JP3105094B2 - Moisture measurement method - Google Patents

Moisture measurement method

Info

Publication number
JP3105094B2
JP3105094B2 JP04284898A JP28489892A JP3105094B2 JP 3105094 B2 JP3105094 B2 JP 3105094B2 JP 04284898 A JP04284898 A JP 04284898A JP 28489892 A JP28489892 A JP 28489892A JP 3105094 B2 JP3105094 B2 JP 3105094B2
Authority
JP
Japan
Prior art keywords
microwave
receiver
moisture
transmitter
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04284898A
Other languages
Japanese (ja)
Other versions
JPH06118027A (en
Inventor
静致 岡村
文雄 富田
光司 依田
猛 松浦
伸人 塚本
晃広 杉山
太紀夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Kiko Co Ltd
Original Assignee
Kawasaki Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kiko Co Ltd filed Critical Kawasaki Kiko Co Ltd
Priority to JP04284898A priority Critical patent/JP3105094B2/en
Publication of JPH06118027A publication Critical patent/JPH06118027A/en
Application granted granted Critical
Publication of JP3105094B2 publication Critical patent/JP3105094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、水分によるマイクロ
波エネルギーの吸収を利用した水分測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring moisture using absorption of microwave energy by moisture.

【0002】[0002]

【従来技術】水分によるマイクロ波エネルギーの吸収を
利用した水分測定装置の一つに、マイクロ波の送・受信
器を対向して配置し、その間のマイクロ波伝搬経路途中
に被測定物を配置して被測定物を透過したマイクロ波エ
ネルギーの減衰率から被測定物の水分を算出する透過型
のものがある(特開平2−19750号公報、特開平2
−205758号公報)。
2. Description of the Related Art Microwave transmitters and receivers are arranged facing one another in a moisture measuring apparatus utilizing absorption of microwave energy by moisture, and an object to be measured is arranged in a microwave propagation path therebetween. There is a transmission type in which the moisture of the object to be measured is calculated from the attenuation rate of the microwave energy transmitted through the object to be measured (JP-A-2-19750, JP-A-2-19750).
-205758).

【0003】この場合、被測定物は、板状の形体を持つ
もの、粉、粒あるいは小片の集合が平らに均されたも
の、平らに均された粘性物等の他に、有形物あるいはそ
の集合の表面が全体としておおよそ平らといえる程度の
ものもある。これらの被測定物は伝搬経路に定置された
り、伝搬経路を横断して移動あるいは流動されるが、通
常、その平らな面(平面Bと称する)は伝搬経路を直角
に横断する平面(平面Aと称する)と平行である。
[0003] In this case, the object to be measured may be a tangible object or a tangible object, in addition to an object having a plate-like shape, an assemblage of powder, particles or small pieces flattened, a flattened viscous material, and the like. In some cases, the surface of the set is generally flat. These DUTs are placed in the propagation path, or move or flow across the propagation path, and their flat surface (referred to as plane B) usually has a plane perpendicular to the propagation path (plane A). ).

【0004】図1は、この種の装置と同様な実験装置を
概略的に示し、左右の支柱1,1の間に支持板2が水平
に支架され、支持板2を挟んで送信器3(9.4G
Z )と受信器4が対向して垂直方向に配置されてい
る。すなわち、送・受信器3,4間に垂直なマイクロ波
の伝搬経路が形成され、この経路を直角に横切る形で被
測定物5が配置される構成となっている。
FIG. 1 schematically shows an experimental apparatus similar to this type of apparatus, in which a support plate 2 is horizontally supported between left and right supports 1, 1 and a transmitter 3 ( 9.4G
H Z ) and the receiver 4 are vertically opposed to each other. That is, a vertical microwave propagation path is formed between the transmitter / receivers 3 and 4, and the device under test 5 is arranged so as to cross the path at right angles.

【0005】図1における寸法a=102、寸法b=1
35、寸法c=80(送・受信器の投影された口径)お
よび寸法d=100(被測定物の投影幅)(各mm)で
ある。送信器3の発振器6は制御基板7から電源を受け
て出力し(送信出力)、また、受信器4の検波器8の出
力が制御基板7に入力(受信入力)されている。制御基
板7は、送信出力と受信入力をを比較し、その差に比例
した電圧を端子CP−CPE 間に出力する回路構成となって
いる。この出力は電圧計9で読み取られる。水分値が高
く、送信出力と受信入力の差が大きい程、端子CP−CPE
間には大きな電圧が現れる。
In FIG. 1, dimension a = 102, dimension b = 1
35, dimension c = 80 (projected aperture of transmitter / receiver) and dimension d = 100 (projected width of object to be measured) (each mm). The oscillator 6 of the transmitter 3 receives and outputs power from the control board 7 (transmission output), and the output of the detector 8 of the receiver 4 is input to the control board 7 (reception input). The control board 7 has a circuit configuration that compares the transmission output with the reception input and outputs a voltage proportional to the difference between the terminals CP and CPE. This output is read by the voltmeter 9. The higher the moisture value and the greater the difference between the transmission output and the reception input, the more the terminal CP-CPE
A large voltage appears between them.

【0006】この実験装置を用い、被測定物5として水
分値が既知の外壁ボード(水分0%〜25%、厚さ13
mm)を25枚、一枚ずつ支持板2上に載せ、その水分
を測定した。この外壁ボードは、ガラス繊維、有機繊維
を含有するガラスファイバー強化コンクリート板であ
る。図2はその結果をグラフに現したものであり、丸印
線と角印線とで差があるのは受信器4に装着されている
マイクロ波吸収体の種類が異なる溜めである。図に記載
の“ECCOSORB”はマイクロ波吸収材の商品名で、従来品
より優れた吸収性能を発揮するものである。このグラフ
を詳しく検討すると、水分5〜15%の領域でグラフの
傾斜が緩み、他の部分と一貫性のないことがわかる。こ
れは前記の領域において、被測定物の水分変化に対応し
て他の部分と同様に受信入力(検出値)が変化しないこ
とを意味し、また、被測定物の素材や厚さによって程度
が異なるが、この現象は、他の被測定物を実験した結果
のグラフにおいても現れる。そして、水分測定装置にこ
のような水分の変化に対応して受信入力が他の水分値の
場合と同様に変化しない部分があると、ある領域におい
て正確な水分値を検出できないか、特殊で困難な補正手
段を必要とする。
Using this experimental apparatus, an external wall board (water content 0% to 25%, thickness 13
mm) were placed on the support plate 2 one by one, and the water content thereof was measured. This outer wall board is a glass fiber reinforced concrete plate containing glass fibers and organic fibers. FIG. 2 is a graph showing the result. The difference between the circled line and the squared line is a reservoir having a different type of microwave absorber mounted on the receiver 4. "ECCOSORB" shown in the figure is a brand name of a microwave absorbing material, and exhibits a higher absorbing performance than a conventional product. A close examination of this graph shows that the slope of the graph is loose in the region of 5 to 15% moisture and is inconsistent with other parts. This means that the reception input (detection value) does not change in the above-described region in the same manner as other parts in response to a change in moisture of the device under test, and the degree depends on the material and thickness of the device under test. Although different, this phenomenon also appears in a graph of a result obtained by experimenting with another measured object. If there is a portion in the moisture measuring device where the reception input does not change in the same manner as in the case of other moisture values in response to such a change in moisture, an accurate moisture value cannot be detected in a certain region, or it is special and difficult. It requires an appropriate correction means.

【0007】なお、前記の外壁ボードの場合、この水分
5〜15%の領域は、外壁ボード表面のひび割れ防止、
良好な塗装状態の維持、黴の発生の防止を制御する上で
重要であり、正確な測定値を必要とする領域である。
[0007] In the case of the above-mentioned outer wall board, the area of 5 to 15% of moisture prevents cracks on the outer wall board surface,
This is an important area for controlling the maintenance of a good coating state and preventing the generation of mold, and requires an accurate measurement value.

【0008】このような傾向が現れる最大の原因は、被
測定物の平面Bがマイクロ波の伝搬経路を直角に横断す
る平面Aと平行であるため、被測定物5から反射した反
射波が送信器3からの入射波に干渉するためと考えられ
る。すなわち、マイクロ波は伝搬の媒質が変化する面で
反射する性質があり、送信器3からの入射波が、被測定
物5の表面および、被測定物5の裏面側における被測定
物5と空気との境界面で反射し、これらの反射波が入射
波に干渉する。そして、干渉を受けたマイクロ波が被測
定物5を透過して受信器4に到達する。また、マイクロ
波は、媒質の誘電率によって波長が変化する性質があ
り、被測定物5は水分が異なると誘電率が変化する。ま
た、被測定物5に透過して被測定物5の裏面と空気との
境界面で反射してくる反射波は被測定物の厚みを往復す
る時間だけ入射波に対し位相が変化する。
The greatest cause of this tendency is that the plane B of the object to be measured is parallel to the plane A which traverses the microwave propagation path at right angles. This is considered to be due to interference with the incident wave from the vessel 3. That is, the microwave has a property of being reflected on the surface where the propagation medium changes, and the incident wave from the transmitter 3 is transmitted to the surface of the object 5 and the object 5 on the back side of the object 5 and the air. And the reflected waves interfere with the incident wave. Then, the interfered microwave passes through the DUT 5 and reaches the receiver 4. Further, the microwave has the property that the wavelength changes depending on the dielectric constant of the medium, and the dielectric constant of the device under test 5 changes when the moisture is different. Further, the phase of the reflected wave transmitted through the DUT 5 and reflected on the boundary surface between the back surface of the DUT 5 and the air changes with respect to the incident wave for the time required to reciprocate through the thickness of the DUT.

【0009】このために、ある厚さの被測定物5の水分
値がある一定の特定領域で、入射波に対し特に干渉作用
の強い反射波が生じ、この部分における検出値に他と一
貫性のない傾向を発生させると考えられる。厚さ13m
mの外壁ボードの場合、この特殊な領域が水分5〜15
%の領域であると考えられる。なお、被測定物の裏面側
でも、被測定物を透過したマイクロ波が受信器に到達す
る際に受信器の機器面に衝突して反射し、その反射波が
さらに、被測定物の裏面で反射して受信器に受信される
状態となっている。この場合も、機器面に衝突して発生
した反射波は、被測定物を透過した透過波と干渉し、受
信器出力に被測定物の水分によるものとは異なる変化を
与えてしまう。
For this reason, a reflected wave having a particularly strong interference effect with respect to the incident wave is generated in a certain specific region of the moisture content of the measured object 5 having a certain thickness, and the detected value in this portion is inconsistent with others. It is thought to cause a tendency without. 13m thick
m, this special area has a moisture of 5-15
% Area. Note that, even on the back side of the device under test, the microwave transmitted through the device under test collides with the device surface of the receiver when it reaches the receiver and is reflected, and the reflected wave is further reflected on the back surface of the device under test. The light is reflected and received by the receiver. Also in this case, the reflected wave generated by colliding with the device surface interferes with the transmitted wave transmitted through the device under test, and changes the output of the receiver different from that due to the moisture of the device under test.

【0010】[0010]

【発明が解決しようとする課題】この発明は、マイクロ
波の送・受信器を対向して配置し、その間のマイクロ波
伝搬経路途中に、被測定物を配置し、被測定物を透過し
たマイクロ波エネルギーの減衰率から被測定物の水分を
算出する水分測定装置において、測定しようとする水分
領域の全域において正確な測定値を得ることができる水
分測定方法の提供を課題とする。
SUMMARY OF THE INVENTION According to the present invention, a microwave transmitter / receiver is arranged to face each other, an object to be measured is arranged in the middle of a microwave propagation path therebetween, and a microwave transmitted through the object to be measured is arranged. It is an object of the present invention to provide a moisture measuring method that can obtain an accurate measurement value in the entire moisture region to be measured in a moisture measuring device that calculates the moisture of an object to be measured from an attenuation rate of wave energy.

【0011】[0011]

【課題を解決するための手段】マイクロ波伝搬経路途中
に被測定物を配置し、被測定物を通過したマイクロ波エ
ネルギーの減衰率から被測定物の水分を算出する水分測
定方法に関する。対向して配置された送信器と受信器に
よってその間にマイクロ波伝搬経路を形成する。被測定
物は少なくとも測定域においてマイクロ波の進行方向と
直交する平面Aに対し傾斜した平面Bに配置される。
面Bの傾斜角度は、被測定物を透過したマイクロ波のみ
を受信する角度C以上とする。この角度Cは下記の条件
で定まる。 C=1/2・tan -1 e/f e・・・送・受信器の投影視による発射面、入射面の寸
f・・・マイクロ波伝搬経路の投影視において送・受信
器の発射面と入射面を上辺と下辺としたときの縦辺と被
測定物の厚みに関する中心線との交点から、近い側の入
射面あるいは発射面までの距離。
SUMMARY OF THE INVENTION The present invention relates to a moisture measuring method in which an object to be measured is arranged in the middle of a microwave propagation path, and the moisture of the object to be measured is calculated from an attenuation rate of microwave energy passing through the object to be measured. A microwave propagation path is formed therebetween by a transmitter and a receiver arranged opposite to each other. Object to be measured is arranged in a plane B which is inclined to the plane A perpendicular to the traveling direction of the microwave in the least measurement zone. flat
The inclination angle of the surface B is only for the microwave transmitted through the DUT
At an angle C or more. This angle C is determined by the following condition.
Is determined by C = 1/2 · tan −1 e / f e... The dimensions of the emitting surface and the incident surface when viewed from the projection of the transmitter / receiver.
Method f: Transmission / reception in projection view of microwave propagation path
The vertical side and the cover when the launch surface and the incident surface of the
From the point of intersection with the center line for the thickness of the
The distance to the launch or launch surface.

【0012】送信器および受信器の周囲であって反射波
が衝突する位置にマイクロ波の吸収体を配置することが
ある。
A microwave absorber may be placed around the transmitter and the receiver at a position where the reflected wave collides.

【0013】[0013]

【作用】被測定物が少なくとも測定域において前記の角
度Cで配置された構成、すなわち、測定物の配置された
平面Bがマイクロ波の進行方向と直交する平面Aに対し
傾斜された構成は、入射波に対する反射波の干渉を解消
し、被測定物によるマイクロ波エネルギーの吸収に対応
した受信入力を得ることを可能とする。
The object to be measured is at least at the above-mentioned angle
The configuration arranged at the degree C, that is, the configuration in which the plane B on which the object is arranged is inclined with respect to the plane A orthogonal to the direction of propagation of the microwave eliminates the interference of the reflected wave with the incident wave, and It is possible to obtain a reception input corresponding to absorption of microwave energy by an object.

【0014】[0014]

【実施例】図3は、本発明方法を実施する装置の全体構
成を示し、図4は機能を説明するために要部を拡大して
示している。図3において、送信器10と受信器11は
対向して配置され、その間に垂直なマイクロ波の伝搬経
路12が形成されている。送信器10は9.45GHZ
の発振器13を備え、受信器11は検波器14を備えて
いる。発振器13は制御基板15の出力端子に接続さ
れ、検波器14は制御基板15の入力端子に接続されて
いる。制御基板15は発振器13に対する送信出力と検
波器14からの受信入力の差に応じた電圧を端子CPと端
子CPE 間に出力する。この出力は電圧計16で読み取ら
れる。被測定物17としての外壁ボード(前記と同種)
は送・受信器10,11間に配置された発泡スチロール
製の傾斜支持板18に載置される。
FIG. 3 shows an overall configuration of an apparatus for carrying out the method of the present invention, and FIG. 4 is an enlarged view of a main part for explaining functions. In FIG. 3, a transmitter 10 and a receiver 11 are arranged to face each other, and a vertical microwave propagation path 12 is formed therebetween. The transmitter 10 is 9.45GH Z
The receiver 11 has a detector 14. The oscillator 13 is connected to an output terminal of the control board 15, and the detector 14 is connected to an input terminal of the control board 15. The control board 15 outputs a voltage between the terminal CP and the terminal CPE according to the difference between the transmission output to the oscillator 13 and the reception input from the detector 14. This output is read by the voltmeter 16. Outer wall board as the DUT 17 (same as above)
Is mounted on a styrofoam inclined support plate 18 disposed between the transmitter and receiver 10 and 11.

【0015】図4のように、マイクロ波の伝搬経路12
は投影視において、送信器10の発射面(寸法e=80
mm)と受信器11の入射面(同寸法e)とを下辺、上
辺としこれらの両端を結んだ線(寸法b=135mm)
を左右の辺とする長方形であり、被測定物17(外壁ボ
ード)は、伝搬経路12の縦方向および横方向の中間点
Pを中心としてその平面Bを平面Aに対し35°傾斜さ
れている。すなわち、前記の傾斜支持板18の傾斜角度
は平面Aに対し35°である。
[0015] As shown in FIG.
Is the launch surface (dimension e = 80) of the transmitter 10 in the projection view.
mm) and the incident surface (same dimension e) of the receiver 11 as a lower side and an upper side, and a line connecting both ends thereof (dimension b = 135 mm)
Is a rectangle having left and right sides, and the DUT 17 (outer wall board) is inclined by 35 ° with respect to the plane A with respect to the plane B with respect to the middle point P in the vertical and horizontal directions of the propagation path 12. . That is, the inclination angle of the inclined support plate 18 is 35 ° with respect to the plane A.

【0016】送信器10から発射されたマイクロ波(入
射波A)は、一部が被測定物17の表面で反射される
(反射波B)と共に残部は被測定物17を透過し、被測
定物17から空気中に出る境界面でさらに一部が反射さ
れ(反射波C)、残部(透過波D)が受信器11に到達
する。透過波Aのエネルギーは検波器14で対応する電
圧に変換され、A/D変換の後、制御基板15に受信入
力として伝達される。受信入力は制御基板15内で送信
出力と比較処理されて、対応する検出値として出力さ
れ、電圧計16で読み取られる。この値をプロットした
ものが図5である。外壁ボード17は100×95×1
3(mm)の大きさで水分値(0〜25%)が既知のも
のを25枚用い、一枚ずつ傾斜支持板18上に載置し
た。
A part of the microwave (incident wave A) emitted from the transmitter 10 is reflected on the surface of the DUT 17 (reflected wave B), and the rest passes through the DUT 17 to be measured. A part is further reflected on the boundary surface that emerges from the object 17 into the air (reflected wave C), and the remainder (transmitted wave D) reaches the receiver 11. The energy of the transmitted wave A is converted into a corresponding voltage by the detector 14, and after A / D conversion, is transmitted to the control board 15 as a reception input. The reception input is compared with the transmission output in the control board 15, output as a corresponding detection value, and read by the voltmeter 16. FIG. 5 is a plot of this value. Outer wall board 17 is 100 × 95 × 1
25 pieces each having a size of 3 (mm) and a known moisture value (0 to 25%) were used and placed one by one on the inclined support plate 18.

【0017】図5にその結果をグラフにして示してい
る。角印線とバツ印線は外壁ボード17の周囲にマイク
ロ波吸収体(ECCOSORB)を配置した場合であり、丸印線
と三角印線とでは、外壁ボード17に対し、送信器10
と受信器11の位置が逆の関係になっている。図5に見
るように、周囲にマイクロ波吸収体を用いた場合とそう
でない場合ではグラフの傾斜に差が生じるが、送・受信
器10,11の位置を逆にすることはいずれの場合も検
出結果にほとんど無関係である。さらに、いずれの場合
も、端子CP−CPE の出力とその時の外壁ボード17の水
分値とはほぼ直線的に対応しており、従来例のような5
〜15%の領域においてグラフの傾斜が緩む傾向は見ら
れない。
FIG. 5 is a graph showing the results. Square lines and crosses indicate the case where a microwave absorber (ECCOSORB) is arranged around the outer wall board 17, and the circles and triangles indicate that the transmitter 10
And the position of the receiver 11 are in the opposite relationship. As shown in FIG. 5, there is a difference in the slope of the graph between the case where the microwave absorber is used and the case where the microwave absorber is not used. However, reversing the positions of the transmitter and receiver 10 and 11 in any case Almost irrelevant to detection results. Further, in each case, the output of the terminal CP-CPE and the moisture value of the outer wall board 17 at that time substantially linearly correspond to each other.
In the region of 1515%, the inclination of the graph does not tend to be loose.

【0018】これは、外壁ボード17が配置された平ら
な面がマイクロ波の進行方向と直交する平面Aに対し、
送信器10からの入射波Aによる被測定物表側からの反
射波Bが送信器10に到達しない角度に傾斜した平面B
に配置されているので、外壁ボード17の表面からの反
射波Bによる入射波Aに対する干渉が、前記の特定領域
においてもほぼ完全に解消されているためと考えられ
る。なお、実際には、被測定物の表面に多少の凹凸があ
り、厳密に見ればわずかな干渉が生じているが、考慮す
る必要の無い程度である。平面Bの傾斜は、実際上必要
な測定精度に影響がない程度とすれば良いが、角度とし
ては、送信器10からの入射波Aによる平面Bからの反
射波Bが送信器10に到達しない角度とするのが最適で
あると考えられる。
This is because the flat surface on which the outer wall board 17 is arranged is perpendicular to the plane A perpendicular to the direction in which the microwave travels.
A plane B inclined at an angle such that a reflected wave B from the front side of the device under test due to an incident wave A from the transmitter 10 does not reach the transmitter 10
It is considered that the interference with the incident wave A due to the reflected wave B from the surface of the outer wall board 17 is almost completely eliminated even in the specific region. Actually, the surface of the object to be measured has some irregularities and slight interference occurs when viewed strictly, but it is not necessary to consider it. The inclination of the plane B may be such that it does not affect the actually required measurement accuracy. However, as the angle, the reflected wave B from the plane B due to the incident wave A from the transmitter 10 does not reach the transmitter 10. The angle is considered to be optimal.

【0019】なお、この実施例において、被測定物であ
る外壁ボード17はマイクロ伝搬経路12の縦方向中央
に配置されて傾斜が対称なので、外壁ボード17を透過
した透過波Dによる一次反射波Eの二次反射波Fに関し
ても同様の状態となり、この反射波Fによる干渉は解消
される。
In this embodiment, since the outer wall board 17 as an object to be measured is arranged at the center of the micro propagation path 12 in the vertical direction and has a symmetrical inclination, the primary reflected wave E due to the transmitted wave D transmitted through the outer wall board 17 is used. The same is true for the secondary reflected wave F, and the interference due to the reflected wave F is eliminated.

【0020】さらに、この実施例において受信器11の
周囲には、マイクロ波吸収体19がその平面Cを平面B
と平行に配置されており、被測定物17からの反射波を
吸収するようになっている。これにより、マイクロ波の
伝搬経路12から飛び出してくる反射波が反射を繰り返
して結局、受信されしまう事態を解消し、検出値がより
正確となるようにしている。平面Cが平面Bと平行に配
置された構成は、吸収されずに反射されることがあるマ
イクロ波による影響をも回避するためである。
Further, in this embodiment, around the receiver 11, a microwave absorber 19 changes its plane C into a plane B
Are arranged in parallel with each other so as to absorb the reflected wave from the DUT 17. This eliminates the situation in which the reflected wave that jumps out of the microwave propagation path 12 repeats reflection and is eventually received, so that the detection value becomes more accurate. The configuration in which the plane C is arranged in parallel with the plane B is also to avoid the influence of microwaves that may be reflected without being absorbed.

【0021】以上のように、被測定物を配置する平面B
をマイクロ波の伝搬経路途中に平面Aに対し傾斜するこ
とで入射波A、透過波Dによる反射波の干渉を大幅に減
ずることができ、水分測定を必要とするどの領域におい
ても正確な測定値を得ることができる。この場合、平面
Bの平面Aに対する最適な傾斜角度Cは、ほぼ送・受信
器10,11と被測定物17間の距離、および送・受信
器10,11の投影視による発射面、入射面の寸法eで
定まり、一般に、 C=1/2・tan-1e/fe・・・送・受信器の投影視による発射面、入射面の寸
f・・・マイクロ波伝搬経路の投影視において送・受信
器の発射面と入射面を上辺と下辺としたときの縦辺と
測定物の厚みに関する中心線m(図4)との交点から、
近い側の入射面あるいは発射面までの距離。の関係にあ
る。したがって、被測定物17が送信器10あるいは受
信器11から離れて距離fが大きくなるほど、また、発
射面あるいは入射面の投影視寸法eが小さくなるほど、
平面Bの傾斜角度は小さくて良い。
As described above, the plane B on which the object to be measured is placed
Is tilted with respect to the plane A in the middle of the microwave propagation path, the interference of the reflected wave due to the incident wave A and the transmitted wave D can be greatly reduced, and the accurate measurement value can be obtained in any region where the moisture measurement is required. Can be obtained. In this case, the optimum inclination angle C of the plane B with respect to the plane A is substantially the distance between the transmitter / receivers 10 and 11 and the device under test 17, and the emitting surface and the incident surface of the transmitters / receivers 10 and 11 as viewed from the projection. C = 1 / · tan −1 e / f e... The dimensions of the emitting surface and the incident surface of the transmitter / receiver as viewed by projection.
Method f: Transmission / reception in projection view of microwave propagation path
From the intersection of the vertical side when the launch surface and the incident surface of the instrument are the upper side and the lower side, and the center line m (FIG. 4) relating to the thickness of the DUT,
The distance to the nearest entrance or launch surface. In a relationship. Therefore, the larger the distance f of the device under test 17 away from the transmitter 10 or the receiver 11 and the smaller the projected viewing dimension e of the emitting surface or the incident surface,
The inclination angle of the plane B may be small.

【0022】以上は、本発明を実施する装置の一例であ
って、本発明の実施が、図示された構成の装置に限られ
ることはない。例えば、被測定物が水平に配置され、マ
イクロ波の伝搬経路が傾斜する配置とされても実質的に
同じである。また、被測定物は外壁ボードに限らない。
さらに、マイクロ波の伝搬経路における被測定物の配置
は、影響の大きな反射波Bが発生する送信側においての
み前記の角度Cが達成されるようにし、受信側に付いて
は格別考慮しないこともある。
The above is an example of an apparatus for carrying out the present invention, and the present invention is not limited to the apparatus having the illustrated configuration. For example, it is substantially the same even when the device under test is arranged horizontally and the microwave propagation path is inclined. The device under test is not limited to the outer wall board.
Further, the arrangement of the device under test in the microwave propagation path is such that the angle C is achieved only on the transmitting side where the highly reflected wave B is generated, and the receiving side is not particularly considered. is there.

【0023】[0023]

【発明の効果】マイクロ波による透過型水分測定におい
て、必要とする水分測定の領域の全域に渡って正確な測
定値を得られる。
According to the present invention, accurate measurement values can be obtained over the entire required moisture measurement area in transmission moisture measurement using microwaves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】概略的に示した機構図(従来例)。FIG. 1 is a schematic diagram of a mechanism (conventional example).

【図2】検出電圧と水分との対応を示すグラフ(従来
例)。
FIG. 2 is a graph (corresponding to a conventional example) showing the correspondence between a detection voltage and moisture.

【図3】概略的に示した機構図(本発明)。FIG. 3 is a schematic diagram of the mechanism (the present invention).

【図4】機能を説明するための拡大図。FIG. 4 is an enlarged view for explaining functions.

【図5】検出電圧と水分との対応を示すグラフ(本発
明)。
FIG. 5 is a graph (corresponding to the present invention) showing a correspondence between a detection voltage and moisture.

【符号の説明】[Explanation of symbols]

10 送信器 11 受信器 12 マイクロ波の伝搬経路 13 発振器 14 検波器 15 制御基板 16 テスター 17 被測定物 18 傾斜支持板 19 吸収体 DESCRIPTION OF SYMBOLS 10 Transmitter 11 Receiver 12 Microwave propagation path 13 Oscillator 14 Detector 15 Control board 16 Tester 17 Device under test 18 Inclined support plate 19 Absorber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松浦 猛 静岡県掛川市下垂木830−2 (72)発明者 塚本 伸人 静岡県菊川町仲島1−2−3 (72)発明者 杉山 晃広 静岡県金谷町金谷3482−91 (72)発明者 鈴木 太紀夫 静岡県磐田郡豊田町豊田45 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takeshi Matsuura 830-2 Shigaraki, Kakegawa-shi, Shizuoka (72) Inventor Nobuto Tsukamoto 1-2-3 Nakajima, Kikugawa-cho, Shizuoka (72) Inventor Akihiro Sugiyama Shizuoka 3482-91 Kanaya, Kanaya-cho (72) Inventor Takio Suzuki 45, Toyota-cho, Toyota-machi, Iwata-gun, Shizuoka Prefecture

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マイクロ波伝搬経路途中に被測定物を配
置し、被測定物を通過したマイクロ波エネルギーの減衰
率から被測定物の水分を算出する水分測定方法であっ
て、対向して配置された送信器と受信器によってその間
にマイクロ波伝搬経路が形成され、被測定物は少なくと
も測定域においてマイクロ波の進行方向と直交する平面
Aに対し傾斜した平面Bに配置され、その傾斜は下記の
角度C以上としてあり、送信器および受信器の周囲であ
って反射波が衝突する位置にマイクロ波の吸収体を配置
してあることを特徴とした水分測定方法、 C=1/2・tan-1e/f e…送・受信器の投影視による発射面、入射面の寸法 f…マイクロ波伝搬経路の投影視において送・受信器の
発射面と入射面を上辺と下辺とした矩形の縦辺と被測定
物の厚みに関する中心線との交点から、近い側の入射面
あるいは発射面までの距離。
1. A moisture measuring method for arranging an object to be measured in the middle of a microwave propagation path and calculating the moisture of the object to be measured from an attenuation rate of microwave energy passing through the object to be measured. A microwave propagation path is formed between the transmitter and the receiver, and the device under test is disposed on a plane B inclined at least in a measurement area with respect to a plane A orthogonal to the traveling direction of the microwave. Above angle C , and around the transmitter and receiver.
The microwave absorber at the position where the reflected waves collide
Projection view of the then moisture measurement method, wherein the are, C = 1/2 · tan -1 e / f e ... firing surface by the projection view of the transmission and receiver, the size of the entrance surface f ... microwave propagation path In the above, the distance from the intersection of the vertical side of the rectangle with the upper and lower sides of the launch surface and the entrance surface of the transmitter / receiver and the center line relating to the thickness of the DUT to the nearest entrance surface or launch surface.
JP04284898A 1992-10-01 1992-10-01 Moisture measurement method Expired - Fee Related JP3105094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04284898A JP3105094B2 (en) 1992-10-01 1992-10-01 Moisture measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04284898A JP3105094B2 (en) 1992-10-01 1992-10-01 Moisture measurement method

Publications (2)

Publication Number Publication Date
JPH06118027A JPH06118027A (en) 1994-04-28
JP3105094B2 true JP3105094B2 (en) 2000-10-30

Family

ID=17684480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04284898A Expired - Fee Related JP3105094B2 (en) 1992-10-01 1992-10-01 Moisture measurement method

Country Status (1)

Country Link
JP (1) JP3105094B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461864B (en) * 2020-10-16 2022-11-04 合肥联宝信息技术有限公司 Microwave frequency signal penetration rate measuring system

Also Published As

Publication number Publication date
JPH06118027A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
US5134405A (en) Electromagnetically anechoic chamber and shield structures therefor
US3534260A (en) Method and apparatus for measuring moisture content in sheet materials using a frequency modulation free microwave energy beam
CA1237171A (en) Microwave moisture sensor
Hodara Laser wave propagation through the atmosphere
US3818333A (en) Microwave window and antenna apparatus for moisture measurement of fluidized material
Robertson Targets for microwave radar navigation
KR970007981B1 (en) Radio-frequency unechoic chamber
US2423383A (en) Absorptive gas microwave measuring system
Doane et al. Plasma density measurements using FM–CW millimeter wave radar techniques
US4325633A (en) Apparatus for determining of angle of incidence of electromagnetic energy
JP3105094B2 (en) Moisture measurement method
US3955199A (en) Method of and apparatus for ground testing doppler navigation sets-a doppler radar simulator
RU2111506C1 (en) Device for remote measurement of reflecting properties of complex-form objects in shf range of radio waves
CN110095763A (en) A kind of radar test darkroom
US3225295A (en) Unitary microwave tester for transmitreceive systems including power measuring and reflective means
US5017923A (en) Over the horizon communication system
Shearman The technique of ionospheric investigation using ground back-scatter
Reinhardt et al. Remote measurement of particle streams with a multistatic dual frequency millimeter wave radar sensor
US3694737A (en) Microwave moisture sensing system and method
Tamminen et al. Monostatic reflectivity and transmittance of radar absorbing materials at 650 GHz
JPS6342357Y2 (en)
SU423027A1 (en) DEVICE FOR MEASURING THE MOISTURE OF BULK MATERIALS
RU2207549C1 (en) Device for measurement of moisture content in non- metallic media
SU1628016A1 (en) Device for antenna parameter measurement
SU1046708A1 (en) Device for measuring coefficient of reflection in different angles of incidence of electromagnetic wave on specimen

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees