JP3098949B2 - Method and apparatus for setting gap between solid electrolyte tube and partition - Google Patents

Method and apparatus for setting gap between solid electrolyte tube and partition

Info

Publication number
JP3098949B2
JP3098949B2 JP08064177A JP6417796A JP3098949B2 JP 3098949 B2 JP3098949 B2 JP 3098949B2 JP 08064177 A JP08064177 A JP 08064177A JP 6417796 A JP6417796 A JP 6417796A JP 3098949 B2 JP3098949 B2 JP 3098949B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
partition
electrolyte tube
outer diameter
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08064177A
Other languages
Japanese (ja)
Other versions
JPH09259921A (en
Inventor
光広 庄村
博以 辻
栄司 伊藤
明良 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP08064177A priority Critical patent/JP3098949B2/en
Publication of JPH09259921A publication Critical patent/JPH09259921A/en
Application granted granted Critical
Publication of JP3098949B2 publication Critical patent/JP3098949B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ナトリウム−硫黄
電池の製造工程において用いられる固体電解質管と有底
筒状の隔壁との間隙設定方法及びその装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for setting a gap between a solid electrolyte tube and a bottomed cylindrical partition used in a process of manufacturing a sodium-sulfur battery.

【0002】[0002]

【従来の技術】図8に示すように、ナトリウム−硫黄電
池はβ−アルミナ質の固体電解質管1の内部に陰極活物
質としてのナトリウム2を、その外部に陽極活物質とし
ての硫黄3を配置した構造のものであり、ナトリウム2
は底部に孔4を持つカートリッジ5にガスGとともに充
填されている。そして使用状態では、カートリッジ5の
孔4から供給されたナトリウム2が固体電解質管1の内
面とカートリッジ5の外面との間に入り、ナトリウムイ
オンとなって固体電解質管1を通過し、電池反応が進行
する。
2. Description of the Related Art As shown in FIG. 8, in a sodium-sulfur battery, sodium 2 as a cathode active material is disposed inside a solid electrolyte tube 1 of .beta.-alumina, and sulfur 3 as an anode active material is disposed outside. Structure of sodium 2
Is filled together with gas G into a cartridge 5 having a hole 4 at the bottom. In use, the sodium 2 supplied from the hole 4 of the cartridge 5 enters between the inner surface of the solid electrolyte tube 1 and the outer surface of the cartridge 5 and becomes sodium ions and passes through the solid electrolyte tube 1 to cause a battery reaction. proceed.

【0003】しかし、例えば固体電解質管1にクラック
が生じたような場合にはナトリウム2と硫黄3とが急激
に反応し、異常高温を発生するおそれがある。そのため
に図8に示すように、固体電解質管1の内面とカートリ
ッジ5の外面との間にはアルミニウムやステンレス等か
らなる有底筒状の隔壁6が配置されており、温度が上昇
した際には熱膨張により隔壁6が固体電解質管1の内面
に密着し、反応を抑制するようになっている。
[0003] However, for example, when a crack occurs in the solid electrolyte tube 1, sodium 2 and sulfur 3 react rapidly, which may cause an abnormally high temperature. For this purpose, as shown in FIG. 8, a bottomed cylindrical partition wall 6 made of aluminum, stainless steel, or the like is arranged between the inner surface of the solid electrolyte tube 1 and the outer surface of the cartridge 5, and when the temperature rises. The partition wall 6 is brought into close contact with the inner surface of the solid electrolyte tube 1 due to thermal expansion to suppress the reaction.

【0004】図8では各部材の間隙は広く図示してある
が、上記の目的を達成するためには隔壁6と固体電解質
管1との間隙は0.1mm程度の寸法にに10μm前後
の精度で設定する必要がある。ところが隔壁6は金属製
品であるために精度よく成形できるのに対して、固体電
解質管1はセラミック製品であるために焼成歪みにより
多少の寸法ばらつきが生ずることが避けられない。この
ため従来は固体電解質管1の内径を予め測定し、その測
定値に基づき固体電解質管1を3〜5のグループに分類
保管したのち、各グループ毎に各グループの内径平均値
に対応した所定の一定圧力で隔壁6を膨張させていた。
そのため分類保管に手間がかかるとともに、グループ内
での固体電解質管1のばらつきにより、一定の間隙を形
成することができなかった。
[0004] In FIG. 8, the gap between the members is shown widely, but in order to achieve the above object, the gap between the partition wall 6 and the solid electrolyte tube 1 has a precision of about 10 μm to about 0.1 mm. Must be set in However, since the partition wall 6 is a metal product, it can be molded with high accuracy. On the other hand, since the solid electrolyte tube 1 is a ceramic product, it is inevitable that some dimensional variation occurs due to firing strain. For this reason, conventionally, the inner diameter of the solid electrolyte tube 1 is measured in advance, and the solid electrolyte tubes 1 are classified and stored in groups of 3 to 5 based on the measured values. The partition 6 was inflated at a constant pressure.
For this reason, it takes time and effort to store and sort, and a certain gap cannot be formed due to the dispersion of the solid electrolyte tubes 1 within the group.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、固体電解質管の不可避的な寸法ばら
つきに対応させて有底筒状の隔壁を膨張させることによ
り常に両者の間隙を一定にしたナトリウム−硫黄電池の
組み立てができるようにした、固体電解質管と隔壁との
間隙設定方法及びその装置を提供するためになされたも
のである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and constantly expands the bottomed cylindrical partition wall in response to the unavoidable dimensional variation of the solid electrolyte tube, thereby always providing a gap between the two. The present invention has been made to provide a method and an apparatus for setting a gap between a solid electrolyte tube and a partition wall so that a sodium-sulfur battery having a constant value can be assembled.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の固体電解質管と隔壁との間隙設定
方法は、内径測定器によりナトリウム−硫黄電池の固体
電解質管の内径を測定し、演算装置によりその固体電解
質管と組み合わされるべき有底筒状の隔壁の外径の演算
と、前記隔壁を演算された外径まで膨張させるに要する
圧力の演算とを行い、加圧装置により前記隔壁の内部で
ゴム管を演算された圧力付近まで急速に加圧し、その後
は徐々に昇圧することにより前記隔壁を演算された外径
まで膨張変形させることを特徴とするものである。
In order to solve the above-mentioned problems, a method of setting a gap between a solid electrolyte tube and a partition according to the present invention is to measure an inner diameter of a solid electrolyte tube of a sodium-sulfur battery by an inner diameter measuring device. The arithmetic unit calculates the outer diameter of the bottomed cylindrical partition to be combined with the solid electrolyte tube, and calculates the pressure required to expand the partition to the calculated outer diameter. The rubber pipe is rapidly pressurized to a vicinity of a calculated pressure inside the partition wall, and then gradually pressurized to expand and deform the partition wall to a calculated outer diameter.

【0007】また上記の課題を解決するためになされた
本発明の固体電解質管と隔壁との間隙設定装置は、ナト
リウム−硫黄電池の固体電解質管の内径を測定する内径
測定器と、その測定値に基づいてその固体電解質管と組
み合わされるべき有底筒状の隔壁の外径の演算及び前記
隔壁を演算された外径まで膨張させるに要する圧力の演
算とを行う演算装置と、前記隔壁の内部でゴム管を演算
された圧力付近まで急速に加圧し、その後は徐々に昇圧
することにより前記隔壁を演算された外径まで膨張変形
させる加圧装置とを組み合わせたことを特徴とするもの
である。
In order to solve the above-mentioned problems, a gap setting device between a solid electrolyte tube and a partition wall according to the present invention is provided with an inner diameter measuring device for measuring the inner diameter of a solid electrolyte tube of a sodium-sulfur battery, and a measured value thereof. A calculating device for calculating the outer diameter of the bottomed cylindrical partition to be combined with the solid electrolyte tube and calculating the pressure required to expand the partition to the calculated outer diameter, based on And a pressurizing device that rapidly pressurizes the rubber tube to near the calculated pressure, and thereafter gradually expands the pressure to expand and deform the partition to the calculated outer diameter. .

【0008】[0008]

【発明の実施の形態】以下に本発明の好ましい実施の形
態を説明する。図1は本発明の固体電解質管と隔壁との
間隙設定装置の全体構成を示すブロック図であり、10
は内径測定器、11はパソコン等の演算装置、12は加
圧装置、13は内径測定器のシーケンサ、14は加圧装
置のシーケンサである。これらの各機器はネットワーク
により相互に接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. FIG. 1 is a block diagram showing an entire configuration of a gap setting device between a solid electrolyte tube and a partition wall according to the present invention.
Is an inner diameter measuring device, 11 is a computing device such as a personal computer, 12 is a pressurizing device, 13 is a sequencer of the inner diameter measuring device, and 14 is a sequencer of the pressurizing device. These devices are interconnected by a network.

【0009】図2〜図4は内径測定器10の好ましい構
成及びその使用方法を説明する図である。図2に示され
るように、内径測定器10はナトリウム−硫黄電池の固
体電解質管1の口部を支持する環状のワーク支持台15
と、このワーク支持台15に支持された固体電解質管1
の下部付近まで挿入される測定心棒16とを備えてい
る。また固体電解質管1の片側にはワーク押さえ17
と、第1のリニアゲージ18とが設けられているほか、
その反対側には第2のリニアゲージ19が第1のリニア
ゲージ18と対向させて設けられている。
FIGS. 2 to 4 are views for explaining a preferred configuration of the inner diameter measuring device 10 and a method of using the same. As shown in FIG. 2, the inner diameter measuring device 10 is an annular work support 15 that supports the mouth of the solid electrolyte tube 1 of the sodium-sulfur battery.
And the solid electrolyte tube 1 supported by the work support 15
And a measuring mandrel 16 which is inserted to the vicinity of the lower part of the measuring mandrel. A work holder 17 is provided on one side of the solid electrolyte tube 1.
And a first linear gauge 18 are provided.
On the opposite side, a second linear gauge 19 is provided so as to face the first linear gauge 18.

【0010】図3、図4に示すように測定心棒16の上
下2ヵ所にはアルミナボールを接触点20として設けて
ある。またワーク押さえ17は2個のローラを備えてお
り、図4に示すように測定心棒16を固体電解質管1の
内部に挿入した後にその中間の高さで固体電解質管1を
外側から押圧することにより、固体電解質管1を固定で
きる構造となっている。
As shown in FIGS. 3 and 4, alumina balls are provided as contact points 20 at two locations above and below the measuring mandrel 16. The work holder 17 is provided with two rollers. After the measurement mandrel 16 is inserted into the solid electrolyte tube 1 as shown in FIG. 4, the solid electrolyte tube 1 is pressed from the outside at an intermediate height. Thereby, the solid electrolyte tube 1 can be fixed.

【0011】この内径測定器10により固体電解質管1
の内径を測定するには、図3のように測定心棒16を固
体電解質管1の内部に挿入する。次にワーク押さえ17
と第1のリニアゲージ18とを固体電解質管1の方向に
前進させ、また第2のリニアゲージ19を反対側から前
進させて図4の状態とする。これにより、測定心棒16
の接触点20と第1のリニアゲージ18との間で固体電
解質管1の肉厚tが測定できるとともに、第1のリニア
ゲージ18と第2のリニアゲージ19との間で外径Dが
測定できる。
The solid electrolyte tube 1 is measured by the inner diameter measuring device 10.
In order to measure the inner diameter of the solid electrolyte tube, the measuring mandrel 16 is inserted into the solid electrolyte tube 1 as shown in FIG. Next, work holder 17
And the first linear gauge 18 are advanced in the direction of the solid electrolyte tube 1, and the second linear gauge 19 is advanced from the opposite side to the state shown in FIG. Thereby, the measuring mandrel 16
The thickness t of the solid electrolyte tube 1 can be measured between the contact point 20 and the first linear gauge 18, and the outer diameter D is measured between the first linear gauge 18 and the second linear gauge 19. it can.

【0012】上記の測定を、固体電解質管1を90°ず
つ回転させて4回繰り返し、〔外径Dの平均値〕−2×
〔肉厚tの平均値〕の式によって固体電解質管1の内径
平均値を求めることができる。なお、図示のように測定
位置は固体電解質管1の下部付近とすることが好まし
い。これは前記した固体電解質管1のクラック発生が固
体電解質管1の下部付近で生じた場合に重大な事故につ
ながり易いので、特に固体電解質管1の下部付近におい
て隔壁6との間隙設定を厳密に行う必要があるためであ
る。
The above measurement was repeated four times while rotating the solid electrolyte tube 1 by 90 °, and the average value of the outer diameter D was −2 ×
The average value of the inner diameter of the solid electrolyte tube 1 can be obtained from the equation [average value of wall thickness t]. It is preferable that the measurement position is near the lower part of the solid electrolyte tube 1 as shown. This is likely to lead to a serious accident when the above-mentioned cracks in the solid electrolyte tube 1 occur near the lower portion of the solid electrolyte tube 1. It is necessary to do it.

【0013】このようにして測定された固体電解質管1
の内径は、ネットワークを通じて演算装置11に入力さ
れる。演算装置11はその測定値に基づいて、その固体
電解質管1と組み合わされるべき隔壁6の外径を演算す
る。また演算装置11は図1の下部に示したような検量
線を記憶しており、隔壁6を演算された外径まで膨張さ
せるに要する圧力を演算する。この圧力のデータは、ネ
ットワークを介して加圧装置12のシーケンサ14に送
られる。
The solid electrolyte tube 1 thus measured
Is input to the arithmetic unit 11 through the network. The calculating device 11 calculates the outer diameter of the partition 6 to be combined with the solid electrolyte tube 1 based on the measured value. The arithmetic unit 11 stores a calibration curve as shown in the lower part of FIG. 1 and calculates the pressure required to expand the partition 6 to the calculated outer diameter. The pressure data is sent to the sequencer 14 of the pressurizing device 12 via the network.

【0014】図5は加圧装置12の構成を示す図であ
る。図中、21は隔壁6の内部に挿入されるゴム管、2
2はこのゴム管21の内部に油や水等の加圧液体を送り
込むための加圧シリンダ、23はこの加圧シリンダ22
を任意の速度で移動させるためのサーボモータである。
加圧液体の圧力を圧力計24で測定しつつシーケンサ1
4でサーボモータ23の回転を制御することにより、ゴ
ム管21の内圧を厳密に制御することができる。
FIG. 5 is a view showing the structure of the pressurizing device 12. In the figure, reference numeral 21 denotes a rubber tube inserted into the inside of the partition 6;
Reference numeral 2 denotes a pressurizing cylinder for feeding a pressurized liquid such as oil or water into the rubber tube 21. Reference numeral 23 denotes a pressurizing cylinder 22.
Is a servo motor for moving at any speed.
While measuring the pressure of the pressurized liquid with the pressure gauge 24, the sequencer 1
By controlling the rotation of the servomotor 23 in 4, the internal pressure of the rubber tube 21 can be strictly controlled.

【0015】しかしこのような手段のみによってはゴム
管21の加圧減圧に長い時間を要するために、図5の加
圧装置12はゴム管21の内部を急速に加圧及び減圧す
る機構25を備えている。この機構25は、液体タンク
26と、この液体タンク26の上部空間に空気を導入あ
るいは排出する切り替え弁27と、真空引き装置28と
を備えている。
However, since it takes a long time to pressurize and depressurize the rubber tube 21 only by such means, the pressurizing device 12 shown in FIG. Have. The mechanism 25 includes a liquid tank 26, a switching valve 27 for introducing or discharging air into or from the upper space of the liquid tank 26, and a vacuum device 28.

【0016】このため、切り替え弁27を介して液体タ
ンク26の上部空間に加圧空気源29から例えば5kg/c
m2の加圧空気を導入すると、液体タンク26内の加圧液
体にも同じ圧力が加わり、ゴム管21の内圧を瞬時に5
kg/cm2まで上昇させることができる。また切り替え弁2
7を切り替えて液体タンク26の上部空間を真空引き装
置28に連通させると、ゴム管21の内圧を瞬時に大気
圧まで低下させることができる。
For this reason, for example, 5 kg / c from the pressurized air source 29 to the upper space of the liquid tank 26 via the switching valve 27.
When the pressurized air of m 2 is introduced, the same pressure is applied to the pressurized liquid in the liquid tank 26, and the internal pressure of the rubber tube 21 is instantaneously reduced by 5%.
kg / cm 2 . Switching valve 2
When the upper space of the liquid tank 26 is communicated with the evacuation device 28 by switching 7, the internal pressure of the rubber tube 21 can be instantaneously reduced to the atmospheric pressure.

【0017】次に図6と図7を参照しつつ、加圧装置1
2の動作を説明する。まずゴム管21を隔壁6の内部に
挿入したうえ、加圧空気源29を利用してゴム管21の
内圧を瞬時に予圧する。その圧力は例えば5kg/cm2であ
る。次に自動減圧バルブ30を閉じたうえ、サーボモー
タ23を動作させて加圧シリンダ22から加圧液体をゴ
ム管21の内部に送り込み、ゴム管21の内圧を図7の
ように昇圧する。
Next, referring to FIG. 6 and FIG.
Operation 2 will be described. First, the rubber tube 21 is inserted into the inside of the partition wall 6, and the internal pressure of the rubber tube 21 is instantaneously pre-pressed using the pressurized air source 29. The pressure is, for example, 5 kg / cm 2 . Next, after the automatic pressure reducing valve 30 is closed, the servomotor 23 is operated to feed the pressurized liquid from the pressurizing cylinder 22 into the rubber tube 21 to increase the internal pressure of the rubber tube 21 as shown in FIG.

【0018】このとき、加圧シリンダ22の動作速度は
演算装置11により演算された圧力(目標圧力)との差
圧が大きいときには速く、演算された圧力との差圧が小
さくなると遅くなるように制御されている。このため、
ゴム管21の内圧は演算された圧力付近までは急速に上
昇するが、その後は徐々に昇圧することになり、最終的
に演算された圧力(例えば40〜50kg/cm2) に到達する。
その結果、隔壁6はその内側からゴム管21によって押
し拡げられ、演算された外径まで塑性変形される。な
お、圧力が開放されると弾性変形分は当然にゼロとなる
ので、目標圧力はその弾性変形分を見込んで設定してお
くことはいうまでもない。
At this time, the operating speed of the pressurizing cylinder 22 is high when the differential pressure from the pressure (target pressure) calculated by the arithmetic unit 11 is large, and is low when the differential pressure from the calculated pressure is small. Is controlled. For this reason,
The internal pressure of the rubber tube 21 rapidly rises to around the calculated pressure, but thereafter gradually increases, and finally reaches the calculated pressure (for example, 40 to 50 kg / cm 2 ).
As a result, the partition wall 6 is pushed out from the inside by the rubber tube 21 and is plastically deformed to the calculated outer diameter. When the pressure is released, the amount of elastic deformation naturally becomes zero. Therefore, it goes without saying that the target pressure is set in consideration of the amount of elastic deformation.

【0019】本発明では上記のように加圧シリンダ22
の動作速度を制御しているため、図7に示すとおりゴム
管21の内圧が演算された圧力(目標圧力)を越えるこ
とがない。このような制御方法を採用したのは、内圧が
オーバーシュートして演算された圧力を越えると、隔壁
6の径が演算された外径を越えて塑性変形してしまい、
固体電解質管1と隔壁6との間隙が正しく設定できなく
なるためである。
In the present invention, as described above, the pressure cylinder 22
7, the internal pressure of the rubber tube 21 does not exceed the calculated pressure (target pressure) as shown in FIG. The reason for adopting such a control method is that when the internal pressure exceeds the calculated pressure due to overshoot, the diameter of the partition 6 exceeds the calculated outer diameter and is plastically deformed.
This is because the gap between the solid electrolyte tube 1 and the partition wall 6 cannot be set correctly.

【0020】このようにゴム管21の内圧を演算された
圧力に到達させた後、一定時間保持することが好まし
い。この保持時間は例えば6〜10秒程度である。その
後、切り替え弁27を切り替えて液体タンク26の上部
空間を真空引き装置28に連通させ、ゴム管21の内圧
を図7に示すように瞬時に大気圧まで低下させる。
After the internal pressure of the rubber tube 21 reaches the calculated pressure as described above, it is preferable that the internal pressure be maintained for a certain period of time. The holding time is, for example, about 6 to 10 seconds. Thereafter, the switching valve 27 is switched to communicate the upper space of the liquid tank 26 with the vacuuming device 28, and the internal pressure of the rubber tube 21 is instantaneously reduced to the atmospheric pressure as shown in FIG.

【0021】このようにして、本発明によれば測定され
た個々の固体電解質管1の内径に対応した外径に隔壁6
を自動的に二次加工することができるので、固体電解質
管1の不可避的な寸法ばらつきにかかわらず、固体電解
質管1と隔壁6との間隙を一定にしたナトリウム−硫黄
電池の組み立てが可能となる。
As described above, according to the present invention, the partition wall 6 has an outer diameter corresponding to the measured inner diameter of each solid electrolyte tube 1.
Can be automatically processed, so that it is possible to assemble a sodium-sulfur battery in which the gap between the solid electrolyte tube 1 and the partition 6 is constant regardless of the inevitable dimensional variation of the solid electrolyte tube 1. Become.

【0022】[0022]

【発明の効果】以上に説明したように、本発明によれば
固体電解質管の内径を測定し、それに合わせて金属製の
隔壁を膨張させるようにしたので、従来のような手数の
かかる方法によることなく、固体電解質管と隔壁との間
隙を一定にしたナトリウム−硫黄電池の組み立てが可能
となる利点がある。また請求項3に記載の内径測定器を
用いれば、固体電解質管の内径を簡便かつ正確に測定す
ることが可能となる。さらに請求項4に記載の加圧装置
を用いれば、隔壁の膨張変形を迅速かつ正確に行うこと
ができる。
As described above, according to the present invention, the inner diameter of the solid electrolyte tube is measured, and the metal partition is expanded in accordance with the measured value. There is an advantage that it is possible to assemble a sodium-sulfur battery in which the gap between the solid electrolyte tube and the partition wall is kept constant. Further, if the inner diameter measuring device according to claim 3 is used, the inner diameter of the solid electrolyte tube can be measured simply and accurately. Further, by using the pressurizing device according to the fourth aspect, the expansion deformation of the partition wall can be performed quickly and accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の間隙設定装置の全体構成を示すブロッ
ク図である。
FIG. 1 is a block diagram showing the overall configuration of a gap setting device according to the present invention.

【図2】内径測定方法を示す断面図である。FIG. 2 is a cross-sectional view illustrating an inner diameter measuring method.

【図3】内径測定方法を示す断面図である。FIG. 3 is a cross-sectional view showing a method for measuring the inner diameter.

【図4】内径測定方法を示す断面図である。FIG. 4 is a sectional view showing an inner diameter measuring method.

【図5】加圧装置の全体構成を示す配管系統図である。FIG. 5 is a piping diagram showing the overall configuration of the pressurizing device.

【図6】加圧工程のタイミングチャートである。FIG. 6 is a timing chart of a pressing step.

【図7】加圧工程における圧力変化を詳細に示すグラフ
である。
FIG. 7 is a graph showing a pressure change in a pressing step in detail.

【図8】ナトリウム−硫黄電池の構造を示す断面図であ
る。
FIG. 8 is a sectional view showing a structure of a sodium-sulfur battery.

【符号の説明】 1 固体電解質管、2 ナトリウム、3 硫黄、4
孔、5 カートリッジ、6 隔壁、10 内径測定器、
11 演算装置、12 加圧装置、13 内径測定器の
シーケンサ、14 加圧装置のシーケンサ、15 ワー
ク支持台、16測定心棒、17 ワーク押さえ、18
第1のリニアゲージ、19 第2のリニアゲージ、20
接触点、21 ゴム管、22 加圧シリンダ、23
サーボモータ、24 圧力計、25 ゴム管の内部を急
速に加圧及び減圧する機構、26液体タンク、27 切
り替え弁、28 真空引き装置、29 加圧空気源、3
0 自動減圧バルブ
[Description of Signs] 1 solid electrolyte tube, 2 sodium, 3 sulfur, 4
Hole, 5 cartridge, 6 partition, 10 inner diameter measuring instrument,
Reference Signs List 11 arithmetic unit, 12 pressurizing device, 13 sequencer for inner diameter measuring device, 14 sequencer for pressurizing device, 15 work support base, 16 measuring mandrel, 17 work holder, 18
First linear gauge, 19 Second linear gauge, 20
Contact point, 21 rubber tube, 22 pressure cylinder, 23
Servo motor, 24 pressure gauge, 25 mechanism for rapidly increasing and decreasing the pressure inside the rubber tube, 26 liquid tank, 27 switching valve, 28 vacuum device, 29 pressurized air source, 3
0 Automatic pressure reducing valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下川 明良 愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式会社内 (56)参考文献 特開 平3−226974(JP,A) 特開 平6−342672(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akiyoshi Shimokawa 2-56 Suda-cho, Mizuho-ku, Nagoya-shi, Aichi Japan Insulator Co., Ltd. (56) References JP-A-3-226974 (JP, A) JP-A 6-342672 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 10/39

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内径測定器によりナトリウム−硫黄電池
の固体電解質管の内径を測定し、演算装置によりその固
体電解質管と組み合わされるべき有底筒状の隔壁の外径
の演算と、前記隔壁を演算された外径まで膨張させるに
要する圧力の演算とを行い、加圧装置により前記隔壁の
内部でゴム管を演算された圧力付近まで急速に加圧し、
その後は徐々に昇圧することにより前記隔壁を演算され
た外径まで膨張変形させることを特徴とする固体電解質
管と隔壁間の間隙設定方法。
An inner diameter measuring device measures an inner diameter of a solid electrolyte tube of a sodium-sulfur battery, calculates an outer diameter of a bottomed cylindrical partition to be combined with the solid electrolyte tube by an arithmetic device, and calculates the outer diameter of the partition. Perform the calculation of the pressure required to expand to the calculated outer diameter, and rapidly pressurize the rubber tube to around the calculated pressure inside the partition by the pressurizing device,
Thereafter, the pressure is gradually increased to expand and deform the partition wall to the calculated outer diameter, and a gap setting method between the solid electrolyte tube and the partition wall.
【請求項2】 ナトリウム−硫黄電池の固体電解質管の
内径を測定する内径測定器と、その測定値に基づいてそ
の固体電解質管と組み合わされるべき有底筒状の隔壁の
外径の演算及び前記隔壁を演算された外径まで膨張させ
るに要する圧力の演算とを行う演算装置と、前記隔壁の
内部でゴム管を演算された圧力付近まで急速に加圧し、
その後は徐々に昇圧することにより前記隔壁を演算され
た外径まで膨張変形させる加圧装置とを組み合わせたこ
とを特徴とする固体電解質管と隔壁間の間隙設定装置。
2. An inner diameter measuring device for measuring the inner diameter of a solid electrolyte tube of a sodium-sulfur battery, calculating the outer diameter of a bottomed cylindrical partition to be combined with the solid electrolyte tube based on the measured value, and A computing device that performs the computation of the pressure required to inflate the partition to the computed outer diameter, and rapidly pressurizes the rubber tube to near the computed pressure inside the partition,
After that, a gap setting device between the solid electrolyte tube and the partition is combined with a pressurizing device which gradually expands the pressure to expand and deform the partition to the calculated outer diameter.
【請求項3】 内径測定器が、固体電解質管の下部まで
挿入される測定心棒と、この測定心棒との間で固体電解
質管の下部の管壁を挟んで肉厚を測定するための第1の
リニアゲージと、この第1のリニアゲージと対向させて
配置された外径測定用の第2のリニアゲージとを備えた
ものである請求項2に記載の固体電解質管と隔壁間の間
隙設定装置。
3. A first inner diameter measuring device for measuring a wall thickness between a measuring mandrel inserted into a lower portion of a solid electrolyte tube and a lower wall of the solid electrolyte tube between the measuring mandrel. 3. A gap setting between the solid electrolyte tube and the partition wall according to claim 2, comprising a linear gauge for measuring the outer diameter, and a second linear gauge for measuring the outer diameter, which is disposed to face the first linear gauge. apparatus.
【請求項4】 加圧装置が、ゴム管の内圧を急速に加圧
及び減圧する機構と、ゴム管の内圧をサーボモータを備
えた加圧シリンダにより徐々に昇圧する機構とを備えた
ものである請求項2に記載の固体電解質管と隔壁間の間
隙設定装置。
4. A pressurizing device comprising: a mechanism for rapidly increasing and decreasing the internal pressure of a rubber tube; and a mechanism for gradually increasing the internal pressure of the rubber tube by a pressurizing cylinder equipped with a servomotor. 3. The apparatus for setting a gap between a solid electrolyte tube and a partition according to claim 2.
JP08064177A 1996-03-21 1996-03-21 Method and apparatus for setting gap between solid electrolyte tube and partition Expired - Lifetime JP3098949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08064177A JP3098949B2 (en) 1996-03-21 1996-03-21 Method and apparatus for setting gap between solid electrolyte tube and partition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08064177A JP3098949B2 (en) 1996-03-21 1996-03-21 Method and apparatus for setting gap between solid electrolyte tube and partition

Publications (2)

Publication Number Publication Date
JPH09259921A JPH09259921A (en) 1997-10-03
JP3098949B2 true JP3098949B2 (en) 2000-10-16

Family

ID=13250531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08064177A Expired - Lifetime JP3098949B2 (en) 1996-03-21 1996-03-21 Method and apparatus for setting gap between solid electrolyte tube and partition

Country Status (1)

Country Link
JP (1) JP3098949B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101191921B1 (en) * 2004-12-27 2012-10-17 사파스고교 가부시키가이샤 Connector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153279B2 (en) * 2020-09-24 2022-10-14 株式会社堤水素研究所 solid electrolyte alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101191921B1 (en) * 2004-12-27 2012-10-17 사파스고교 가부시키가이샤 Connector

Also Published As

Publication number Publication date
JPH09259921A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
US5157960A (en) Method and apparatus for transient measurement of gas permeability in closed-cell foam insulation
JP3098949B2 (en) Method and apparatus for setting gap between solid electrolyte tube and partition
US4708008A (en) Volume control superplastic forming
US3197986A (en) Control system for rolling mills
CN113654615B (en) Device and method for testing real-time gas production rate in battery
JP2005324209A (en) Bulging apparatus and bulging method
Yamaki et al. Experiments on the postbuckling behavior of circular cylindrical shells under hydrostatic pressure: Precise experimental results are presented for the postbuckling behavior of circular cylindrical shells under hydrostatic pressure, which will be of use for elaborate theoretical analyses in the future
CN112757143B (en) Replaceable air bag polishing device for inner raceway of bearing outer ring
US4107982A (en) Vessel for atmosphere for use with material testing device
US5689987A (en) Method for determining the proper progress of a superplastic forming process by monitoring gas-mass outflow
US20050092071A1 (en) Method and apparatus for leak testing closed containers
JPH07174679A (en) Device for pressurizing hollow expandable device
CN217738206U (en) Measuring device
Kok et al. Dynamic response of a polarographic oxygen probe
US4489579A (en) Monitoring device and process of a metallic part superplastic forming
CN111829709B (en) Method and device for measuring torque of Hall thruster
Nasrollahzade et al. Investigation of hot metal gas forming process of square parts
JPH05223526A (en) Plate thickness measuring apparatus
JPS62212025A (en) Method and apparatus for cold roll forming
US4602492A (en) Method and machine for expanding tubes in a tube sheet
JPS61111800A (en) Powder compression molding machine
JP2002361321A (en) Isopiestic extrusion method of metal material and extrusion unit
JPH01169303A (en) Manufacture of strain detector
JP2001033229A (en) Noncontact fluid measuring device
JP3860413B2 (en) Method and apparatus for determining the compression coefficient of a powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13

EXPY Cancellation because of completion of term