JP3097924B2 - Temperature correction method for stoichiometric sensor - Google Patents

Temperature correction method for stoichiometric sensor

Info

Publication number
JP3097924B2
JP3097924B2 JP03121820A JP12182091A JP3097924B2 JP 3097924 B2 JP3097924 B2 JP 3097924B2 JP 03121820 A JP03121820 A JP 03121820A JP 12182091 A JP12182091 A JP 12182091A JP 3097924 B2 JP3097924 B2 JP 3097924B2
Authority
JP
Japan
Prior art keywords
temperature
sensor
stoichiometric
change
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03121820A
Other languages
Japanese (ja)
Other versions
JPH04326055A (en
Inventor
彰 森
敦彦 広沢
郁夫 内野
国博 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP03121820A priority Critical patent/JP3097924B2/en
Publication of JPH04326055A publication Critical patent/JPH04326055A/en
Application granted granted Critical
Publication of JP3097924B2 publication Critical patent/JP3097924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、化学変化量を電圧変化
量に変換する化学量センサで、特に温度変化による当該
センサの出力値の変化を特定温度での測定に相当する値
に補正する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stoichiometric sensor for converting a chemical change into a voltage change, and in particular, corrects a change in the output value of the sensor due to a temperature change to a value corresponding to a measurement at a specific temperature. It is about the method.

【0002】[0002]

【従来の技術】従来の上記化学量センサにあっては、化
学量を電圧に変化する場合、測定系を特定温度に常時保
ち温度変化がゼロの状態で計測が行なわれていた。
2. Description of the Related Art In the conventional stoichiometric sensor, when the stoichiometry is changed to a voltage, the measurement system is always kept at a specific temperature and the measurement is performed in a state where the temperature change is zero.

【0003】[0003]

【発明が解決しようとする課題】被検出系が温度変化し
ている場合、化学量センサの電圧出力は、温度上昇また
は下降による化学変化に対する出力電圧変化が生じる。
また化学変化に特有の遅れが生じ、この遅れ量は温度の
変化割合により全くまちまちである。
When the temperature of the system to be detected is changing, the voltage output of the stoichiometric sensor changes in response to a chemical change due to a rise or fall in temperature.
In addition, a delay peculiar to the chemical change occurs, and the amount of the delay varies completely depending on the rate of change of the temperature.

【0004】本発明は上記のことにかんがみなされたも
ので、当該化学量センサの出力値を常に一定温度で測定
が行なわれているが如く補正することができる化学量セ
ンサの温度補正方法を提供することを目的とするもので
ある。
The present invention has been made in view of the above, and provides a temperature correction method for a stoichiometric sensor which can correct the output value of the stoichiometric sensor as if the measurement was always performed at a constant temperature. It is intended to do so.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る化学量センサの温度補正方法は、化学
変化量を電圧変化量に変換する化学量センサにおいて、
化学量センサに温度をリアルタイム検出できる温度検出
器を設け、化学量センサの温度に対する出力変化をデー
タ化し、化学量センサの電圧出力と、温度検出器の電圧
出力を一定時間間隔でメモリに入力し、単位時間間隔で
上記化学量センサの電圧出力差と、温度検出器の電圧出
力差が一致するように上記化学量センサの電圧出力値を
補正し、上記化学量センサの温度に対する出力値変化の
データと、上記補正電圧を加算して真の化学変化量とす
る。
In order to achieve the above object, a temperature correction method for a stoichiometric sensor according to the present invention comprises: a stoichiometric sensor for converting a chemical change into a voltage change;
The stoichiometric sensor is equipped with a temperature detector that can detect the temperature in real time, the output change of the stoichiometric sensor with respect to the temperature is converted into data, and the voltage output of the stoichiometric sensor and the voltage output of the temperature detector are input to the memory at regular time intervals. The voltage output value of the stoichiometric sensor and the voltage output value of the stoichiometric sensor are corrected at unit time intervals so that the voltage output difference of the temperature detector coincides with that of the stoichiometric sensor. The data and the correction voltage are added to make a true chemical change amount.

【0006】[0006]

【作 用】被検出系が温度変化している状態にあって
も、その被検出系の化学的状態を定められた温度におけ
る電圧値にて変換される。
[Operation] Even if the temperature of the detected system is changing, the chemical state of the detected system is converted by the voltage value at the predetermined temperature.

【0007】[0007]

【実 施 例】本発明の実施例を図面に基づいて説明す
る。図中1は化学変化量を一位的に電圧に変換する化学
量センサであり、これは、2本の検出プローブ2a,2
bを有しており、この2本の検出プローブ2a,2b
を、例えば潤滑油中に浸漬したときに、この潤滑油の化
学反応、例えば全酸価に応じた電圧が検出出口端子3に
出力されるようになっているもので、このような構成及
び作用の化学量センサは広く知られている。上記化学セ
ンサ1の2本の検出プローブ2a,2bの近傍に温度を
一位的に電圧に変換する感温センサ4が設けてある。5
は温度出力端子である。上記化学量センサ1は被検出系
の状態を電圧に変換させるものであるが、上記被検出系
の状態に変化がない場合において、温度の変化が被検出
系に発生すると、化学量センサ1の化学反応に影響し電
圧の変化が生じる。この温度変化に対する電圧の変化量
を温度に対するテーブル化、または関数化して参照デー
タとしてメモリに保存する。一方上記化学量センサ1は
化学反応が電圧発生源であるため、温度上昇率、または
下降率によって電圧変換時間に遅延(デレー)が生じ、
しかも、その遅延タイムが一定でない。そこで、この実
施例では感温センサ4の変化の割合を基準とし、化学量
センサ1の応答遅れをこの化学量センサ1の変化の割合
と比較してこの化学量センサ1の電圧変換遅れを補正す
る。すなわち、上記温度テーブルと上記遅れ補正を加算
し真の値とする。図2は化学量センサ1の温度変化に対
する電圧の変化を示すデータを示す。このときの化学量
センサの検出プローブ2a,2bにイリジウムと白金を
用いた。上記データは化学量センサの電圧変化が感温セ
ンサの電圧変化と一致できるほどゆっくりと30℃から
80℃間を往復変化させた場合である。上記データの化
学量センサ1と感温センサ4の時間変化の割合を100
%とし、検出系でおこる化学量センサ1の変化割合と、
感温センサ4の変化割合を一定時間ごとに比較し、両セ
ンサの割合の比較でその差がゼロとなるように化学量セ
ンサ1の出力電圧を補正し、そのときの値に定められた
温度における温度補正値を加算して真の被検出系の値と
する。上記作用をフローチャートで示すと図3のように
なる。なおこのフローチャートにおいて、2回微分及び
その後の割合計算は補正値に近づいているか、いきすぎ
ているかを判定する部分である。
[Embodiment] An embodiment of the present invention will be described with reference to the drawings. In the figure, reference numeral 1 denotes a stoichiometric sensor for converting a chemical change amount into a voltage in a first place, and includes two detection probes 2a and 2
b, and the two detection probes 2a and 2b
Is immersed in a lubricating oil, for example, a chemical reaction of the lubricating oil, for example, a voltage corresponding to the total acid value is output to the detection outlet terminal 3. Stoichiometric sensors are widely known. In the vicinity of the two detection probes 2a and 2b of the chemical sensor 1, there is provided a temperature-sensitive sensor 4 for converting the temperature into a voltage in one place. 5
Is a temperature output terminal. The stoichiometric sensor 1 converts the state of the detection target system into a voltage. However, if a change in temperature occurs in the detection target system when there is no change in the state of the detection target system, the stoichiometric sensor 1 It affects the chemical reaction and changes the voltage. The amount of change in the voltage with respect to the temperature change is stored in a memory as reference data in the form of a table or a function with respect to the temperature. On the other hand, in the stoichiometric sensor 1, since the chemical reaction is a voltage generation source, a delay (delay) occurs in the voltage conversion time due to a temperature rise rate or a drop rate,
Moreover, the delay time is not constant. Therefore, in this embodiment, the response delay of the stoichiometric sensor 1 is compared with the rate of change of the stoichiometric sensor 1 based on the rate of change of the temperature sensor 4 to correct the voltage conversion delay of the stoichiometric sensor 1. I do. That is, the temperature table and the delay correction are added to obtain a true value. FIG. 2 shows data indicating a change in voltage of the stoichiometric sensor 1 with respect to a change in temperature. At this time, iridium and platinum were used for the detection probes 2a and 2b of the stoichiometric sensor. The above data is obtained when the reciprocating change between 30 ° C. and 80 ° C. is performed so slowly that the voltage change of the stoichiometric sensor can match the voltage change of the temperature sensor. The rate of the time change of the stoichiometric sensor 1 and the temperature sensor 4 in the above data is 100
%, The rate of change of the stoichiometric sensor 1 occurring in the detection system,
The rate of change of the temperature sensor 4 is compared at regular intervals, the output voltage of the stoichiometric sensor 1 is corrected so that the difference between the rates of the two sensors becomes zero, and the temperature set to the value at that time. Are added to obtain the true value of the detected system. FIG. 3 is a flowchart showing the above operation. Note that, in this flowchart, the second differentiation and the subsequent calculation of the ratio are portions for determining whether the correction value is approaching or excessive.

【0008】上記実施例において、感温センサ4の変化
の割合を基準とし、化学量センサ1の応答遅れをこの化
学量センサの変化の割合と比較して化学量センサ1の電
圧変換遅れを補正する際に、ファジィ演算にて補正して
もよい。以下に、上記ファジィ演算による補正プログラ
ムを示す。 (1)入力量 TEMP=温度 CMS=化学量センサ出力 (2)演算子 EMV=化学量センサ出力 EMV+R=EMVR なおEMVは初めの入力、R=0、EMVRは出力の微
調量 (3)化学量センサに時間遅れがないときの補正電圧を
数式化する。 EMVR=0.5(mV)・(TEMR−50°)+4.01(mV) ただし、4.01(mV)は実験値 (4)ファジィによって遅れによるEMVRの微調を行
なう。 (4−1)温度の変化とその変化率を求めるために、温
度入力を次つぎに入れかえる。
In the above embodiment, the response delay of the stoichiometric sensor 1 is compared with the rate of change of the stoichiometric sensor based on the rate of change of the temperature sensor 4 to correct the voltage conversion delay of the stoichiometric sensor 1. In doing so, correction may be made by fuzzy computation. The following is a correction program based on the fuzzy calculation. (1) Input amount TEMP = Temperature CMS = Stoichiometric sensor output (2) Operator EMV = Stoichiometric sensor output EMV + R = EMVR EMV is initial input, R = 0, EMVR is fine adjustment of output (3) Stoichiometric A correction voltage when the sensor has no time delay is expressed by a mathematical formula. EMVR = 0.5 (mV) · (TEMR−50 °) +4.01 (mV) However, 4.01 (mV) is an experimental value. (4) EMVR is fine-tuned due to fuzzy delay. (4-1) In order to obtain a change in the temperature and a rate of the change, the temperature inputs are changed one after another.

【0009】[0009]

【数1】 (Equation 1)

【0010】(4−2)一方化学量センサも同様に(4-2) On the other hand, the stoichiometric sensor similarly

【0011】[0011]

【数2】 (Equation 2)

【0012】(4−3)前件条件(X)の算出 X=△T−△V =TEMA−EMVA 同様に(くりかえし演算) =TEMPB−EMVB このときのメンバシップ関数の形状は図4のようにな
る。 (4−4)前件条件(Y)の算出
(4-3) Calculation of antecedent condition (X) X = △ T− △ V = TEMA-EMVA Similarly (repeated operation) = TEMPB−EMVB The shape of the membership function at this time is as shown in FIG. become. (4-4) Calculation of antecedent condition (Y)

【0013】[0013]

【数3】 (Equation 3)

【0014】このときのメンバシップ関数の形状は図5
のようになる。 (4−5)ファジィ演算 X1・Y1=R1 X1・Y2=R2 X2・Y1=R3 X2・Y2=R4 ただしX1・X2、Y1・Y2はクラス・グレードであ
る。 (4−6)フィジィ演算ルール ifX=Z0 and Y=NB then R=NB ifX=Z0 and Y=NM then R=NM ifX=Z0 and Y=NS then R=NS ifX=Z0 and Y=ZO then R=ZO ifX=Z0 and Y=PS then R=PS ifX=Z0 and Y=PM then R=PM ifX=Z0 and Y=PB then R=PB ifX=NB and Y=ZO then R=NB ifX=NM and Y=ZO then R=NM ifX=NS and Y=ZO then R=NS ifX=PS and Y=ZO then R=PS ifX=PM and Y=ZO then R=PM ifX=PB and Y=ZO then R=PB またルールテーブルは図に示すようになる。さらにこ
のときのメンバシップ関数の形状は図6に示すようにな
る。(4−7)補正量の演算、重心をとる。
The shape of the membership function at this time is shown in FIG.
become that way. (4-5) Fuzzy operation X1 · Y1 = R1 X1 · Y2 = R2 X2 · Y1 = R3 X2 · Y2 = R4 where X1 · X2 and Y1 · Y2 are class grades. (4-6) Fuzzy calculation rule ifX = Z0 and Y = NB then R = NB ifX = Z0 and Y = NM then R = NM ifX = Z0 and Y = NS then R = NS ifX = Z0 and Y = ZO then R = ZO ifX = Z0 and Y = PS then R = PS ifX = Z0 and Y = PM then R = PM ifX = Z0 and Y = PB then R = PB ifX = NB and Y = ZO then R = NB ifX = NMan Y = ZO then R = NM ifX = NS and Y = ZO then R = NS ifX = PS and Y = ZO then R = PS ifX = PM and Y = ZO then R = PM ifX = PB and Y = ZO then R = PB also rule table is as shown in FIG. Further, the shape of the membership function at this time is as shown in FIG. (4-7) Calculation of the correction amount and taking the center of gravity.

【0015】[0015]

【数4】 (Equation 4)

【0016】(4−8)センサ出力 EMVR=R+EMVR EMVR+(R+EMVR)=(出力)(4-8) Sensor output EMVR = R + EMVR EMVR + (R + EMVR) = (output)

【0017】[0017]

【発明の効果】本発明によれば、化学量を電圧に変換す
る化学量センサにおいて、被検出系が温度変化している
状態にあっても、その被検出系の化学的状態を定められ
た温度における電圧値に変換でき、被検出系の温度変化
による化学量センサの電圧変換遅れを補正することがで
きる。
According to the present invention, in a stoichiometric sensor for converting a stoichiometric amount into a voltage, the chemical state of the detected system can be determined even if the detected system is changing in temperature. It can be converted to a voltage value at a temperature, and a voltage conversion delay of the stoichiometric sensor due to a change in the temperature of the detected system can be corrected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる化学量センサを示す斜視図であ
る。
FIG. 1 is a perspective view showing a stoichiometric sensor used in the present invention.

【図2】化学量センサの温度変化に対するデータを示す
線図である。
FIG. 2 is a diagram showing data on a temperature change of a stoichiometric sensor.

【図3】本発明の実施例を示すフローチャートである。FIG. 3 is a flowchart showing an embodiment of the present invention.

【図4】第1のメンバシップ関数図である。FIG. 4 is a first membership function diagram.

【図5】第2のメンバシップ関数図である。FIG. 5 is a second membership function diagram.

【図6】第3のメンバシップ関数図である。FIG. 6 is a third membership function diagram.

【図7】ルールテーブル図である。FIG. 7 is a rule table diagram.

【符号の説明】[Explanation of symbols]

1 化学量センサ、2a,2b 検出プローブ、3 検
出出力端子、4 感温センサ、5 温度出力端子。
1 Stoichiometric sensor, 2a, 2b detection probe, 3 detection output terminal, 4 temperature sensor, 5 temperature output terminal.

フロントページの続き (51)Int.Cl.7 識別記号 FI G01D 3/04 D (72)発明者 山崎 国博 神奈川県平塚市万田1200 株式会社小松 製作所 研究所内 (56)参考文献 特開 昭63−63960(JP,A) 特開 昭63−311163(JP,A) 実開 昭63−70074(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 27/416 G01D 3/028 G01N 27/00 G01N 27/26 371 Continuation of the front page (51) Int.Cl. 7 Identification code FI G01D 3/04 D (72) Inventor Kunihiro Yamazaki 1200 Manda, Hiratsuka-shi, Kanagawa Prefecture Komatsu Manufacturing Co., Ltd. Laboratory (56) References JP-A-63-63960 (JP, A) JP-A-63-311163 (JP, A) JP-A-63-70074 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 27/416 G01D 3 / 028 G01N 27/00 G01N 27/26 371

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 化学変化量を電圧変化量に変換する化学
量センサにおいて、化学量センサに温度をリアルタイム
検出できる温度検出器を設け、化学量センサの温度に対
する出力変化をデータ化し、化学量センサの電圧出力
と、温度検出器の電圧出力を一定時間間隔でメモリに入
力し、単位時間間隔で上記化学量センサの電圧出力差
と、温度検出器の電圧出力差が一致するように上記化学
量センサの電圧出力値を補正し、上記化学量センサの温
度に対する出力値変化のデータと、上記補正電圧を加算
して真の化学変化量とすることを特徴とする化学量セン
サの温度補正方法。
In a stoichiometric sensor for converting a chemical change into a voltage change, a temperature detector capable of detecting a temperature in real time is provided in the stoichiometric sensor, and an output change with respect to the temperature of the stoichiometric sensor is converted into data. The voltage output of the temperature detector and the voltage output of the temperature detector are input to the memory at regular time intervals, and the stoichiometric amount is set so that the voltage output difference of the stoichiometric sensor matches the voltage output difference of the temperature detector at unit time intervals. A temperature correction method for a stoichiometric sensor, comprising correcting a voltage output value of a sensor, adding data of an output value change with respect to a temperature of the stoichiometric sensor, and the correction voltage to obtain a true chemical change amount.
JP03121820A 1991-04-25 1991-04-25 Temperature correction method for stoichiometric sensor Expired - Fee Related JP3097924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03121820A JP3097924B2 (en) 1991-04-25 1991-04-25 Temperature correction method for stoichiometric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03121820A JP3097924B2 (en) 1991-04-25 1991-04-25 Temperature correction method for stoichiometric sensor

Publications (2)

Publication Number Publication Date
JPH04326055A JPH04326055A (en) 1992-11-16
JP3097924B2 true JP3097924B2 (en) 2000-10-10

Family

ID=14820744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03121820A Expired - Fee Related JP3097924B2 (en) 1991-04-25 1991-04-25 Temperature correction method for stoichiometric sensor

Country Status (1)

Country Link
JP (1) JP3097924B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936366B1 (en) * 2006-12-22 2011-02-09 Mettler-Toledo AG Method and apparatus for monitoring an electrochemical half-cell
JP5196329B2 (en) * 2009-09-10 2013-05-15 株式会社デンソー Liquid concentration detector
WO2024154466A1 (en) * 2023-01-16 2024-07-25 株式会社堀場アドバンスドテクノ Ion concentration measurement apparatus, ion concentration measurement program, ion concentration measurement method, measurement apparatus, and measurement method

Also Published As

Publication number Publication date
JPH04326055A (en) 1992-11-16

Similar Documents

Publication Publication Date Title
EP0505475B1 (en) Biosensing instrument and method
EP0375326B1 (en) Determining or monitoring parameters in boiler systems
CN111458395B (en) Kalman filtering method and device for changing Q value and readable storage medium
JP3097924B2 (en) Temperature correction method for stoichiometric sensor
JPH06105217B2 (en) Spectrometry
US4362596A (en) Etch end point detector using gas flow changes
JP2010256268A (en) Gas analyzer
CN1504747A (en) Ion concentration detecting instrument and detecting method
JPH09128009A (en) Method for detection of state parameter of reactor by using neural network
JPH05249073A (en) Carbon dioxide concentration detection apparatus
JPH06130017A (en) Gas sensor utilizing neural network
JP4810264B2 (en) Concentration measuring device
Pungor et al. Response time in electrochemical cells containing ion-selective electrodes
JP3174186B2 (en) Gas identification device
Urzędniczok A numerical method of correcting the influence of the additional quantities for nonselective sensors
EP0371490B1 (en) Measuring apparatus of two components using enzyme electrodes and the measuring method thereof
US20120000796A1 (en) Measurement Device and Method Utilizing the Same
KR100441663B1 (en) Micro pH sensor with temperature sensor for measuring pH with the micro pH sensor
Mar'Yanov et al. Use of linear regression for the processing of curves of differential potentiometric titration of a binary mixture of heterovalent ions using precipitation reactions
JP2663629B2 (en) Automatic calibration method for dissolved oxygen meter
JPH03245018A (en) Abnormality detection using meter signal
JP3358683B2 (en) Temperature and humidity measurement method and device
JPH0475467B2 (en)
KR20030086753A (en) Method of signal detection for multichannel LAPS devices
WO1992022811A1 (en) A method and an apparatus for potentiometric determination of a concentration of an ion or a dissolved gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees