JP3095237U - Fluid magnetizer - Google Patents

Fluid magnetizer

Info

Publication number
JP3095237U
JP3095237U JP2003000138U JP2003000138U JP3095237U JP 3095237 U JP3095237 U JP 3095237U JP 2003000138 U JP2003000138 U JP 2003000138U JP 2003000138 U JP2003000138 U JP 2003000138U JP 3095237 U JP3095237 U JP 3095237U
Authority
JP
Japan
Prior art keywords
magnet
fluid
flow path
magnets
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003000138U
Other languages
Japanese (ja)
Inventor
宏成 張
Original Assignee
宏成 張
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏成 張 filed Critical 宏成 張
Priority to JP2003000138U priority Critical patent/JP3095237U/en
Application granted granted Critical
Publication of JP3095237U publication Critical patent/JP3095237U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

(57)【要約】 【課題】 磁力線が流路を流れる流体に対して直交する
方向に発生し、流体磁化効率が高い流体磁化器を提供す
ること。 【解決手段】 複数の磁石10をその同極同士が隣り合
うよう接合して磁石複合体1を形成し、磁石複合体1に
おいて、二つのN極どうしを接合して成るN極部分N’
と、二つのS極どうしを接合して成るS極部分S’と
が、流路Aを挟んで対向するよう配置されている。
(57) Abstract: To provide a fluid magnetizer in which lines of magnetic force are generated in a direction orthogonal to a fluid flowing through a flow path and have high fluid magnetization efficiency. SOLUTION: A plurality of magnets 10 are joined such that their poles are adjacent to each other to form a magnet composite 1, and in the magnet composite 1, an N pole portion N 'formed by joining two N poles together.
And an S pole portion S ′ formed by joining two S poles are arranged to face each other with the flow path A interposed therebetween.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【考案の属する技術分野】[Technical field to which the device belongs]

本考案は、流路に臨むよう設置して、この流路を流れる流体を磁化させる流体 磁化器に関する。   The present invention is a fluid that is installed so as to face a flow path and magnetizes a fluid flowing through the flow path. Regarding magnetizer.

【0002】[0002]

【従来の技術】[Prior art]

工業用水等の流体を処理する際に、流体が流れるパイプに臨んで磁化装置を設 置し、パイプ内を流れる流体を磁化してその属性を変化させることにより、熱交 換率の向上、パイプの腐食防止、エンジン馬力の向上、化学反応に要する時間の 短縮化等の所定効果を得る技術が知られている。 このような磁化装置による流体磁化効率が高いほど、流体を磁化したことによ って発揮される前記所定効果も大きいことが多い。 磁化装置の流体磁化効率は、磁石の磁力強度の外に、流体が流れる流路によっ ても影響を受ける。   When treating a fluid such as industrial water, install a magnetizing device facing the pipe through which the fluid flows. Placed in the pipe and magnetizing the fluid flowing in the pipe to change its attributes, Improvement of conversion rate, prevention of pipe corrosion, improvement of engine horsepower, time required for chemical reaction A technique for obtaining a predetermined effect such as shortening is known.   The higher the fluid magnetization efficiency of such a magnetizing device, the more In many cases, the predetermined effect exerted by the above is also large.   The fluid magnetization efficiency of the magnetizing device depends on the flow path through which the fluid flows, in addition to the magnetic strength of the magnet. Even affected.

【0003】 従来、他種類の流体磁化器が実用化されている。 例えば、図1に示すように、断面半円形の二つの磁石10を外枠20で挟み付 け、磁石10の中央にパイプ30を挿通して、磁石10の磁力線がパイプ30内 を通過するようにし、パイプ30内を流れる流体を磁化する流体磁化器が知られ ている。 また、図2に示すような流体磁化器では、二組の磁石10をその同極どうしが 対向するように並べて、一面が開口した外箱21の内部に収納し、これらの磁石 10を磁力により金属製のパイプ30の外面に吸着し、パイプ30内を通る磁力 線によって、パイプ30内を流れる流体を磁化するようになっている。[0003]   Conventionally, other types of fluid magnetizers have been put to practical use.   For example, as shown in FIG. 1, two magnets 10 having a semicircular cross section are sandwiched between outer frames 20. The pipe 30 is inserted through the center of the magnet 10 so that the lines of magnetic force of the magnet 10 are inside the pipe 30. Known as fluid magnetizers that magnetize the fluid flowing in pipe 30 through ing.   Further, in the fluid magnetizer as shown in FIG. 2, the two pairs of magnets 10 have the same poles. These magnets are arranged so as to face each other and are housed inside an outer box 21 with one surface open. 10 is attracted to the outer surface of the metal pipe 30 by magnetic force, and the magnetic force passing through the pipe 30 The wire is adapted to magnetize the fluid flowing in the pipe 30.

【0004】 図3に示す流体磁化器は、複数の磁石10を、パイプ30の外周に放射状に、 且つ、パイプ30を挟んで対向するよう配置し、磁石10の外側を外枠20で囲 んで固定し、磁石10の磁力線がパイプ30を通って、パイプ30内を流れる流 体を磁化するものである。 また、図4及び図5に示すように、パイプ30内に設置された支持体22に多 数の磁石10を取り付けて、磁石10をパイプ30の中心線に沿って一列に配置 し、パイプ30の内部に隣り合う磁石10の磁力線が形成される流体磁化器も知 られている(特許文献1参照)。[0004]   The fluid magnetizer shown in FIG. 3 has a plurality of magnets 10 radially arranged on the outer circumference of the pipe 30. In addition, the magnets 10 are arranged so as to face each other with the pipe 30 interposed therebetween, and the outer side of the magnet 10 is surrounded by the outer frame 20. The magnetic field lines of the magnet 10 flow through the pipe 30 and flow inside the pipe 30. It magnetizes the body.   In addition, as shown in FIGS. 4 and 5, the support 22 installed in the pipe 30 has many Attach a number of magnets 10 and arrange the magnets 10 in a line along the centerline of the pipe 30 However, a fluid magnetizer in which the magnetic lines of force of the adjacent magnets 10 are formed inside the pipe 30 is also known. (See Patent Document 1).

【0005】[0005]

【特許文献1】 米国特許第6143171号明細書[Patent Document 1]           US Pat. No. 6,143,171

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかし、上記従来の流体磁化器は、磁力線の分布が磁石の周辺に限られ、垂直 に流路を横切ることができず、磁石から離れた位置での磁力線の通過はほとんど ないので、このような離れた位置を流れる流体は磁化されず、この結果、強力な 磁石を使用しても流体磁化効率は限られてしまう。また、パイプの面積と磁石の 大きさとの比率、或いは、磁石の設置角度にも大きな制限がある。 本考案の目的は、磁力線が流路を流れる流体に対して直交する方向に発生し、 流体磁化効率が高い流体磁化器を提供することにある。   However, in the above conventional fluid magnetizer, the distribution of magnetic field lines is limited to the periphery of the magnet, and Cannot cross the flow path, and most of the magnetic field lines pass at a position away from the magnet. Fluids flowing in such distant locations are not magnetized because they are not Even if a magnet is used, fluid magnetization efficiency is limited. Also, the area of the pipe and the magnet There is a large limitation on the ratio to the size or the installation angle of the magnet.   The purpose of the present invention is to generate magnetic field lines in a direction orthogonal to the fluid flowing in the flow path, It is to provide a fluid magnetizer having high fluid magnetization efficiency.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

本考案の流体磁化器は、複数の磁石をその同極同士が隣接するよう接合して磁 石複合体を形成し、該磁石複合体において、二つのN極どうしを接合して成るN 極部分と、二つのS極どうしを接合して成るS極部分とが、流路を挟んで対向す るよう配置される。 N極部分とS極部分とが流路を挟んで対向した構成により、N極部分とS極部 分との間に発生する磁力線の方向が流路を流れる流体に対して直交し、流体が十 分に磁化される。 N極部分及びS極部分は、反発し合う同極同士が接合されているため、磁力線 密度が高くなり磁化効率が向上する。   In the fluid magnetizer of the present invention, a plurality of magnets are joined so that their same poles are adjacent to each other. N formed by forming a stone complex and joining two N poles in the magnet complex The pole portion and the S pole portion formed by joining two S poles face each other across the flow path. Is arranged.   The N-pole portion and the S-pole portion are opposed to each other with the flow path interposed therebetween, so that the N-pole portion and the S-pole portion are formed. The direction of the lines of magnetic force generated between the Magnetized in minutes.   The N-pole part and the S-pole part have the same magnetic poles that repel each other, so The density is increased and the magnetization efficiency is improved.

【0008】 磁石複合体を構成する複数の磁石が、流路に沿って平行に、又は、流路と直交 する方向に配置されることもある。 或いは、複数の前記磁石複合体が同心円状に配置されることもある。 磁石複合体は、両端の磁極間の距離が内径よりも小さいC字型の二つの磁石を 接合して形成しても良い。C字型磁石の磁極間の距離を内径よりも小さくしたこ とによって、磁力線の強さを大きくし、流体磁化効率を高める。 磁石複合体が流体と直接接触する場合には、耐久性を高めるために、前記磁石 複合体の表層に酸化防止用の被覆層を形成すると良い。 複数の磁石の同極同士を、その間に磁気誘導パッドを介して隣り合うよう接合 しても良い。[0008]   A plurality of magnets forming the magnet composite are parallel to each other along the flow path or orthogonal to the flow path. It may be arranged in the direction to do.   Alternatively, the plurality of magnet composites may be arranged concentrically.   The magnet composite consists of two C-shaped magnets in which the distance between the magnetic poles at both ends is smaller than the inner diameter. It may be formed by joining. The distance between the magnetic poles of the C-shaped magnet is smaller than the inner diameter. And increase the strength of the magnetic field lines and increase the fluid magnetization efficiency.   If the magnet composite is in direct contact with the fluid, the magnet may be used to enhance durability. A coating layer for preventing oxidation may be formed on the surface layer of the composite.   Join the same poles of multiple magnets so that they are adjacent to each other with a magnetic induction pad between them. You may.

【0009】[0009]

【考案の実施の形態】[Embodiment of device]

図6は、本考案の第1の実施形態を示す。 本実施形態の流体磁化器は、複数(図6に示す例では2個)の平板状の磁石1 0をその同極同士が隣接するよう接合して成る磁石複合体1を、それぞれ流路A の両側に設置してあり、一方の磁石複合体1における、二つのN極どうしを接合 して成るN極部分N’と、他方の磁石複合体1における、二つのS極どうしを接 合して成るS極部分S’とが、流路Aを挟んで対向している。   FIG. 6 shows a first embodiment of the present invention.   The fluid magnetizer of the present embodiment includes a plurality of (two in the example shown in FIG. 6) flat plate-shaped magnets 1. The magnet composite 1 formed by joining 0s so that the same poles are adjacent to each other is formed into the flow path A. Installed on both sides of the magnet, and joins the two N poles in one magnet composite 1 And the two N-poles of the other magnet composite 1 are connected. The S pole portion S'combined with each other faces each other across the flow path A.

【0010】 図6に示す例では、それぞれの磁石複合体1を構成する磁石10は、流路Aに 沿って平行に並置されている。 対向して配置されたN極部分N’とS極部分S’との間、及び、単独のN極と S極との間には直線的に磁力線が流れ、この磁力線の方向が流路Aを流れる流体 に対して直交するので、流体は磁化域を通過する間に十分に磁化される。 また、N極部分N’及びS極部分S’は、反発し合う同極どうしを接合してあ るため、高密度の磁力線が流路Aを通過し、高い流体磁化効率が得られる。[0010]   In the example shown in FIG. 6, the magnets 10 forming the respective magnet composites 1 are arranged in the flow path A. They are juxtaposed in parallel.   Between an N-pole portion N'and an S-pole portion S ', which are arranged to face each other, and a single N-pole. A line of magnetic force flows linearly between the S pole and the direction of the line of magnetic force flows through the flow path A. Orthogonal to, the fluid is sufficiently magnetized while passing through the magnetisation zone.   Further, the N-pole portion N'and the S-pole portion S'are formed by joining repulsive homopolar poles. Therefore, high-density magnetic force lines pass through the flow path A, and high fluid magnetization efficiency can be obtained.

【0011】 図7は、第2の実施形態を示す。 流体磁化器は、二つのC字型の磁石10を接合して成る磁石複合体1によって 、流路Aを囲んであり、磁石複合体1のN極部分N’とS極部分S’との間に磁 力線が通って、流路Aを流れる流体、又は、流路Aを直進せずにこれに直交する 経路A’を流れる流体に対して直角に交差し、この流体を磁化する。 また、磁力線の強さと磁極間の距離とは反比例するが、磁石10の両極間の距 離を、磁石10の内径よりも小さくすることで、N極部分N’とS極部分S’と の間に流れる磁力線の強度を増し、磁化効率を上げている。[0011]   FIG. 7 shows a second embodiment.   The fluid magnetizer is composed of a magnet composite 1 formed by joining two C-shaped magnets 10. , Which surrounds the flow path A and has a magnetic field between the N pole portion N ′ and the S pole portion S ′ of the magnet composite 1. The fluid flows through the flow path A and is orthogonal to the flow path A without going straight. It intersects the fluid flowing in the path A'at a right angle and magnetizes this fluid.   Further, although the strength of the lines of magnetic force is inversely proportional to the distance between the magnetic poles, the distance between the two poles of the magnet 10 is By making the separation smaller than the inner diameter of the magnet 10, the N-pole portion N ′ and the S-pole portion S ′ are separated. The strength of the magnetic field lines flowing between the two is increased to increase the magnetization efficiency.

【0012】 図8は、第3の実施形態を示す。 流路を構成するパイプ30の両側に、第1の実施形態と同様の磁石複合体1を 配置してある。パイプ30は1本であっても良いし、2本のパイプ30を直角に 交差させて重ね、その両側に磁石複合体1を配置しても良い。 磁石複合体1を構成する磁石10は、パイプ30に対して平行に配置しても、 交差するよう並置しても良い。 その他の構成は、第1の実施形態とほぼ同様である。[0012]   FIG. 8 shows a third embodiment.   The magnet composite 1 similar to that of the first embodiment is provided on both sides of the pipe 30 that constitutes the flow path. It is arranged. The number of pipes 30 may be one, or two pipes 30 at right angles Alternatively, the magnet composites 1 may be arranged on both sides of the magnets so that they are overlapped with each other.   Even if the magnet 10 constituting the magnet composite 1 is arranged parallel to the pipe 30, They may be juxtaposed so that they intersect.   Other configurations are almost the same as those in the first embodiment.

【0013】 図9は、第4の実施形態を示す。 この実施形態では、複数(図9に示す例では3個)の平板状の磁石10を、そ の同極同士が隣り合うよう接合して磁石複合体1を形成し、磁石複合体1を複数 列(図9に示す例では2列)並べると共に、間隔をあけて多段(図9に示す例で は3段)に配置してある。 また、各段の磁石複合体1のN極部分N’とS極部分S’とは間隔をおいて対 向しており、これら対向したN極部分N’とS極部分S’との間に、流路を構成 するパイプ30がそれぞれ配設されている。 この流体磁化器によれば、多数の異なる流体を同時に磁化することができる。[0013]   FIG. 9 shows a fourth embodiment.   In this embodiment, a plurality of (three in the example shown in FIG. 9) plate-shaped magnets 10 are provided. The magnet composites 1 are formed by joining the same poles of the magnets so that they are adjacent to each other. Rows (two rows in the example shown in FIG. 9) are arranged side by side, and multiple rows are provided at intervals (in the example shown in FIG. 9, Are arranged in three steps).   Further, the N-pole portion N'and the S-pole portion S'of the magnet composite 1 at each stage are paired with a gap. And a flow path is formed between the N-pole portion N'and the S-pole portion S'which face each other. The pipes 30 are arranged respectively.   This fluid magnetizer can magnetize many different fluids at the same time.

【0014】 図10及び図11は、第5の実施形態を示す。 パイプ30の中間に大径部31を形成し、大径部31の内部に磁石支持枠23 を取り付ける。 また、複数(図10に示す例では2個)の環状の磁石10を、その同極どうし が隣り合うよう接合して、半径の異なる複数の磁石複合体1を形成する。 さらに、複数(図10に示す例では2個)の円柱状の磁石10を、その同極ど うしが隣り合うよう接合して円柱状の磁石複合体1を形成する。[0014]   10 and 11 show a fifth embodiment.   A large diameter portion 31 is formed in the middle of the pipe 30, and the magnet support frame 23 is provided inside the large diameter portion 31. Attach.   In addition, a plurality of (two in the example shown in FIG. 10) ring-shaped magnets 10 having the same pole Are joined so as to be adjacent to each other to form a plurality of magnet composites 1 having different radii.   Further, a plurality (two in the example shown in FIG. 10) of the columnar magnets 10 are arranged in the same poles. The cattle are joined so that they are adjacent to each other to form a columnar magnet composite 1.

【0015】 そして、これらの磁石複合体1を磁石支持枠23にはめ込んで、同心円状に配 置し、各磁石複合体1の間にそれぞれ流路Aを形成する。 また、同心円状に配置された磁石複合体1におけるN極部分N’とS極部分S ’、及び、単独のN極とS極は、流路Aを挟んで対向し、流路Aを流れる流体に 対して直交する方向(パイプ30の径方向)に磁力線が発生する。 さらに、磁石複合体1の表層には、流体との接触による酸化を防止するために 、被覆層11が形成される。[0015]   Then, these magnet composites 1 are fitted into the magnet support frame 23 and arranged in concentric circles. Then, the flow path A is formed between the magnet composites 1.   Further, the N-pole portion N'and the S-pole portion S in the magnet composite body 1 arranged concentrically ′, And a single N pole and S pole face each other across the flow path A, and Magnetic force lines are generated in a direction (radial direction of the pipe 30) orthogonal to the magnetic field.   Furthermore, in order to prevent oxidation due to contact with the fluid, the surface of the magnet composite 1 The coating layer 11 is formed.

【0016】 図12は、第6の実施形態を示す。 本実施形態の流体磁化器においては、複数(図に示す例では2個)の平板状の 磁石10を、その同極同士が磁気誘導パッド24を介して隣接するよう接合し、 磁石複合体1を形成してある。 このようにすると、対向して配置されたN極部分N’の磁気誘導パッド24と S極部分S’の磁気誘導パッド24との間に磁力線が発生し、流路Aを通る磁力 線の強度が均一化される。 その他の構成は、第1の実施形態とほぼ同様なので、詳細な説明は省力する。[0016]   FIG. 12 shows a sixth embodiment.   In the fluid magnetizer of the present embodiment, a plurality of (two in the example shown in the figure) flat plate-shaped The magnets 10 are joined so that the same poles thereof are adjacent to each other via the magnetic induction pad 24, The magnet composite 1 is formed.   By doing so, the magnetic induction pads 24 of the N pole portion N ′ arranged opposite to Magnetic force lines are generated between the magnetic poles S of the S pole portion S ′ and the magnetic force passing through the flow path A. The strength of the line is made uniform.   Other configurations are almost the same as those of the first embodiment, and thus detailed description will be omitted.

【0017】 なお、上記各実施形態において、磁石10は永久磁石であって、ストロンチウ ム鉄、バリウム鉄、ボロン鉄、ニッケルアルミニウム等の永久磁化可能な素材よ り成る。 また、第5の実施形態以外にも、磁石複合体1が直接流体と接触する場合には 、酸化防止用の被覆層11を形成することが望ましい。[0017]   In each of the above embodiments, the magnet 10 is a permanent magnet, and Permanent magnetizable materials such as aluminum, barium, boron, nickel aluminum, etc. Consists of   Further, in addition to the fifth embodiment, when the magnet composite 1 directly contacts the fluid, It is desirable to form the coating layer 11 for preventing oxidation.

【0018】[0018]

【考案の効果】[Effect of device]

請求項1に係る考案によれば、流路を挟んで両側に対向したN極部分とS極部 分との間に磁力線が発生するので、磁力線が流体の流れる方向に対して直交し、 流体を偏り無く磁化することができる。 また、同極どうしを接合してN極部分及びS極部分を形成してあるため、磁力 線の強度が強まって、効率よく流体を磁化できる。 請求項2に係る考案によれば、流路と磁石複合体との相対角度や、流路の断面 積と磁石複合体の大きさとの比率に厳格な制限を受けること無く、流路を流れる 流体に対して直交するよう磁力線を発生させることができる。   According to the invention of claim 1, the N-pole portion and the S-pole portion which face each other across the flow path Since lines of magnetic force are generated between the lines, the lines of magnetic force are orthogonal to the flowing direction of the fluid, The fluid can be magnetized without bias.   Further, since the same poles are joined to form the N-pole part and the S-pole part, the magnetic force The strength of the line is increased and the fluid can be magnetized efficiently.   According to the invention of claim 2, the relative angle between the flow path and the magnet composite, and the cross section of the flow path. Flow through the flow path without being severely limited by the ratio between the product and the size of the magnet composite Magnetic field lines can be generated so as to be orthogonal to the fluid.

【0019】 請求項3に係る考案によれば、流路の断面積を大幅に小さくすることなく、N 極部分とS極部分との距離を小さくできると共に、流路の断面のほぼ全幅に亘っ て偏り無く磁力線を発生させることができるので、磁力線は高密度で強度も強く なり、この結果、流体磁化効率が高まる。 請求項4に係る考案によれば、C字型の磁石のN極とS極との距離を内径より も短くしてあるので、N極部分とS極部分との間に流れる磁力線の強度が強まっ て、高い磁化効率が得られる。 請求項5に係る考案によれば、直接流体と接触しても磁石複合体が酸化しにく いので、耐久性が向上する。 請求項6に係る考案によれば、流路を横切る磁力線の強度を広い範囲で均一化 することができる。[0019]   According to the third aspect of the invention, N is reduced without significantly reducing the cross-sectional area of the flow path. It is possible to reduce the distance between the pole portion and the S pole portion and to cover almost the entire width of the cross section of the flow path. Since the magnetic field lines can be generated without bias, the magnetic field lines have high density and strong strength. As a result, the fluid magnetization efficiency is increased.   According to the invention of claim 4, the distance between the N pole and the S pole of the C-shaped magnet is determined from the inner diameter. Since it is also shortened, the strength of the magnetic field lines flowing between the N pole part and the S pole part is increased. Thus, high magnetization efficiency can be obtained.   According to the invention of claim 5, the magnet composite does not easily oxidize even when it comes into direct contact with the fluid. Therefore, the durability is improved.   According to the invention of claim 6, the strength of the magnetic field lines that cross the flow path is made uniform over a wide range. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の従来例を示す断面図。FIG. 1 is a sectional view showing a first conventional example.

【図2】第2の従来例を示す断面図。FIG. 2 is a sectional view showing a second conventional example.

【図3】第3の従来例を示す断面図。FIG. 3 is a sectional view showing a third conventional example.

【図4】第4の従来例を示す断面図。FIG. 4 is a sectional view showing a fourth conventional example.

【図5】図4の要部拡大図。5 is an enlarged view of a main part of FIG.

【図6】第1の実施形態を示す流体磁化器の側面図。FIG. 6 is a side view of the fluid magnetizer showing the first embodiment.

【図7】第2の実施形態を示す流体磁化器の斜視図。FIG. 7 is a perspective view of a fluid magnetizer showing a second embodiment.

【図8】第3の実施形態を示す流体磁化器の斜視図。FIG. 8 is a perspective view of a fluid magnetizer showing a third embodiment.

【図9】第4の実施形態を示す流体磁化器の斜視図。FIG. 9 is a perspective view of a fluid magnetizer showing a fourth embodiment.

【図10】第5の実施形態を示す流体磁化器の縦断面
図。
FIG. 10 is a vertical cross-sectional view of a fluid magnetizer showing a fifth embodiment.

【図11】図10のa−a線断面図。11 is a cross-sectional view taken along the line aa of FIG.

【図12】第6の実施形態を示す流体磁化器の側面図。FIG. 12 is a side view of a fluid magnetizer showing a sixth embodiment.

【符号の説明】[Explanation of symbols]

1 磁石複合体 10 磁石 11 被覆層 23 磁石支持枠 24 磁気誘導パッド 30 パイプ 31 大径部 A 流路 A’ 経路 1 Magnet composite 10 magnets 11 coating layer 23 Magnet support frame 24 Magnetic induction pad 30 pipes 31 Large diameter part A flow path A'route

Claims (6)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 複数の磁石をその同極同士が隣り合うよ
う接合して磁石複合体を形成し、該磁石複合体におい
て、二つのN極どうしを接合して成るN極部分と、二つ
のS極どうしを接合して成るS極部分とが、流路を挟ん
で対向するよう配置されたことを特徴とする流体磁化
器。
1. A magnet composite is formed by joining a plurality of magnets so that the same poles of the magnets are adjacent to each other. A fluid magnetizer, wherein an S pole portion formed by joining S poles to each other is arranged so as to face each other with a flow path interposed therebetween.
【請求項2】 前記磁石複合体を構成する複数の磁石
が、流路に沿って平行に、又は、流路と交差する方向に
配置されたことを特徴とする請求項1に記載の流体磁化
器。
2. The fluid magnetization according to claim 1, wherein a plurality of magnets forming the magnet composite are arranged in parallel along a flow path or in a direction intersecting with the flow path. vessel.
【請求項3】 複数の前記磁石複合体が同心円状に配置
されたことを特徴とする請求項1に記載の流体磁化器。
3. The fluid magnetizer according to claim 1, wherein the plurality of magnet composites are arranged concentrically.
【請求項4】 前記磁石複合体は、C字型の二つの磁石
を接合して形成され、該磁石において、両端の磁極間の
距離が内径よりも小さいことを特徴とする請求項1に記
載の流体磁化器。
4. The magnet composite is formed by joining two C-shaped magnets, and in the magnet, a distance between magnetic poles at both ends is smaller than an inner diameter. Fluid magnetizer.
【請求項5】 前記磁石複合体の表層に酸化防止用の被
覆層を形成した請求項1乃至4のいずれかに記載の流体
磁化器。
5. The fluid magnetizer according to claim 1, wherein a coating layer for preventing oxidation is formed on a surface layer of the magnet composite.
【請求項6】 前記複数の磁石の同極同士を、その間に
磁気誘導パッドを介して隣り合うよう接合した請求項1
乃至5のいずれかに記載の流体磁化器。
6. The same poles of the plurality of magnets are bonded so as to be adjacent to each other with a magnetic induction pad interposed therebetween.
6. The fluid magnetizer according to any one of 1 to 5.
JP2003000138U 2003-01-14 2003-01-14 Fluid magnetizer Expired - Fee Related JP3095237U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000138U JP3095237U (en) 2003-01-14 2003-01-14 Fluid magnetizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000138U JP3095237U (en) 2003-01-14 2003-01-14 Fluid magnetizer

Publications (1)

Publication Number Publication Date
JP3095237U true JP3095237U (en) 2003-07-25

Family

ID=43249176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000138U Expired - Fee Related JP3095237U (en) 2003-01-14 2003-01-14 Fluid magnetizer

Country Status (1)

Country Link
JP (1) JP3095237U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502850A (en) * 2012-10-19 2015-01-29 ホウ ホンジHOU, Hongji Water treatment apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502850A (en) * 2012-10-19 2015-01-29 ホウ ホンジHOU, Hongji Water treatment apparatus and method

Similar Documents

Publication Publication Date Title
US20090065438A1 (en) Fluid magnetic treatment unit having moving or stationary magnets
JP3095237U (en) Fluid magnetizer
JP2007069192A (en) Apparatus for magnetically treating water
KR910011283A (en) Prophylactic Growth Inhibition Method & Apparatus
US6716346B1 (en) Fluid magnetizer
TWI567767B (en) Fluid magnetizer with flexible assembly and flexible assembly method thereof
CN106132551A (en) For carrying the magnet apparatus of Magnetized Material
JPH0156322B2 (en)
CN211864965U (en) Magnetizing device
JP2004351374A (en) Activated water treatment system
CN2584596Y (en) Fluid magnetizing device
US6758968B2 (en) Fluid conduit with retained magnets
JP3098279U (en) Processing equipment
TWM491244U (en) Fluid magnetizer with flexible assembly
JP3055498U (en) Water magnetic treatment equipment
JP3933516B2 (en) Liquid magnetizer for use in flow path
JP3089637U (en) Fluid magnetizer
RU2198849C2 (en) Device for magnetic treatment of liquid
JP4170169B2 (en) Water magnetizing equipment
RU2480612C2 (en) Device for magnetic treatment of hydrocarbon fuel based on constant magnets
CN211595536U (en) Hydrocarbon fuel magnetizer outside pipe
CN201424396Y (en) Water magnetization device
JPH10118658A (en) Magnetic treatment of liquid flowing through conduit
US20210110967A1 (en) Magnetizing device
RU2223234C1 (en) Apparatus for magnetic treatment of agents

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees