯蔵ラック5を示
し、燃料体である燃料集合体1の外形がほぼ角柱となっ
ていることから、この燃料体をできるだけ稠密に配置さ
せるために、燃料体を収納する角筒の燃料収納管6を複
数本正方配列させて、この周囲を大容器7で囲った構造
としている。初期段階の燃料貯蔵ラック5では、多数収
納した燃料体の充分な未臨界状態を維持するために、各
燃料収納管6の間に空隙を設けた構造としており、燃料
体をより稠密に貯蔵する上での阻害要因となっていた。A plan view of FIG. 9 and a perspective view of an upper part of FIG. 10 show a fuel storage rack 5 which is an example of a fuel storage device, and an outer shape of a fuel assembly 1 which is a fuel body is substantially a prism. Therefore, in order to arrange the fuel assemblies as densely as possible, a plurality of square-shaped fuel storage tubes 6 for storing the fuel assemblies are arranged in a square shape, and the periphery is surrounded by a large container 7. The fuel storage rack 5 in the initial stage has a structure in which a gap is provided between each fuel storage pipe 6 in order to maintain a sufficient subcritical state of a large number of stored fuel bodies, so that the fuel bodies are stored more densely. This was an obstacle to the above.
【0007】一方、燃料貯蔵ラック5を構成する構造材
は、安価で充分な強度を有するステンレス鋼が主要なも
のとなっていたが、多数の燃料体をより稠密に貯蔵する
上での前記阻害要因を解消するために、最近ではボロン
などの中性子吸収材を添加したステンレス鋼で構成した
燃料貯蔵ラックが開発されている。なお、以上は燃料貯
蔵ラック5について説明したが、その他の燃料収納装置
についても、その開発経緯は同様である。On the other hand, stainless steel, which is inexpensive and has sufficient strength, is mainly used as a structural material constituting the fuel storage rack 5, but this is an obstacle to storing many fuel bodies more densely. Recently, a fuel storage rack made of stainless steel to which a neutron absorbing material such as boron is added has been developed to eliminate the cause. Although the fuel storage rack 5 has been described above, the development history of other fuel storage devices is the same.
【0008】[0008]
【発明が解決しようとする課題】使用済核燃料を受け入
れる本格的な核燃料再処理施設の運転開始までには数年
の期間がありながら、使用済核燃料が蓄積されている間
の原子力発電施設の中間貯蔵設備に要求される性能は益
々高度なものとなってきている。また本格的な核燃料再
処理施設の運転開始後においても、原子力発電施設から
核燃料再処理施設への使用済核燃料の輸送時、核燃料再
処理施設における使用済核燃料の受入れ貯蔵時にも、そ
の効率上、燃料体がより稠密に貯蔵されることが望まし
い。このためには多くの燃料体を充分な未臨界状態を維
持しながら、より稠密に貯蔵する技術は、さらに重要な
課題となっていた。There is a period of several years before the operation of a full-scale nuclear fuel reprocessing facility that accepts spent nuclear fuel is started. The performance required of storage facilities is becoming increasingly sophisticated. Even after the full-scale operation of the nuclear fuel reprocessing facility has started, the efficiency of transporting spent nuclear fuel from the nuclear power generation facility to the nuclear fuel reprocessing facility, and receiving and storing spent nuclear fuel at the nuclear fuel reprocessing facility, It is desirable that the fuel bodies be stored more densely. For this purpose, the technique of storing many fuel bodies more densely while maintaining a sufficient subcritical state has become an even more important issue.
【0009】しかし、充分な未臨界状態を維持しながら
燃料体をより稠密に貯蔵するために従来行なわれてきた
手法は、前述したように、ボロンなどの中性子吸収材を
添加したステンレス鋼を開発する等、主に燃料収納装置
の構造材の改良に関するものであった。しかしながら、
一般にステンレス鋼等の金属材料に、ボロン等の中性子
吸収材を添加すると材料が硬化したり脆くなったり、加
工性と健全性を損なう傾向がある。[0009] However, in order to store a fuel body more densely while maintaining a sufficient subcritical state, as described above, as described above, a stainless steel to which a neutron absorbing material such as boron is added has been developed. And related mainly to the improvement of structural materials of the fuel storage device. However,
Generally, when a neutron absorbing material such as boron is added to a metal material such as stainless steel, the material tends to harden or become brittle, or to impair workability and soundness.
【0010】例えば、ボロンを一定量(2重量パーセン
ト)以上含むステンレス鋼材は、構造材として使用する
のは困難とされている。このため燃料収納装置の性能を
向上させる上で、燃料収納装置の構造材を改良する手法
は限界に近いものと考えられている。また新たに開発さ
れた金属材料を燃料収納装置の構造材として採用する場
合には、その健全性を確認する等の各種試験が必要とな
り、実用化には長い期間が必要とされる課題があった。[0010] For example, it is considered difficult to use a stainless steel material containing a certain amount (2% by weight) of boron or more as a structural material. Therefore, in improving the performance of the fuel storage device, the technique of improving the structural material of the fuel storage device is considered to be close to its limit. In addition, when a newly developed metal material is used as a structural material for a fuel storage device, various tests such as checking its soundness are required, and there is a problem that a long period of time is required for practical use. Was.
【0011】本発明の目的とするところは、任意の燃料
収納管の燃料体収納高さ位置が、隣り合う1本、または
複数本の燃料収納管の燃料体収納高さ位置と、実用上支
障のない範囲で最も効果的に臨界安全性を高められる長
さだけ異なる構成とすることにより、従来から使用され
ているステンレス鋼等の金属材料を使用しながらも、稠
密貯蔵と臨界安全性が高く比較的短期間に実用化できる
燃料収納装置を提供することにある。It is an object of the present invention that the fuel body storage height position of an arbitrary fuel storage pipe is different from the fuel body storage height position of one or more adjacent fuel storage pipes. By using a structure that differs only by the length that can increase the criticality safety most effectively within the range without the above, dense storage and criticality safety are high while using metal materials such as stainless steel used conventionally. An object of the present invention is to provide a fuel storage device that can be put into practical use in a relatively short time.
【0012】[0012]
【課題を解決するための手段】燃料体を収納する燃料収
納管を複数本束ねてなる燃料収納装置において、任意の
燃料収納管における燃料体収納軸方向位置が隣り合う1
本または複数本の燃料収納管の燃料体収納軸方向位置と
燃料体軸方向において局所的に反応度の高い領域を含む
燃料体の燃料有効長の3/24乃至5/24異ならせたことを特
徴とする。SUMMARY OF THE INVENTION In a fuel storage device comprising a plurality of fuel storage tubes for storing fuel bodies, the positions of any fuel storage pipes adjacent to each other in the axial direction of the fuel body storage are adjacent.
That the effective fuel length of the fuel body including the region where the reactivity is locally high in the fuel body axial direction of the fuel body or the plurality of fuel storage pipes in the fuel body axial direction is 3/24 to 5/24. Features.
【0013】[0013]
【作用】任意の燃料収納管の燃料体収納高さ位置が、隣
り合う燃料収納管の燃料体収納高さ位置と燃料体高さ方
向において、燃料体の燃料有効長の3/24〜5/24だけ異な
るようにした燃料収納装置に燃料体を収納することによ
り、各燃料体の上下端近傍に生ずる局所的に反応度の高
い領域がなくなり、稠密貯蔵と、より臨界安全性を向上
させることができる。また、この効果は従来からの使用
実績のある金属材料を使用して実現できるので、実用化
に際しての機能確認が比較的短期間にできる。[Function] The fuel body storage height position of an arbitrary fuel storage pipe is 3/24 to 5/24 of the active fuel length of the fuel body in the fuel body storage height position of the adjacent fuel storage pipe and the fuel body height direction. By storing the fuel assemblies in the different fuel storage devices, there is no locally high-reactivity region near the upper and lower ends of each fuel assembly, and it is possible to improve dense storage and more critical safety. it can. Further, since this effect can be realized by using a metal material which has been used in the past, it is possible to confirm the function for practical use in a relatively short time.
【0014】[0014]
【実施例】本発明の一実施例を、沸騰水型原子炉の使用
済燃料集合体を貯蔵する燃料貯蔵ラックを例に図面を参
照して説明する。なお、上記した従来技術と同じ構成部
分については同一符号を付して詳細な説明を省略する。
図1の平面図と図2の図1におけるA−A矢視の底部縦
断面図、および図3の上部斜視図に示すように、角筒状
で燃料収納高さ位置の高い燃料収納管(以下H管と略称
する)11と、燃料収納高さ位置の低い燃料収納管(以下
L管と略称する)12を合計16本、4×4に正方配置し、
その外周を大容器13で囲んで固定し、燃料貯蔵ラック10
を構成している。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to the drawings, taking a fuel storage rack for storing a spent fuel assembly of a boiling water reactor as an example. The same components as those of the above-described conventional technology are denoted by the same reference numerals, and detailed description thereof will be omitted.
As shown in the plan view of FIG. 1 and the bottom vertical sectional view taken along the line AA in FIG. 1 of FIG. 2, and the upper perspective view of FIG. A total of 16 fuel storage pipes (hereinafter abbreviated as L pipes) 12 having a low fuel storage height position (hereinafter abbreviated as H pipes) 11 are arranged in a square of 4 × 4,
The outer circumference is fixed by surrounding it with a large container 13 and the fuel storage rack 10
Is composed.
【0015】また図1においては、縦方向に燃料収納高
さ位置の同じものを配置し、横方向には燃料収納高さ位
置の異なるものが交互に配置されている状態を示す。ま
たH管11の底部で、収納高さ14の位置は収容する燃料体
である燃料集合体1の燃料有効部の3/24乃至5/24程度と
し、この収納位置を高くする例としては、図2に示すよ
うにH管11の底部に台座15を設ける。またH管11同志お
よびL管12同志は、互いに4本ずつを一体に製作し、こ
れを交互に並べたものであるが、H管11とL管12相互
は、図3にあるように、その間隔が外周を大容器13の壁
により保持されるため、必ずしもH管11とL管12を夫々
個別にする必要も、またH管11およびL管12同志を一体
化して製作する必要もない。FIG. 1 shows a state in which the same fuel storage height position is arranged in the vertical direction and the fuel storage height positions different in the horizontal direction are alternately arranged. Further, at the bottom of the H pipe 11, the position of the storage height 14 is about 3/24 to 5/24 of the fuel effective portion of the fuel assembly 1 which is the fuel body to be stored. As an example of increasing the storage position, As shown in FIG. 2, a pedestal 15 is provided at the bottom of the H tube 11. The H tube 11 and the L tube 12 are manufactured by integrally forming four tubes each other and alternately arranging them. The H tube 11 and the L tube 12 are, as shown in FIG. Since the space is held by the wall of the large vessel 13 at the outer periphery, the H pipe 11 and the L pipe 12 do not always need to be individually provided, and the H pipe 11 and the L pipe 12 do not need to be integrally manufactured. .
【0016】次に上記構成による作用について説明す
る。無限大均一体系、或いは1点体系において中性子源
(強度S)が与えられた場合の未臨界中性子束(φ)
は、中性子実効増倍率(keff :以下kと略す)との間
に、比例係数αを介して次の (1)式の関係にあることは
よく知られている。 φ=αS/(1−k) …(1)Next, the operation of the above configuration will be described. Subcritical neutron flux (φ) when neutron source (intensity S) is given in infinite homogeneous system or single point system
It is well known that the following equation (1) is related to the effective neutron multiplication factor (k eff : hereinafter abbreviated as k) via a proportional coefficient α. φ = αS / (1-k) (1)
【0017】このkの値は、炉物理学の従来の一般的な
常識では、体系の場所によらず一定と考えられてきた
が、例えば沸騰水型原子炉の使用済燃料集合体を水中に
1体置いた場合に、上端近傍で放出された中性子の子孫
が、下端近傍で発見される確率が殆どないことは、炉物
理学関係者には容易に理解できる。The value of k has been considered to be constant irrespective of the location of the system in the conventional general knowledge of reactor physics. For example, a spent fuel assembly of a boiling water reactor is submerged in water. It is easy for a person involved in reactor physics to understand that when one body is placed, there is almost no probability that neutron progeny released near the upper end will be found near the lower end.
【0018】従って、上端と下端とは、中性子的に一体
には結合されておらず、1つのkの値で全体を定義する
ことは、数学的にはできても物理的にはあまり意味がな
いといえる。体系が臨界に近付くにつれて、一体に結合
される傾向が表われる。従って、前記式(1) は、局所的
にkを定義したものといえる。体系全体の実効増倍率と
前述のkとを区別するため、以下の説明ではこのkを反
応度と定義する。Accordingly, the upper end and the lower end are not neutronically connected together, and it is mathematically possible to physically define the entirety with one value of k. I can't say that. As the system approaches criticality, it tends to be joined together. Therefore, it can be said that Equation (1) locally defines k. In order to distinguish between the above-mentioned k and the effective multiplication factor of the entire system, the following description defines k as the reactivity.
【0019】図4の比較特性図で、曲線16(点線)で示
したものは、沸騰水型原子炉の使用済燃料集合体に残留
する核分裂性核種の高さ方向分布から推定される使用済
燃料集合体を従来の収納装置で貯蔵中の典型的な高さ方
向の反応度分布を示したもので、沸騰水型原子炉に使用
される典型的な燃料集合体は、核燃料物質を有効に利用
する観点から、原子炉の燃料として供される全期間にお
いて、できるだけ均等に燃焼するように設計されてい
る。In the comparative characteristic diagram of FIG. 4, a curve 16 (dotted line) indicates a spent fuel estimated from the height distribution of fissile nuclides remaining in the spent fuel assembly of the boiling water reactor. It shows a typical vertical reactivity distribution during storage of a fuel assembly in a conventional storage device, and a typical fuel assembly used in a boiling water reactor effectively utilizes nuclear fuel material. From the viewpoint of utilization, it is designed to burn as evenly as possible during the entire period of use as fuel for the nuclear reactor.
【0020】しかしながら、原子炉の炉心周辺において
は、核分裂反応を維持する中性子束が炉心内部に比べて
低い状態にあり、核分裂性核種が残留してしまう傾向に
ある。このため、原子炉で使用した燃料集合体におい
て、常に原子炉の炉心の周辺部分を形成する燃料集合体
の上端部分および下端部分では、前記燃料集合体の中央
部に比べて反応度が高いものとなる。However, the neutron flux for maintaining the fission reaction is lower around the reactor core than in the reactor core, and there is a tendency for fissile nuclides to remain. For this reason, in the fuel assembly used in the nuclear reactor, the reactivity is higher at the upper end portion and the lower end portion of the fuel assembly always forming the peripheral portion of the core of the reactor than at the central portion of the fuel assembly. Becomes
【0021】この沸騰水型原子炉の使用済燃料集合体の
典型的な高さ方向の反応度分布を示した図4で、曲線16
(点線)に示す従来の任意の燃料体の燃料有効部17の高
さ位置と、これに隣接する燃料体の燃料有効部18を同一
高さ位置に収納した場合は、その軸方向位置に対する反
応度が曲線16(点線)で示すように、燃料有効部の上端
および下端から燃料有効長の3/24程度の部分に反応度の
高い領域を形成しており、この部分の反応度はこの領域
に続く中央領域の反応度の20乃至30%高いものとなって
いる。本発明は、この使用済燃料集合体の高さ方向に対
する反応度分布の特徴に着目してなされたものである。FIG. 4 shows a typical reactivity distribution in the height direction of the spent fuel assembly of this boiling water reactor.
When the height position of the fuel effective portion 17 of the conventional arbitrary fuel body shown by the dotted line and the fuel effective portion 18 of the adjacent fuel body are stored at the same height position, the reaction to the axial position is As shown by the curve 16 (dotted line), a high-reactivity region is formed at about 3/24 of the active fuel length from the upper and lower ends of the active fuel area. 20 to 30% higher than the reactivity in the central region. The present invention has been made by paying attention to the characteristic of the reactivity distribution in the height direction of the spent fuel assembly.
【0022】前記図1の平面図に示した体系が平面方向
に無限に続く体系の実効増倍率は、炉物理学でよく知ら
れた拡散理論により計算することができる。図5の特性
図は、この拡散理論による計算から、前記図4の特性図
の曲線16(点線)に示した高さ方向の反応度分布を有す
る典型的な沸騰水型原子炉の使用済燃料集合体を対象と
し、前記隣接した燃料収納管に収納した燃料体による燃
料有効部17,18の燃料収納高さ位置の差をパラメータと
して、この平面方向の無限体系の実効増倍率が推移して
ゆく様子を示したものである。The effective multiplication factor of a system in which the system shown in the plan view of FIG. 1 extends infinitely in the plane direction can be calculated by a diffusion theory well known in reactor physics. The characteristic diagram of FIG. 5 is based on the calculation based on the diffusion theory, and shows the spent fuel of a typical boiling water reactor having the reactivity distribution in the height direction shown by the curve 16 (dotted line) in the characteristic diagram of FIG. For the assembly, the effective multiplication factor of the infinite system in the plane direction changes with the difference between the fuel storage height positions of the fuel effective portions 17 and 18 due to the fuel bodies stored in the adjacent fuel storage pipes as a parameter. It shows how it goes.
【0023】なお、同図5において、燃料収納高さ位置
の差を設けた燃料収納管H管11とL管12の燃料収納高さ
位置の差は、燃料有効長の1/24長さ(約15cm)を1単位
(以下ノードと称する)として示している。この図5に
よれば、前記H管11と前記L管12による燃料収納高さ位
置の差、すなわち、燃料有効部17と燃料有効部18との差
を大きくするに従って、初めの3ノード(約45cm)まで
は急激に実効増倍率が小さくなって行き、その後、緩や
かに実効増倍率が小さくなって行く。In FIG. 5, the difference between the height of the fuel storage pipe H and the height of the fuel storage pipe 11 provided with the difference in the height of the fuel storage is 1/24 of the active fuel length ( 15 cm) is shown as one unit (hereinafter referred to as a node). According to FIG. 5, as the difference between the fuel storage height positions of the H pipe 11 and the L pipe 12, that is, the difference between the fuel effective section 17 and the fuel effective section 18 increases, the first three nodes (about Up to 45 cm), the effective gain gradually decreases, and thereafter, the effective gain gradually decreases.
【0024】このH管11とL管12による燃料有効部17,
18の燃料収納高さ位置の差を0ノードから24ノードまで
変化させた範囲では、実効増倍率は最大およそ10%Δk
まで小さくなり得るが、H管11とL管12による燃料収納
高さ位置の差を3ノード(すなわち、燃料有効長の3/24
だけH管11とL管12の燃料収納高さ位置が異なる)とす
るだけで、実効増倍率をその半分のおよそ5%Δkまで
小さくすることができる。The fuel effective portion 17, formed by the H pipe 11 and the L pipe 12,
In the range where the difference between the 18 fuel storage height positions is changed from 0 node to 24 nodes, the effective multiplication factor is up to about 10% Δk.
The difference between the fuel storage height positions of the H pipe 11 and the L pipe 12 can be reduced by three nodes (that is, 3/24 of the active fuel length).
Only the H pipe 11 and the L pipe 12 have different fuel storage height positions), it is possible to reduce the effective multiplication factor to about 5% Δk, which is half of that.
【0025】このように、燃料有効長の3/24だけH管11
とL管12の燃料収納高さ位置が異なるような体系を構成
することにより、効果的に実効増倍率を小さくできるの
は、図4の曲線19(実線)に示した沸騰水型原子炉の使
用済燃料集合体の貯蔵体系の高さ方向の反応度分布から
(1体でも相対的分布形はほぼ同じ)容易に推測でき
る。なお、1体と多体では分布形は類似のため、図4を
用いて説明する。As described above, the H pipe 11 is used only for 3/24 of the active fuel length.
The effective gain can be effectively reduced by constructing a system in which the fuel storage height of the L pipe 12 differs from that of the boiling water reactor shown in the curve 19 (solid line) in FIG. It can be easily estimated from the reactivity distribution in the height direction of the storage system of the spent fuel assembly (the relative distribution shape is almost the same for one fuel assembly). In addition, since the distribution form is similar between one body and many bodies, it will be described with reference to FIG.
【0026】すなわち、図4の曲線16(点線)に示す従
来の沸騰水型原子炉の使用済燃料集合体の高さ方向の反
応度分布では、燃料体の燃料有効部17の高さ位置と、こ
れに隣接する燃料体の燃料有効部18の燃料収納高さ位置
に差20がない状態では、これらの反応度の高い領域が隣
り合って、燃料有効部17,18の上端および下端から燃料
有効長の3/24程度の部分に反応度の高い領域が形成され
る。That is, in the reactivity distribution in the height direction of the spent fuel assembly of the conventional boiling water reactor shown by the curve 16 (dotted line) in FIG. In a state where there is no difference 20 in the fuel storage height position of the fuel effective portion 18 of the fuel body adjacent thereto, these regions having high reactivity are adjacent to each other, and the fuel is moved from the upper end and the lower end of the fuel effective portions 17 and 18. A region with high reactivity is formed at a portion of about 3/24 of the effective length.
【0027】これに対して、本発明による図4の曲線19
(実線)では、H管11とL管12との燃料収納高さ位置の
差20を3ノードとして、燃料有効部17と燃料有効部18を
配置することにより、体系の高さ方向の上部ではH管11
の上部の反応度の高い領域が、また体系の高さ方向の下
部ではL管12の下部の反応度の高い領域が、反応度を持
たない水領域と隣り合ってしまうために、効果的に実効
増倍率が小さくなる。In contrast, curve 19 of FIG.
In the (solid line), by setting the fuel storage height difference 20 between the H pipe 11 and the L pipe 12 to 3 nodes and arranging the fuel effective section 17 and the fuel effective section 18, the upper part in the height direction of the system H tube 11
The area of high reactivity at the top of the tube and the area of high reactivity at the bottom of the L-tube 12 at the lower part of the system in the height direction are adjacent to the non-reactive water area. The effective multiplication factor becomes smaller.
【0028】なお、最近の沸騰水型原子炉燃料集合体の
設計においては、燃料集合体の上部および下部からの中
性子束の漏れを少なくして、核燃料物質をより有効に利
用するために、燃料有効部の上部および下部にブランケ
ットと称する天然ウランで製造した燃料ペレットを配置
するものが考案されている。Incidentally, in the recent design of a boiling water reactor fuel assembly, in order to reduce the leakage of neutron flux from the upper and lower parts of the fuel assembly and utilize the nuclear fuel material more effectively, A device has been devised in which fuel pellets made of natural uranium, called blankets, are arranged above and below the effective portion.
【0029】このように設計された燃料集合体では、図
4の曲線19(実線)に示した沸騰水型原子炉の使用済燃
料集合体の貯蔵体系の高さ方向の反応度分布は、局所的
に反応度の高い領域が前記ブランケットの長さ分だけ中
央部に移動するが、この反応度の高い領域が反応度を持
たない水領域と隣り合うまで、H管11とL管12の燃料収
納高さ位置の差を持たせることによって同様の効果を得
ることができる。In the fuel assembly designed as described above, the reactivity distribution in the height direction of the storage system of the spent fuel assembly of the boiling water reactor shown by the curve 19 (solid line) in FIG. The region of high reactivity moves to the center by the length of the blanket, but until the region of high reactivity is adjacent to the water region having no reactivity, the fuel in the H pipe 11 and the L pipe 12 A similar effect can be obtained by providing a difference in the storage height position.
【0030】すなわち、前記ブランケットの長さは通常
1乃至2ノードであるため、ブランケットがない場合の
前記3ノードと、この1乃至2ノードを加えた4乃至5
ノード(すなわち、燃料有効長の4/24乃至5/24)だけH
管11とL管12の燃料収納高さ位置の差20を持たせること
により、上記と同様の効果を得ることができる。なお、
本発明の実用化に際して考慮すべき事項として、燃料集
合体1を燃料貯蔵ラックに収納、あるいは燃料貯蔵ラッ
クから取り出す場合の燃料集合体1の操作性が挙げられ
る。That is, since the length of the blanket is usually one or two nodes, the three nodes without the blanket and four or five nodes obtained by adding the one or two nodes are used.
H only for nodes (ie, 4/24 to 5/24 of active fuel length)
By providing a difference 20 between the fuel storage height positions of the pipe 11 and the L pipe 12, the same effect as described above can be obtained. In addition,
As matters to be considered when putting the present invention into practical use, the operability of the fuel assembly 1 when the fuel assembly 1 is stored in or taken out of the fuel storage rack is cited.
【0031】すなわち、前記H管11およびL管12の燃料
収納高さ位置の差が大きすぎる場合に、燃料集合体1を
燃料貯蔵ラックに収納、あるいは取り出す際に、隣接す
る燃料集合体1同志が衝突する等の支障が考えられる。
しかしながら、本発明で示している前記燃料収納高さ位
置の差20が、燃料集合体高さ方向において局所的に反応
度の高い領域を含む燃料集合体の燃料有効長の3/24乃至
5/24程度であれば、全長から見て前記操作性に支障をき
たす恐れはない。That is, when the difference between the fuel storage height positions of the H pipe 11 and the L pipe 12 is too large, when the fuel assembly 1 is stored in or taken out of the fuel storage rack, the adjacent fuel assemblies 1 It may be a problem such as collision.
However, the difference 20 in the fuel storage height position shown in the present invention is 3/24 to 3/24 of the active fuel length of the fuel assembly including the locally high reactivity region in the fuel assembly height direction.
If it is about 5/24, there is no possibility that the operability will be affected when viewed from the full length.
【0032】なお、前記H管11とL管12の上端を一致さ
せれば、操作性に支障が生じないが、燃料収納高さ位置
の差20が極端におおきい場合には、燃料貯蔵施設の燃料
軸方向スペースロスが大きくなったり、放射線遮蔽性に
問題を生じる等、不利な点が生じることになる。さら
に、本発明の効果は従来から採用されている金属材料を
使用して実現できるので、材質等の新規の性能検証は不
要で、比較的短期間で実用化できる。If the upper ends of the H pipe 11 and the L pipe 12 are made to coincide with each other, the operability will not be impaired. However, if the difference 20 in the fuel storage height position is extremely large, the fuel storage facility will Disadvantages such as an increase in space loss in the fuel axial direction and a problem in radiation shielding properties occur. Furthermore, since the effects of the present invention can be realized by using a metal material that has been conventionally used, new performance verification of the material and the like is not required, and practical use can be achieved in a relatively short time.
【0033】図6の平面図は本発明の第2の実施例を示
すもので、多数のH管11とL管12を(合計90本を9×1
0)正方配置し、その外周を大容器13の壁で囲んで燃料
貯蔵ラック21を構成したもので、前記正方配置におい
て、図中の縦方向および横方向にH管11とL管12を交互
に配置している。また、この燃料貯蔵ラック21において
も大容器13の壁により、H管11およびL管12は相互の間
隔が保持されるため、H管11およびL管12を相互に一体
化する必要は必ずしもない。FIG. 6 is a plan view showing a second embodiment of the present invention, in which a large number of H tubes 11 and L tubes 12 (a total of 90 tubes are 9 × 1).
0) The fuel storage rack 21 is arranged in a square shape, and its outer periphery is surrounded by the wall of the large container 13. In the square shape, the H pipe 11 and the L pipe 12 are alternately arranged in the vertical and horizontal directions in the figure. Has been placed. Also, in this fuel storage rack 21, the H pipe 11 and the L pipe 12 are spaced from each other by the wall of the large container 13, so that it is not always necessary to integrate the H pipe 11 and the L pipe 12 with each other. .
【0034】さらに、図7の平面図は本発明の第3の実
施例を示すもので、多数のH管11とL管12を(合計90本
を9×10)正方配置し、その外周を大容器13の壁で囲ん
で燃料貯蔵ラック22を構成したもので、前記正方配置に
おいて、縦方向には燃料収納高さ位置の同じものを配置
し、一方、横方向は、H管11とL管12を2列に交互に配
置した構成としている。なお、上記第2の実施例と同様
に大容器13の壁により、H管11およびL管12は相互の間
隔が保持されるため、H管11およびL管12を相互に一体
化する必要は必ずしもない。FIG. 7 is a plan view showing a third embodiment of the present invention, in which a large number of H tubes 11 and L tubes 12 are arranged in a square (a total of 90 tubes is 9 × 10), and the outer periphery thereof is formed. The fuel storage rack 22 is constituted by being surrounded by the wall of the large container 13. In the square arrangement, the same fuel storage height position is arranged in the vertical direction, while the H pipe 11 and the L The tubes 12 are arranged alternately in two rows. Note that the H tube 11 and the L tube 12 are spaced apart from each other by the wall of the large container 13 as in the second embodiment, so that it is not necessary to integrate the H tube 11 and the L tube 12 with each other. Not necessarily.
【0035】図6および図7に示した本発明の第2の実
施例、および第3の実施例の体系が平面方向に無限に続
く場合の発明の効果を説明する。先ず、第2の実施例の
体系が無限に続く体系は、図6における、ある斜め方向
に着目してみると、同じ燃料収納高さ位置のものが配置
され、その両隣りに燃料収納高さ位置が異なるものが配
置されたものとなっている。従って、粗い近似ではある
が、上記図1に示した第1の実施例が無限に続く体系に
ついて、横方向のピッチが√2倍となったものと見なす
ことができる。The effect of the invention when the system of the second and third embodiments shown in FIGS. 6 and 7 continues infinitely in the plane direction will be described. First, in the system in which the system of the second embodiment continues indefinitely, focusing on a certain diagonal direction in FIG. 6, the same fuel storage height position is arranged, and the fuel storage height is located on both sides thereof. Those at different positions are arranged. Therefore, it is possible to regard the system in which the first embodiment shown in FIG. 1 described above is infinite, although it is a rough approximation, that the pitch in the horizontal direction has increased by a factor of √2.
【0036】また図7における、第3の実施例の体系が
無限に続く体系は、上記第1の実施例が無限続く体系に
ついて、横方向のピッチが2倍となったものと見なすこ
とができる。図4の特性図に示した高さ方向の反応度分
布を有する典型的な沸騰水型原子炉の使用済燃料集合体
を対象とし、H管11とL管12の燃料収納高さ位置の差が
ない場合(曲線16(点線))と、差が3ノードの場合
(曲線19(実線))の実効増倍率の差を、上記第1の実
施例乃至第3の実施例について表1に示す。In FIG. 7, the system in which the system of the third embodiment continues infinitely can be regarded as a system in which the first embodiment continues infinitely, in which the lateral pitch is doubled. . The difference between the fuel storage height positions of the H pipe 11 and the L pipe 12 for a typical spent fuel assembly of a boiling water reactor having the reactivity distribution in the height direction shown in the characteristic diagram of FIG. Table 1 shows the difference in effective multiplication factor between the case where there is no (curve 16 (dotted line)) and the case where the difference is 3 nodes (curve 19 (solid line)) for the first to third embodiments. .
【0037】[0037]
【表1】 [Table 1]
【0038】なお、この場合の1ピッチは沸騰水型原子
炉の燃料集合体を収納することができる燃料収納管の最
小の幅に等しく、およそ15cmである。この表1の結果で
は、ピッチが大きくなるにつれて本発明の効果(実効増
倍率の差)は小さくなる傾向が見られる。In this case, one pitch is equal to the minimum width of the fuel storage pipe that can store the fuel assembly of the boiling water reactor, and is about 15 cm. According to the results in Table 1, the effect of the present invention (difference in effective multiplication factor) tends to decrease as the pitch increases.
【0039】また、燃料集合体1を燃料貯蔵ラック10に
収容あるいは燃料貯蔵ラック10から取り出す場合の燃料
集合体1の操作性に関しては、上記第1の実施例よりも
第3の実施例の方がH管11およびL管12同志が2列ずつ
に並んでいるので、有利であることも考えられる。従っ
て、燃料貯蔵ラックに対する臨界安全性に対する要求が
あまり大きくない場合には、燃料集合体1の操作性に応
じて、例えば第3の実施例に示した燃料収納管の配列方
法を選択すると良い。The operability of the fuel assembly 1 when the fuel assembly 1 is housed in the fuel storage rack 10 or taken out of the fuel storage rack 10 is more operable in the third embodiment than in the first embodiment. However, since the H tube 11 and the L tube 12 are arranged in two rows, it may be advantageous. Therefore, when the demand for the criticality safety of the fuel storage rack is not so large, the method of arranging the fuel storage tubes shown in the third embodiment may be selected according to the operability of the fuel assembly 1.
【0040】以上は沸騰水型原子炉の燃料集合体1を収
納する燃料貯蔵ラック10について説明してきたが、燃料
集合体1からチャンネルボックスを取り外した燃料バン
ドルを収納する場合にも、また燃料貯蔵ラックだけでな
く燃料輸送・貯蔵容器等にも適用できることは勿論であ
る。さらに、加圧水型原子炉用の燃料体を収納する燃料
収納装置についても適用可能である。While the fuel storage rack 10 for storing the fuel assembly 1 of the boiling water reactor has been described above, the fuel storage rack 10 for storing the fuel bundle from which the channel box is removed from the fuel assembly 1 is also used. Of course, the present invention can be applied not only to racks but also to fuel transport / storage containers. Further, the present invention is also applicable to a fuel storage device that stores a fuel body for a pressurized water reactor.
【0041】また以上の説明は断面正方形の燃料集合体
を例示したが、多角形の燃料体であっても、また長方形
の燃料体であっても、本発明に係る燃料収納装置は適用
可能であり、上記実施例と同様の作用、効果が得られ
る。なお、以上本発明は上記実施例において、使用済燃
料を軸方向に上下(高さ)方向として貯蔵した場合につ
いて説明したが、当然水平状態にして貯蔵しても同様の
作用と効果が得られることは明らかである。Although the above description has exemplified a fuel assembly having a square cross section, the fuel storage device according to the present invention is applicable to a polygonal fuel assembly and a rectangular fuel assembly. Thus, the same operation and effect as those of the above embodiment can be obtained. Although the present invention has been described in the above embodiment in the case where spent fuel is stored in the vertical (height) direction in the axial direction, the same operation and effect can be naturally obtained by storing it in a horizontal state. It is clear.
【0042】[0042]
【発明の効果】以上本発明によれば、燃料収納装置を従
来から使用されている材料により実用化を比較的短期間
にできると共に、多数の燃料体を充分な未臨界状態に維
持して、より稠密貯蔵が可能で、設置場所も少なく臨界
安全性を向上する効果がある。As described above, according to the present invention, the fuel storage device can be put to practical use in a relatively short period of time by using conventionally used materials, while maintaining a large number of fuel bodies in a sufficiently subcritical state. It can be stored more densely, has fewer installation locations, and has the effect of improving criticality safety.
【図1】本発明の第1の実施例で燃料集合体を収納した
燃料貯蔵ラックの平面図。FIG. 1 is a plan view of a fuel storage rack accommodating a fuel assembly according to a first embodiment of the present invention.
【図2】図1におけるA−A矢視の底部縦断面図。FIG. 2 is a bottom vertical sectional view taken along the line AA in FIG. 1;
【図3】本発明の第1の実施例で燃料貯蔵ラックの上要
部斜視図。FIG. 3 is a perspective view of an upper part of a fuel storage rack according to the first embodiment of the present invention.
【図4】本発明と従来技術に係る燃料体の軸方向位置と
反応度の関係の比較特性図。FIG. 4 is a comparison characteristic diagram of a relationship between an axial position and a reactivity of a fuel body according to the present invention and the prior art.
【図5】図1に示した体系が無限に続く体系における実
効増倍率と軸方向のずれとの関係を示す特性図。5 is a characteristic diagram showing a relationship between an effective multiplication factor and an axial displacement in a system in which the system shown in FIG. 1 continues infinitely.
【図6】本発明の第2の実施例を示す燃料貯蔵ラックの
平面図。FIG. 6 is a plan view of a fuel storage rack according to a second embodiment of the present invention.
【図7】本発明の第3の実施例を示す燃料貯蔵ラックの
平面図。FIG. 7 is a plan view of a fuel storage rack according to a third embodiment of the present invention.
【図8】燃料集合体の上部斜視図。FIG. 8 is a top perspective view of the fuel assembly.
【図9】従来例に係る燃料集合体を収納した燃料貯蔵ラ
ックの平面図。FIG. 9 is a plan view of a fuel storage rack containing a fuel assembly according to a conventional example.
【図10】従来例の燃料貯蔵ラックの上要部斜視図。FIG. 10 is a perspective view of an upper part of a conventional fuel storage rack.
1…燃料集合体、2…ハンドル、10,21,22…燃料貯蔵
ラック、11…燃料収納高さ位置の高い燃料収納管(H
管)、12…燃料収納高さ位置の低い燃料収納管(L
管)、13…大容器、14…収納高さ、15…台座、16…曲線
(点線)、17,18…燃料有効部、19…曲線(実線)、20
…燃料収納高さ位置の差。DESCRIPTION OF SYMBOLS 1 ... Fuel assembly, 2 ... Handle, 10, 21, 22 ... Fuel storage rack, 11 ... High fuel storage pipe (H
Pipe), 12 ... low fuel storage pipe (L
Tube), 13… Large container, 14… Storage height, 15… Pedestal, 16… Curve (dotted line), 17, 18… Fuel effective part, 19… Curve (solid line), 20
... the difference in fuel storage height position.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−128196(JP,A) 特開 昭59−10892(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21C 19/07 G21C 19/40 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-128196 (JP, A) JP-A-59-10892 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G21C 19/07 G21C 19/40
Claims (1)
ねてなる燃料収納装置において、任意の燃料収納管にお
ける燃料体収納軸方向位置が隣り合う1本または複数本
の燃料収納管の燃料体収納軸方向位置と燃料体軸方向に
おいて局所的に反応度の高い領域を含む燃料体の燃料有
効長の3/24乃至5/24異ならせたことを特徴とする燃料収
納装置。1. A fuel storage device comprising a plurality of fuel storage tubes for storing fuel bodies, wherein one or more fuel storage tubes adjacent to each other in a fuel body storage axial direction position in an arbitrary fuel storage pipe. A fuel storage apparatus characterized in that the active fuel length of a fuel body including a region having a high degree of reactivity locally in the axial direction of the fuel storage body and in the axial direction of the fuel body is varied from 3/24 to 5/24.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04083747A JP3105992B2 (en) | 1992-04-06 | 1992-04-06 | Fuel storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04083747A JP3105992B2 (en) | 1992-04-06 | 1992-04-06 | Fuel storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05281395A JPH05281395A (en) | 1993-10-29 |
JP3105992B2 true JP3105992B2 (en) | 2000-11-06 |
Family
ID=13811128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04083747A Expired - Fee Related JP3105992B2 (en) | 1992-04-06 | 1992-04-06 | Fuel storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3105992B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102321384B1 (en) * | 2017-10-05 | 2021-11-03 | 노자와 코퍼레이션 | Mounting bracket for building panel and mounting structure of building panel using the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5517657B2 (en) * | 2004-11-12 | 2014-06-11 | 三菱重工業株式会社 | Fuel storage facility |
JP4745786B2 (en) * | 2004-11-12 | 2011-08-10 | 三菱重工業株式会社 | Fuel storage rack and fuel storage equipment |
TW201042658A (en) * | 2009-05-27 | 2010-12-01 | Iner Aec Executive Yuan | Dry storage of spent nuclear fuel |
JP5968104B2 (en) * | 2012-06-18 | 2016-08-10 | 三菱重工業株式会社 | Nuclear fuel storage rack |
TWI696195B (en) * | 2015-11-30 | 2020-06-11 | 美商Tn美國有限責任公司 | Horizontal storage module, carriage assembly, and canister transfer assemblies |
-
1992
- 1992-04-06 JP JP04083747A patent/JP3105992B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102321384B1 (en) * | 2017-10-05 | 2021-11-03 | 노자와 코퍼레이션 | Mounting bracket for building panel and mounting structure of building panel using the same |
Also Published As
Publication number | Publication date |
---|---|
JPH05281395A (en) | 1993-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4024406A (en) | Spent fuel storage improvement | |
US4004154A (en) | Fissionable mass storage device | |
US4044267A (en) | Fissionable mass storage device | |
JPH05249290A (en) | Flux trap neutron absorbing apparatus for nuclear fuel storage body | |
Venard et al. | The ASTRID core at the midterm of the conceptual design phase (AVP2) | |
US5715289A (en) | Rack for nuclear fuel assemblies, mainly comprising a single bundle of contiguous tubes | |
US4248668A (en) | Storage module for nuclear fuel assemblies | |
JP3105992B2 (en) | Fuel storage device | |
JP2016085118A (en) | Fast reactor fuel assembly and reactor core loaded with the same | |
EP0928487A1 (en) | Nuclear fuel assembly | |
JP3487897B2 (en) | Storage method for spent fuel assemblies | |
JP2008096338A (en) | Basket, method for designing the same, method for manufacturing the same, and basket design program | |
JP3079609B2 (en) | Fuel assembly | |
JPH02222866A (en) | Spent fuel basket | |
JP3339768B2 (en) | Light water reactor core | |
JP2886555B2 (en) | Fuel assembly for boiling water reactor | |
JP3031644B2 (en) | Fuel assemblies and cores | |
KR102601360B1 (en) | Modular Basket Assembly for Fuel Assemblies | |
JP5410653B2 (en) | Fast reactor core and fast reactor fuel handling method | |
JP3026463B2 (en) | Neutron effective multiplication factor measurement method when storing irradiated fuel | |
JP4528545B2 (en) | Fuel body storage rack and method for designing fuel body storage rack | |
Schneider et al. | Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel | |
JPS61111493A (en) | Method of transporting and storing fuel aggregate | |
JPH09166692A (en) | Spent fuel storage rack | |
JPS61202192A (en) | Method of storing spent reactor fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070901 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080901 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080901 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |