JP3092870B2 - Method for producing milk whey protein hydrolyzate - Google Patents
Method for producing milk whey protein hydrolyzateInfo
- Publication number
- JP3092870B2 JP3092870B2 JP03298018A JP29801891A JP3092870B2 JP 3092870 B2 JP3092870 B2 JP 3092870B2 JP 03298018 A JP03298018 A JP 03298018A JP 29801891 A JP29801891 A JP 29801891A JP 3092870 B2 JP3092870 B2 JP 3092870B2
- Authority
- JP
- Japan
- Prior art keywords
- whey protein
- lactoglobulin
- milk whey
- milk
- hydrolyzate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 102000007544 Whey Proteins Human genes 0.000 title claims description 42
- 108010046377 Whey Proteins Proteins 0.000 title claims description 42
- 235000021119 whey protein Nutrition 0.000 title claims description 42
- 235000013336 milk Nutrition 0.000 title claims description 34
- 239000008267 milk Substances 0.000 title claims description 34
- 210000004080 milk Anatomy 0.000 title claims description 34
- 239000003531 protein hydrolysate Substances 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims 2
- 102000008192 Lactoglobulins Human genes 0.000 claims description 30
- 108010060630 Lactoglobulins Proteins 0.000 claims description 30
- 102000004190 Enzymes Human genes 0.000 claims description 21
- 108090000790 Enzymes Proteins 0.000 claims description 21
- 229940088598 enzyme Drugs 0.000 claims description 21
- 108091005804 Peptidases Proteins 0.000 claims description 19
- 239000004365 Protease Substances 0.000 claims description 19
- 102000035195 Peptidases Human genes 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 108090000942 Lactalbumin Proteins 0.000 claims description 14
- 102000004407 Lactalbumin Human genes 0.000 claims description 14
- 235000021241 α-lactalbumin Nutrition 0.000 claims description 14
- 108010004032 Bromelains Proteins 0.000 claims description 10
- 108090000526 Papain Proteins 0.000 claims description 9
- 235000019835 bromelain Nutrition 0.000 claims description 9
- 235000019834 papain Nutrition 0.000 claims description 9
- 229940055729 papain Drugs 0.000 claims description 9
- 235000018102 proteins Nutrition 0.000 claims description 5
- 102000004169 proteins and genes Human genes 0.000 claims description 5
- 108090000623 proteins and genes Proteins 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 230000000593 degrading effect Effects 0.000 claims 1
- 239000000243 solution Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 8
- 239000013566 allergen Substances 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 101710180012 Protease 7 Proteins 0.000 description 5
- 239000007857 degradation product Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 241000283707 Capra Species 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000005847 immunogenicity Effects 0.000 description 4
- 108010009355 microbial metalloproteinases Proteins 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000008684 selective degradation Effects 0.000 description 3
- 240000006439 Aspergillus oryzae Species 0.000 description 2
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102000014171 Milk Proteins Human genes 0.000 description 2
- 108010011756 Milk Proteins Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 108090001109 Thermolysin Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 235000021239 milk protein Nutrition 0.000 description 2
- 102000013415 peroxidase activity proteins Human genes 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 230000006269 (delayed) early viral mRNA transcription Effects 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- COXVTLYNGOIATD-HVMBLDELSA-N CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O Chemical compound CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O COXVTLYNGOIATD-HVMBLDELSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 102220547770 Inducible T-cell costimulator_A23L_mutation Human genes 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- 230000002009 allergenic effect Effects 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 230000002788 anti-peptide Effects 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 235000019658 bitter taste Nutrition 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 229960003699 evans blue Drugs 0.000 description 1
- 235000020256 human milk Nutrition 0.000 description 1
- 210000004251 human milk Anatomy 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- QGVNJRROSLYGKF-UHFFFAOYSA-N thiobarbital Chemical compound CCC1(CC)C(=O)NC(=S)NC1=O QGVNJRROSLYGKF-UHFFFAOYSA-N 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2250/00—Food ingredients
- A23V2250/54—Proteins
- A23V2250/542—Animal Protein
- A23V2250/5424—Dairy protein
- A23V2250/54244—Beta lactoglobulin
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、植物由来のタンパク分
解酵素を用いて効率よく牛乳ホエータンパク加水分解物
を製造する方法に関する。本発明の方法によるとβ−ラ
クトグロブリンが選択的に加水分解されるので、低アレ
ルゲン化された牛乳ホエータンパク加水分解物を提供す
ることができる。The present invention relates to a method for efficiently producing a milk whey protein hydrolyzate using a plant-derived proteolytic enzyme. According to the method of the present invention, β-lactoglobulin is selectively hydrolyzed, so that a hydrolyzate of milk whey protein with reduced allergen can be provided.
【0002】[0002]
【従来の技術】牛乳ホエータンパクにはその主成分とし
てβ−ラクトグロブリンが、さらにα−ラクトアルブミ
ン、免疫グロブリンあるいは牛血清アルブミン等のタン
パクが存在している。これらのタンパクは程度の大小は
あるが全てアレルゲンとなる。特に、β−ラクトグロブ
リンは母乳中に存在せず、アレルギー患児に対して強い
アレルゲンとなる。2. Description of the Related Art Milk whey protein contains β-lactoglobulin as a main component, and proteins such as α-lactalbumin, immunoglobulin and bovine serum albumin. All of these proteins are allergens, albeit to varying degrees. In particular, β-lactoglobulin is not present in breast milk and is a strong allergen for allergic patients.
【0003】従来、牛乳ホエータンパクの低アレルゲン
化方法として、タンパク分解酵素を使用した加水分解処
理が知られていた。特に、強いアレルゲンであるβ−ラ
クトグロブリンの酵素加水分解や除去には、ある特定の
酵素を使用した選択的分解する方法あるいはその他の処
理手段を施すことによる除去する方法が知られている。Hitherto, as a method for reducing the allergen of milk whey protein, a hydrolysis treatment using a proteolytic enzyme has been known. In particular, for the enzymatic hydrolysis and removal of β-lactoglobulin which is a strong allergen, a method of selectively decomposing by using a specific enzyme or a method of removing it by applying other treatment means is known.
【0004】例えば、Hayashi等のFood S
ci.,52,1107(1987)には、超高圧下に
おけるβ−ラクトグロブリンとα−ラクトアルブミンの
圧変性の受けやすさの違いを利用し、200MPaの超
高圧下でタンパク分解酵素であるサーモライシン(大和
化成(株)、Thermolysin)を使用してβ−
ラクトグロブリンを選択的に分解除去する方法が記載さ
れている。[0004] For example, Food S of Hayashi et al.
ci. , 52, 1107 (1987), taking advantage of the difference in the susceptibility of β-lactoglobulin and α-lactalbumin to pressure denaturation under ultra-high pressure, and using the thermolysin (Daiwa) as a proteolytic enzyme under ultra-high pressure of 200 MPa. (Chemical Co., Ltd., Thermolysin)
A method for selectively decomposing and removing lactoglobulin is described.
【0005】また、特開平2−265441号公報に
は、ウシトリプシン(Sigma社,T−8003)、
枯草菌由来のタンパク分解酵素(NOVO社,Neut
rase)とアスペルギルス・オリーゼ(Asperg
illus oryzae)由来のタンパク分解酵素
(天野製薬(株),ProteaseA)を使用し、p
H7〜9、30〜40℃、30分〜20時間処理するこ
とによりβ−ラクトグロブリンを選択的に分解する方法
が記載されている。Japanese Patent Application Laid-Open No. 2-265441 discloses bovine trypsin (Sigma, T-8003).
Bacillus subtilis-derived proteolytic enzyme (NOVO, Neut)
case) and Aspergillus oryzae ( Asperg)
illus oryzae ) (Amano Pharmaceutical Co., Ltd., Protease A).
A method for selectively decomposing β-lactoglobulin by treating at 7 to 9, 30 to 40 ° C. for 30 minutes to 20 hours is described.
【0006】更に、特開平3−19654号公報では、
ホエータンパクを含む出発原料からラクトグロブリンを
除去するために、強塩基型陰イオン交換器を使用する方
法が記載されている。[0006] Further, in Japanese Patent Application Laid-Open No. 3-19654,
A method is described which uses a strong base type anion exchanger to remove lactoglobulin from a starting material containing whey protein.
【0007】上記方法によるβ−ラクトグロブリンの選
択的分解あるいは選択的除去は、例えば、高圧下でのβ
−ラクトグロブリンの選択的分解は、大量処理が困難で
あり、また、使用するタンパク分解酵素が高価であるう
え、高圧装置を使用せねばならず、コストアップになっ
てしまう。[0007] The selective decomposition or selective removal of β-lactoglobulin by the above-mentioned method can be performed, for example, by using β-lactoglobulin under high pressure.
-The selective degradation of lactoglobulin is difficult to process in large quantities, the proteolytic enzyme used is expensive, and a high-pressure device must be used, resulting in an increase in cost.
【0008】また、ウシトリプシン、枯草菌由来のタン
パク分解酵素、アスペルギルス オリーゼ(Asper
gillus oryzae)由来のタンパク分解酵素
を使用したβ−ラクトグロブリンの選択的分解は、基質
濃度が1%と低いためコストアップになり、また、基質
濃度1%で処理するためβ−ラクトグロブリンの分解が
進行するとともにα−ラクトアルブミンの分解も進行
し、その結果、α−ラクトアルブミンの含有量の低いβ
−ラクトグロブリンの選択的分解物になってしまう。更
に、これらの酵素を使用することによっても得られる分
解物はそのアレルゲン性が充分に低下していない。[0008] Bovine trypsin, a proteolytic enzyme derived from Bacillus subtilis, Aspergillus oryzae ( Asper)
selective degradation of β-lactoglobulin using a proteolytic enzyme derived from H. gillus oryzae increases the cost because the substrate concentration is as low as 1%, and degrades β-lactoglobulin due to treatment at a substrate concentration of 1%. Progresses, the decomposition of α-lactalbumin also proceeds, and as a result, β having a low α-lactalbumin content
-It becomes a selective degradation product of lactoglobulin. Furthermore, the degraded products obtained by using these enzymes do not have sufficiently reduced allergenicity.
【0009】強塩基型陰イオン交換器使用したホエータ
ンパクを含む出発原料からのラクトグロブリンの除去
は、その収率が低く、コストアップになってしまう。Removal of lactoglobulin from a starting material containing whey protein using a strong base type anion exchanger results in a low yield and an increase in cost.
【0010】[0010]
【発明が解決しようとする課題】本発明者らは、牛乳ホ
エータンパクに含まれるβ−ラクトグロブリンを選択的
に加水分解してアレルゲン性を低減し、かつα−ラクト
アルブミン含量の比較的高い牛乳ホエータンパク加水分
解物を製造する方法について種々検討したところ、植物
由来のタンパク分解酵素であるブロメラインやパパイン
を用いることによって、牛乳ホエータンパクの濃度を5
〜20重量%に高めて加水分解することができることを
見出し本発明を成すに至った。SUMMARY OF THE INVENTION The present inventors selectively hydrolyze β-lactoglobulin contained in milk whey protein to reduce allergenicity and to increase the milk content of α-lactalbumin. Various studies were conducted on methods for producing whey protein hydrolyzate, and the concentration of milk whey protein was reduced to 5% by using bromelain and papain, which are plant-derived proteolytic enzymes.
It has been found that the hydrolysis can be increased to about 20% by weight, and the present invention has been accomplished.
【0011】したがって、本発明は、植物由来のタンパ
ク分解酵素を用いて、効率よく牛乳ホエータンパク加水
分解物を製造する方法を提供することを課題とする。Accordingly, an object of the present invention is to provide a method for efficiently producing a milk whey protein hydrolyzate using a plant-derived proteolytic enzyme.
【0012】[0012]
【課題を解決するための手段】すなわち、本発明は、牛
乳ホエータンパク濃度5〜20重量%に調製された牛乳
ホエータンパク水溶液に植物由来のタンパク分解酵素を
添加して牛乳ホエータンパク中のβ−ラクトグロブリン
を選択的に分解し、アレルゲン性の低い牛乳ホエータン
パク酵素分解物を製造する方法に関する。さらに、具体
的には、5〜20%の牛乳ホエータンパク水溶液をNa
OH、KOHやCa(OH)2 でpH7〜9に調整し、
植物由来のタンパク分解酵素を20〜500u/g−W
PC添加し、40〜60℃、30分〜12時間処理し、
加水分解終了後、プレート式熱交換機により加熱するこ
とで酵素を失活させ、凍結乾燥機又は噴霧乾燥機で乾燥
し、アレルゲン性が低く、分解物濃度の高い牛乳ホエー
タンパク酵素分解物を得る方法に関する。That is, the present invention relates to a method of adding β-protein in milk whey protein by adding a plant-derived proteolytic enzyme to an aqueous solution of milk whey protein adjusted to a milk whey protein concentration of 5 to 20% by weight. The present invention relates to a method for selectively decomposing lactoglobulin to produce an enzyme hydrolyzate of milk whey protein having low allergenicity. More specifically, a 5-20% milk whey protein aqueous solution is
Adjust the pH to 7-9 with OH, KOH or Ca (OH) 2 ,
20-500 u / g-W of plant-derived proteolytic enzyme
PC was added and treated at 40 to 60 ° C. for 30 minutes to 12 hours.
After completion of the hydrolysis, a method in which the enzyme is inactivated by heating with a plate heat exchanger and dried with a freeze dryer or a spray dryer to obtain a milk whey protein enzyme hydrolyzate having low allergenicity and a high concentration of hydrolyzate. About.
【0013】本発明における酵素は、植物由来のタンパ
ク分解酵素であって、このような酵素としてブロメライ
ン(天野製薬(株)、BromelinF)、パパイン
(天野製薬(株)、PapainW)等を例示すること
ができる。また、酵素は1種類又は2種類以上でも使用
でき、複数の酵素を使用する場合は植物由来のタンパク
分解酵素のブロメラインやパパインと植物以外の起源に
由来する他のタンパク分解酵素とを併用することが有効
である。The enzyme in the present invention is a plant-derived proteolytic enzyme, and examples of such enzymes include bromelain (Amano Pharmaceutical Co., Ltd., Bromelin F) and papain (Amano Pharmaceutical Co., Ltd., PapainW). Can be. One or two or more enzymes can be used, and when multiple enzymes are used, a combination of a plant-derived proteolytic enzyme, bromelain or papain, and another proteolytic enzyme derived from a source other than a plant is used. Is valid.
【0014】酵素反応は、前記したように牛乳ホエータ
ンパク5〜20重量%を含有する水溶液をpH7〜9に
調整し、前記タンパク分解酵素を添加し、40〜60℃
で30分〜12時間酵素分解を行なう。The enzymatic reaction is carried out by adjusting the aqueous solution containing 5 to 20% by weight of milk whey protein to pH 7 to 9 as described above, adding the proteolytic enzyme thereto, and
For 30 minutes to 12 hours.
【0015】従来の方法では、牛乳タンパク1重量%を
含有する溶液でタンパク分解酵素処理が行なわれていた
が、本発明では前記したタンパク分解酵素を使用するこ
とによって効率的に高濃度の牛乳タンパク酵素分解物を
得ることができる。この点が本発明の大きな特徴のひと
つである。In the conventional method, proteolytic enzyme treatment was performed with a solution containing 1% by weight of milk protein. However, in the present invention, the use of the above-mentioned proteolytic enzyme enables efficient and high concentration of milk protein. An enzymatic degradation product can be obtained. This is one of the major features of the present invention.
【0016】酵素分解終了後の酵素失活は、ブロメライ
ンやパパイン等の酵素についてはプレート式熱交換機を
用い、125℃5秒間の加熱で行うことができ、α−ラ
クトアルブミンを変性させずに加熱して酵素失活し、分
解物を得ることができる。得られる溶液はそのままある
いは濃縮するか乾燥粉末化して低アレルゲン化食品の原
料として利用することができる。本発明の方法によると
β−ラクトグロブリンが選択的に分解され、α−ラクト
アルブミンが出発原料の50%以上をしめる牛乳ホエー
タンパク分解物を得ることができる。本発明の方法によ
って得られる牛乳ホエータンパクは、α−ラクトアルブ
ミンとβ−ラクトグロブリンとの比率は、その分子量に
差があることを利用してその分子量分布をSwergo
ldらの方法〔Analytical Biochem
istry,131,295(1983)〕で測定する
ことによって知ることができる。Inactivation of the enzyme after the completion of the enzymatic decomposition can be carried out for enzymes such as bromelain and papain by heating at 125 ° C. for 5 seconds using a plate type heat exchanger without heating α-lactalbumin. As a result, the enzyme is deactivated, and a decomposition product can be obtained. The resulting solution can be used as it is, or can be used as a raw material for allergen-reduced food after being concentrated or dried and powdered. According to the method of the present invention, β-lactoglobulin is selectively decomposed, and a milk whey protein hydrolyzate in which α-lactalbumin accounts for 50% or more of the starting material can be obtained. The milk whey protein obtained by the method of the present invention uses the fact that the ratio of α-lactalbumin and β-lactoglobulin has a difference in their molecular weights to determine their molecular weight distribution by Swergo.
ld et al. [Analytical Biochem.
issue, 131, 295 (1983)].
【0017】分子量分布の測定は、下記に示す条件で行
うことができる。 (1)試料濃度:0.05% (2)注入量 :20μl (3)カラム :TSKgel G3000PWXL (4)溶 媒 :0.1%トリフルオロ酢酸含有 55
%アセトニトリル溶液 (5)溶媒速度:0.30ml/min (6)検出波長:210nm (7)分析温度:20〜30℃The molecular weight distribution can be measured under the following conditions. (1) Sample concentration: 0.05% (2) Injection volume: 20 μl (3) Column: TSKgel G3000PW XL (4) Solvent: 55 containing 0.1% trifluoroacetic acid
% Acetonitrile solution (5) Solvent speed: 0.30 ml / min (6) Detection wavelength: 210 nm (7) Analysis temperature: 20-30 ° C
【0018】また、ホエータンパク分解物のアレルゲン
性はInhibition ELISA試験〔日本小児
アレルギー学会誌,1,36(1987)〕あるいはM
otaらのPCA(受身皮膚アナフィラキシー法)によ
る抗原抗体反応〔LifeScience 8 813
(1969)〕によって確認することができる。The allergenicity of the whey protein hydrolyzate can be determined by the Inhibition ELISA test [Journal of the Japanese Society of Pediatric Allergy, 1, 36 (1987)] or M
Ota et al. Antigen-antibody reaction by PCA (passive skin anaphylaxis) [LifeScience 8 813
(1969)].
【0019】β−ラクトグロブリンを指標としたInh
ibition ELISA試験に使用した溶液等は下
記のように調製することができる。Inh using β-lactoglobulin as an index
The solution and the like used in the ibition ELISA test can be prepared as follows.
【0020】(1)β−ラクトグロブリンのコーティン
グ:0.05MのNaHCO3 −Buffer 11m
lにβ−ラクトグロブリン(1mg/ml)を100μ
l溶解し、分注(100μl/well)する。 (2)サンプル:サンプル200mgをPBSに1ml
に溶解する。 (3)ヤギ全血清希釈液:ヤギ全血清34μlをPBS
−tween20 5.1mlに溶解する。 (4)抗β−ラクトグロブリン(β−Lg)ウサギ血清
希釈液:抗β−Lgウサギ血清34μlをPBS−tw
een20 5.1mlに溶解する。 (5)ペルオキシダーゼ標識抗ウサギ免疫グロブリン
(IgG)ヤギIgG:ペルオキシダーゼ標識抗ウサギ
IgG ヤギIgG 3μlをPBS−tween20
10mlに溶解する。 (6)ABTS溶液:ABTS(2,2´−Azino
・bis−3−ethyl benzthiazoli
ne sulfonic acid)3mgを脱イオン
水 5mlに溶解し、0.006% H2 O 2−0.2
Mクエン酸Na緩衝液・pH4.0(ABTS用Buf
fer)5mlと混合する。(1) Coating of β-lactoglobulin: 0.05M NaHCO 3 -Buffer 11m
1 μl of β-lactoglobulin (1 mg / ml)
Dissolve and dispense (100 μl / well). (2) Sample: 200 ml of sample is 1 ml in PBS
Dissolve in (3) Goat whole serum dilution: 34 μl of goat whole serum in PBS
Dissolve in 5.1 ml of tween20. (4) Anti-β-lactoglobulin (β-Lg) rabbit serum diluent: 34 μl of anti-β-Lg rabbit serum was added to PBS-tw
Dissolve in 5.1 ml of een20. (5) Peroxidase-labeled anti-rabbit immunoglobulin (IgG) goat IgG: 3 μl of peroxidase-labeled anti-rabbit IgG goat IgG was added to PBS-tween20.
Dissolve in 10 ml. (6) ABTS solution: ABTS (2,2'-Azino
・ Bis-3-ethyl benzthiazoli
nesulfonic acid) was dissolved in 5 ml of deionized water and 0.006% H 2 O 2 −0.2
M Na citrate buffer, pH 4.0 (Buf for ABTS)
fer) 5 ml.
【0021】また、PCAによる抗原抗体反応における
抗血清の調製及びPCAによる判定は、下記のように行
うことができる。The preparation of antiserum in the antigen-antibody reaction by PCA and the determination by PCA can be performed as follows.
【0022】(1)抗血清の調製:Al(OH)3 4.
0mgを200ml PBSに媒散後滅菌した液20m
lとタンパク当量として10mg/mlとなるように反
応液をPBSにより希釈した1mlをPBSで100m
lにメスアップした溶液20mlを振盪混合したもの4
00μl(抗原として20μgを含有)を11日間訓化
飼育したBALB/cマウス(5週齢の雄)に4週間に
渡り1週間隔で5回に分けて腹腔内投与した。第5回投
与5日後に大腿基部を切断して全採血し、使用まで−8
0℃に保存した。(1) Preparation of antiserum: Al (OH) 3
Disperse 0mg into 200ml PBS and sterilize 20m
The reaction solution was diluted with PBS so that 1 and the protein equivalent would be 10 mg / ml.
20 ml of the solution, which was made up to 1 l with shaking and mixing 4
00 μl (containing 20 μg as an antigen) was intraperitoneally administered to BALB / c mice (5-week-old male) bred for 11 days in five divided doses at weekly intervals over 4 weeks. Five days after the fifth administration, the base of the thigh was cut and whole blood was collected.
Stored at 0 ° C.
【0023】(2)PCAによる判定:生理食塩水を用
い、上記抗血清の調製にて得たマウス抗α−ラクトアル
ブミン血清、マウス抗β−ラクトグロブリン血清、マウ
ス抗ペプチド血清の1/2希釈列(1/10,1/2
0,1/40,1/80,1/100)を作り、各希釈
血清50μlを背毛を刈ったSD系ラット(10週齢の
雄)の背部に皮下注射する。24時間後に、各ペプチド
溶液(抗原として1mgを含有)を含む0.6%エバン
スブルー液 1.0mlを尾静脈より注射し、30分後
屠殺し、背部皮膚をはいで紫斑を測定した。判定は陽性
反応がでた最大の希釈倍率を抗体価とした。(2) Judgment by PCA: 1/2 dilution of mouse anti-α-lactalbumin serum, mouse anti-β-lactoglobulin serum, and mouse anti-peptide serum obtained by preparing the above antiserum using physiological saline. Column (1/10, 1/2
0, 1/40, 1/80, 1/100), and 50 μl of each diluted serum is injected subcutaneously into the back of a shaved SD rat (10-week-old male). Twenty-four hours later, 1.0 ml of a 0.6% Evans blue solution containing each peptide solution (containing 1 mg as an antigen) was injected from the tail vein, and sacrificed 30 minutes later. For the determination, the maximum dilution ratio at which a positive reaction was observed was defined as the antibody titer.
【0024】次に実施例を示し、本発明をさらに詳しく
説明する。Now, the present invention will be described in further detail with reference to Examples.
【実施例1】牛乳ホエータンパク100gを水800g
で溶解し、Ca(OH)2 でpH8に調整し、ブロメラ
インを100u/g−WPC添加することで10%溶液
にし、pHを反応時間中8に一定にし、45℃で4時間
酵素処理した。4時間後にプレート式熱交換機で125
℃に5秒間加熱して酵素を失活させ、凍結乾燥し、牛乳
ホエータンパク加水分解物を得た。TSKgelG30
00PXLのカラム(東ソー(株))と0.1%トリフル
オロ酢酸含有の55%アセトニトリル溶液を使用してこ
の分解物の分子量分布を測定したところ、図1に示すよ
うに未分解のホエータンパクと比較してβ−ラクトグロ
ブリンは分解されており、α−ラクトアルブミンが出発
原料の50%以上の分解物を得ることができた。Example 1 100 g of milk whey protein and 800 g of water
The solution was adjusted to pH 8 with Ca (OH) 2 , and a 10% solution was obtained by adding 100 u / g-WPC to bromelain, the pH was kept constant at 8 during the reaction time, and the enzyme treatment was carried out at 45 ° C. for 4 hours. After 4 hours, 125 in a plate heat exchanger
The enzyme was inactivated by heating to 5 ° C. for 5 seconds and freeze-dried to obtain a milk whey protein hydrolyzate. TSKgelG30
The molecular weight distribution of this decomposed product was measured using a 00P XL column (Tosoh Corporation) and a 55% acetonitrile solution containing 0.1% trifluoroacetic acid. As shown in FIG. 1, undegraded whey protein was observed. Β-lactoglobulin was decomposed as compared with that of Example 1, and α-lactalbumin was able to obtain a decomposition product of 50% or more of the starting material.
【0025】[0025]
【実施例2】牛乳ホエータンパク100gを水800g
で溶解し、Ca(OH)2 でpH8に調整し、水に溶解
したパパインを100u/g−WPC添加し、さらに水
を加え10%溶液にし、反応時間中pHを8に一定に
し、45℃で4時間酵素処理した。4時間後にプレート
式熱交換機で125℃で5秒間加熱して酵素を失活さ
せ、凍結乾燥し、牛乳ホエータンパク加水分解物を得
た。分解物の分子量分布を測定したところ、図2に示す
ように未分解のホエータンパクと比較してβ−ラクトグ
ロブリンは分解されており、α−ラクトアルブミンが出
発原料の50%以上の分解物を得ることができた。Example 2 100 g of milk whey protein and 800 g of water
, Adjusted to pH 8 with Ca (OH) 2 , added 100 u / g-WPC of papain dissolved in water, further added water to make a 10% solution, and kept the pH at 8 during the reaction time, 45 ° C. For 4 hours. After 4 hours, the enzyme was inactivated by heating at 125 ° C. for 5 seconds using a plate heat exchanger, and the mixture was freeze-dried to obtain a milk whey protein hydrolyzate. When the molecular weight distribution of the decomposition product was measured, β-lactoglobulin was decomposed as compared with the undecomposed whey protein as shown in FIG. I got it.
【0026】[0026]
【比較例1】牛乳ホエータンパク100gを水800g
で溶解し、Ca(OH)2 でpH7に調整し、水に溶解
したニュートラーゼ(NOVO社、Neutrase
l.5MG)を100u/g−WPC添加し、さらに水
を加え10%溶液にし、40℃で4時間酵素処理した。
4時間後プレート式熱交換機で125℃で5秒間加熱す
ることで酵素失活させ、凍結乾燥し、牛乳ホエータンパ
ク加水分解物を得た。分解物の分子量分布を測定したと
ころ、図3に示すように未分解のホエータンパクと比較
してβ−ラクトグロブリンとα−ラクトアルブミンは分
解されておらず、α−ラクトアルブミンが出発原料の5
0%以上の分解物を得ることができなかった。[Comparative Example 1] 100 g of milk whey protein and 800 g of water
And adjusted to pH 7 with Ca (OH) 2 , and dissolved in water Neutrase (NOVO, Neutrase)
l. 5MG) was added at 100 u / g-WPC, and water was further added to make a 10% solution, followed by enzyme treatment at 40 ° C. for 4 hours.
After 4 hours, the enzyme was inactivated by heating at 125 ° C. for 5 seconds in a plate heat exchanger, followed by freeze-drying to obtain a milk whey protein hydrolyzate. When the molecular weight distribution of the decomposed product was measured, β-lactoglobulin and α-lactalbumin were not decomposed compared to the undecomposed whey protein, and α-lactalbumin was used as the starting material 5 as shown in FIG.
0% or more of the decomposition product could not be obtained.
【0027】[0027]
【比較例2】牛乳ホエータンパク100gを水800g
で溶解し、Ca(OH)2 でpH7.5に調整し、水で
溶解したプロテアーゼA(天野製薬(株)、Prote
aseA)を100u/g−WPC添加し、さらに水を
加えて10%溶液にし、40℃で4時間酵素処理した。
4時間後にプレート式熱交換機で125℃で5秒間加熱
することによって酵素失活させ、凍結乾燥し、分解物を
得た。分解物の分子量分布を測定したところ、図4に示
すように未分解のホエータンパクと比較してβ−ラクト
グロブリンは分解されていたが、α−ラクトアルブミン
が出発原料の50%以上の分解物を得ることができなか
った。[Comparative Example 2] 100 g of milk whey protein and 800 g of water
, Adjusted to pH 7.5 with Ca (OH) 2 , and dissolved in water with Protease A (Amano Pharmaceutical Co., Ltd., Prote
aseA) was added at 100 u / g-WPC, and water was further added to make a 10% solution, followed by enzyme treatment at 40 ° C. for 4 hours.
After 4 hours, the enzyme was inactivated by heating at 125 ° C. for 5 seconds in a plate heat exchanger, followed by lyophilization to obtain a decomposed product. When the molecular weight distribution of the decomposed product was measured, β-lactoglobulin was decomposed as compared with the undecomposed whey protein as shown in FIG. 4, but α-lactalbumin contained 50% or more of the decomposed product of the starting material. Could not get.
【0028】以上の(実施例1)、(実施例2)及び
(比較例1)、(比較例2)により得た分解物について
β−ラクトグロブリンを指標としたInhibitio
n ELISA試験を行った。その結果を図5に示す。
この図ではβ−ラクトグロブリンの曲線との距離が大き
いほど分解物の抗原性が小さくなることを示す。図に示
すようにニュートラーゼやプロテアーゼAに比べてブロ
メラインとパパインは著しい抗原性の低下が認められ
た。The degradation products obtained by the above (Example 1), (Example 2), (Comparative Example 1) and (Comparative Example 2) were evaluated using β-lactoglobulin as an index.
n ELISA tests were performed. The result is shown in FIG.
This figure shows that the greater the distance from the β-lactoglobulin curve, the lower the antigenicity of the degradation product. As shown in the figure, bromelain and papain showed a remarkable decrease in antigenicity as compared with Neutrase and Protease A.
【0029】また、(実施例1)、(実施例2)及び
(比較例2)により得た分解物についてPCAによる判
定を行ったところ、図6〜9に示すように未分解のホエ
ータンパクと比較してプロテアーゼAはアレルゲン性が
残存し、ブロメラインとパパインはアレルゲン性の低下
が認められた。When the degradation products obtained by (Example 1), (Example 2) and (Comparative Example 2) were determined by PCA, undegraded whey protein was determined as shown in FIGS. In comparison, protease A remained allergenic, while bromelain and papain exhibited reduced allergenicity.
【0030】また、(実施例1)及び(実施例2)は、
酵素を含めた原材料費が安価で、収率がほぼ100%で
あり、官能評価では苦味の発現が小さかった。Further, (Example 1) and (Example 2)
The raw material cost including the enzyme was low, the yield was almost 100%, and the sensory evaluation showed little bitterness.
【0031】[0031]
【発明の効果】本発明によると、牛乳ホエータンパク中
に多量に含まれるβ−ラクトグロブリンを植物由来の蛋
白分解酵素により選択的に加水分解し、α−ラクトアル
ブミンがリッチな牛乳ホエータンパクの酵素加水分解物
を得ることができる。得られる分解物は低アレルゲン化
食品として有効に利用することができる。Industrial Applicability According to the present invention, β-lactoglobulin contained in milk whey protein in a large amount is selectively hydrolyzed by a plant-derived protease, and α-lactalbumin is enriched in milk whey protein. A hydrolyzate can be obtained. The resulting decomposed product can be effectively used as a low-allergen food.
【図1】実施例1のブロメラインによる牛乳ホエータン
パク加水分解物の分子量分布を示す。FIG. 1 shows the molecular weight distribution of a milk whey protein hydrolyzate by bromelain of Example 1.
【図2】実施例2のパパインによる牛乳ホエータンパク
加水分解物の分子量分布を示す。FIG. 2 shows the molecular weight distribution of the milk whey protein hydrolyzate from papain of Example 2.
【図3】比較例1のニュウトラーゼによる牛乳ホエータ
ンパク加水分解物の分子量分布を示す。FIG. 3 shows the molecular weight distribution of a milk whey protein hydrolyzate by the neutrase of Comparative Example 1.
【図4】比較例2のプロテアーゼAによる牛乳ホエータ
ンパク加水分解物の分子量分布を示す。FIG. 4 shows the molecular weight distribution of a milk whey protein hydrolyzate by protease A of Comparative Example 2.
【図5】実施例1,2及び比較例1,2のInhibi
tion ELISA試験の結果を示す。FIG. 5 shows Inhibi of Examples 1 and 2 and Comparative Examples 1 and 2.
3 shows the results of the Tion ELISA test.
【図6】実施例1のPCAによる免疫原性評価結果を示
す。FIG. 6 shows the results of an immunogenicity evaluation by PCA in Example 1.
【図7】実施例2のPCAによる免疫原性評価結果を示
す。FIG. 7 shows the results of immunogenicity evaluation using PCA in Example 2.
【図8】比較例1のPCAによる免疫原性評価結果を示
す。FIG. 8 shows the results of immunogenicity evaluation of Comparative Example 1 by PCA.
【図9】比較例2のPCAによる免疫原性評価結果を示
す。FIG. 9 shows the results of immunogenicity evaluation of Comparative Example 2 by PCA.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 哲郎 埼玉県入間市下藤沢580−5 (72)発明者 高橋 伸彰 埼玉県川越市新宿町5−11−3 雪印乳 業株式会社独身寮 (72)発明者 島谷 雅治 埼玉県狭山市新狭山3−1−2 レジデ ンス新狭山303 (72)発明者 平野 賢一 愛知県岩倉市稲荷町稲荷西212−11 (72)発明者 伊藤 浩史 愛知県岩倉市稲荷町221 (56)参考文献 特開 平2−265441(JP,A) 特開 平4−112753(JP,A) 特開 平5−17368(JP,A) 特表 昭62−501472(JP,A) (58)調査した分野(Int.Cl.7,DB名) A23J 3/08 - 3/34 A23L 1/305 C12P 21/06 BIOSIS(DIALOG)────────────────────────────────────────────────── ─── Continuing on the front page (72) Tetsuro Nakamura, Inventor 580-5 Shimofujisawa, Iruma City, Saitama Prefecture (72) Nobuaki Takahashi 5-11-3, Shinjuku-cho, Kawagoe-shi, Saitama ) Inventor Masaharu Shimatani 3-1-2, Shinsayama, Niiyama, Sayama, Saitama 303 (72) Inventor Kenichi Hirano 212-11, Inari, Inaricho, Iwakura, Aichi, Japan 221 Inaricho (56) References JP-A-2-265441 (JP, A) JP-A-4-117275 (JP, A) JP-A-5-17368 (JP, A) Tokuyo Sho 62-501472 (JP, A) A) (58) Field surveyed (Int. Cl. 7 , DB name) A23J 3/08-3/34 A23L 1/305 C12P 21/06 BIOSIS (DIALOG)
Claims (2)
タンパク水溶液に、植物由来のタンパク分解酵素をホエ
ータンパク1g当たり20〜500u添加し、40〜60℃で処
理して、該タンパク中のβ−ラクトグロブリンを選択的
に加水分解することを特徴とするα−ラクトアルブミン
の残存率が50%以上である牛乳ホエータンパク加水分解
物の製造方法。To 1. A milk whey protein aqueous solution adjusted to a concentration 5 to 20 wt%, whey protein degrading enzymes derived from plants
-Add 20-500u per 1g of protein and process at 40-60 ° C
And sense, alpha-lactalbumin, characterized in that selectively hydrolyze β- lactoglobulin in said protein
Producing how milk whey protein hydrolyzate residual ratio is 50% or more.
ラインおよび/またはパパインである請求項1に記載の
牛乳ホエータンパク加水分解物の製造方法。2. A method for producing a proteolytic enzyme derived from plant, milk Hoetanpa click hydrolyzate according to claim 1 which is bromelain and / or papain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03298018A JP3092870B2 (en) | 1991-10-18 | 1991-10-18 | Method for producing milk whey protein hydrolyzate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03298018A JP3092870B2 (en) | 1991-10-18 | 1991-10-18 | Method for producing milk whey protein hydrolyzate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05103595A JPH05103595A (en) | 1993-04-27 |
JP3092870B2 true JP3092870B2 (en) | 2000-09-25 |
Family
ID=17854058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03298018A Expired - Fee Related JP3092870B2 (en) | 1991-10-18 | 1991-10-18 | Method for producing milk whey protein hydrolyzate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3092870B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2683492B2 (en) * | 1993-09-07 | 1997-11-26 | 雪印乳業株式会社 | Micellar whey protein, solution thereof, powder thereof, and method for producing micellar whey protein |
AU761477B2 (en) | 1998-06-17 | 2003-06-05 | New Zealand Dairy Board | Bioactive whey protein hydrolysate |
ES2338702T3 (en) * | 2005-10-11 | 2010-05-11 | Probiotical S.P.A. | PROCEDURE FOR THE PREPARATION OF ANALERGIC PROBIOTIC BACTERIAL CROPS AND RELATED USE. |
JP6631892B1 (en) * | 2018-10-13 | 2020-01-15 | 伸亮 矢倉 | Method for producing protein concentrate synthetic pastes |
CN115299523A (en) * | 2022-07-05 | 2022-11-08 | 谭宏凯 | Application and method for reducing allergenicity of lactalbumin by nepenthes digestive juice protease |
-
1991
- 1991-10-18 JP JP03298018A patent/JP3092870B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05103595A (en) | 1993-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Bioactive peptides derived from egg proteins: A review | |
Cheison et al. | Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review | |
KR940003938B1 (en) | Peptide preparation a process for producing it and use of the peptide preparation | |
US4632903A (en) | Enzyme modified soy protein for use as an egg white substitute | |
KR100845362B1 (en) | Improved bioactive whey protein hydrolysate | |
AU761477B2 (en) | Bioactive whey protein hydrolysate | |
JP4611752B2 (en) | Use of tryptophan-rich peptides | |
JP3010795B2 (en) | Peptide bitterness removal method | |
JP3092870B2 (en) | Method for producing milk whey protein hydrolyzate | |
JP2794305B2 (en) | Method for selective enzymatic degradation of β-lactoglobulin in milk whey protein | |
KR20100135317A (en) | Composition comprising carbohydrates and peptides which comprise tryptophan | |
JP2626700B2 (en) | Allergen-reduced whey protein hydrolyzate and method for producing the same | |
JP3183945B2 (en) | High Fischer Ratio Peptide Mixture, Process for Producing the Same, and Nutritional Composition for Patients with Liver Disease | |
JPH02177864A (en) | Food containing hydrolyzate of silk protein and preparation thereof | |
JP2020198791A (en) | Sleep-improving composition, and food, drug and feed containing the composition | |
IE61827B1 (en) | Selective enzymatic degradation of beta-lactoglobulin contained in cow's milk-serum protein | |
JP3071877B2 (en) | Hypoallergenic enzyme-decomposing peptide composition having oral tolerance inducing ability | |
JPH11349599A (en) | New gelatin and its production | |
CN1102859A (en) | Process for making zymolysis ovalbumin | |
JPH05209000A (en) | Peptide composition having decreased allergenicity | |
JPH05344847A (en) | Low antigenic decomposed protein free from disagreeable taste and its production | |
JP3682994B2 (en) | Process for producing peptide mixtures with low phenylalanine content | |
JPH0362382B2 (en) | ||
JPH10271958A (en) | Production of protein hydrolysate reduced in smell | |
JPH02234642A (en) | Low-molecular peptide composition and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080728 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080728 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090728 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |