JP3092270B2 - Method for producing novel dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the crystal - Google Patents

Method for producing novel dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the crystal

Info

Publication number
JP3092270B2
JP3092270B2 JP03326721A JP32672191A JP3092270B2 JP 3092270 B2 JP3092270 B2 JP 3092270B2 JP 03326721 A JP03326721 A JP 03326721A JP 32672191 A JP32672191 A JP 32672191A JP 3092270 B2 JP3092270 B2 JP 3092270B2
Authority
JP
Japan
Prior art keywords
crystal
dichlorotin phthalocyanine
type
dichlorotin
phthalocyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03326721A
Other languages
Japanese (ja)
Other versions
JPH05140472A (en
Inventor
克己 額田
彰 今井
泰生 坂口
克己 大門
正和 飯島
清和 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP03326721A priority Critical patent/JP3092270B2/en
Priority to US07/874,093 priority patent/US5283145A/en
Priority to US07/927,961 priority patent/US5308728A/en
Publication of JPH05140472A publication Critical patent/JPH05140472A/en
Priority to US08/144,012 priority patent/US5416207A/en
Application granted granted Critical
Publication of JP3092270B2 publication Critical patent/JP3092270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、新規なジクロロスズフ
タロシアニン結晶の製造方法および該新規ジクロロスズ
フタロシアニン結晶を用いた電子写真感光体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a novel dichlorotin phthalocyanine crystal and an electrophotographic photosensitive member using the novel dichlorotin phthalocyanine crystal.

【0002】[0002]

【従来の技術】フタロシアニンは、塗料、印刷インキ、
触媒あるいは電子材料として有用な材料であり、特に、
近年、電子写真感光体用材料、光記憶用材料および光電
変換材料として、広範に検討がなされている。
2. Description of the Related Art Phthalocyanines are used in paints, printing inks,
It is a useful material as a catalyst or electronic material.
In recent years, it has been widely studied as a material for an electrophotographic photosensitive member, a material for optical storage, and a photoelectric conversion material.

【0003】電子写真感光体についてみると、近年、従
来提案された有機光導電材料の感光波長域を、近赤外の
半導体レーザーの波長(780〜830nm)にまで伸
ばし、レーザープリンター等のデジタル記録用の感光体
として使用することの要求が高まっており、この観点か
ら、スクエアリリウム化合物(特開昭49−10553
6号及び同58−21416号公報)、トリフェニルア
ミン系トリスアゾ化合物(特開昭61−151659号
公報)、フタロシアニン化合物(特開昭48−3418
9号及び同57−148745号公報)等が、半導体レ
ーザー用の光導電材料として提案されている。
With regard to electrophotographic photoreceptors, in recent years, the photosensitive wavelength range of organic photoconductive materials conventionally proposed has been extended to the wavelength of near-infrared semiconductor lasers (780 to 830 nm), and digital recording by a laser printer or the like has been carried out. There is an increasing demand for use as a photoreceptor for photographic applications, and from this viewpoint, squarylium compounds (JP-A-49-10553)
Nos. 6 and 58-21416), triphenylamine-based trisazo compounds (JP-A-61-151659), and phthalocyanine compounds (JP-A-48-3418).
Nos. 9 and 57-148745) have been proposed as photoconductive materials for semiconductor lasers.

【0004】半導体レーザー用の感光材料として、有機
光導電材料を使用する場合は、まず、感光波長域が長波
長まで伸びていること、次に、形成される感光体の感
度、耐久性が良いこと等が要求される。前記の有機光導
電材料は、必ずしも、これらの諸条件を十分に満足する
ものではない。これらの欠点を克服するために、前記の
有機光導電材料について、結晶型と電子写真特性の関係
が検討されており、特に、フタロシアニン化合物につい
ては多くの報告が出されている。
When an organic photoconductive material is used as a photosensitive material for a semiconductor laser, first, the photosensitive wavelength region extends to a long wavelength, and then, the sensitivity and durability of the formed photosensitive member are good. Is required. The organic photoconductive material described above does not always sufficiently satisfy these conditions. To overcome these drawbacks, the relationship between the crystal type and the electrophotographic properties of the organic photoconductive material has been studied, and many reports have been made on phthalocyanine compounds.

【0005】一般に、フタロシアニン化合物は、製造方
法、処理方法の違いにより、幾つかの結晶型を示し、こ
の結晶型の違いは、フタロシアニン化合物の光電変換特
性に大きな影響を及ぼすことが知られている。フタロシ
アニン化合物の結晶型については、例えば、銅フタロシ
アニンについてみると、安定系のβ型以外に、α、π、
x、ρ、γ、δ等の結晶型が知られており、これらの結
晶型は、機械的張力、硫酸処理、有機溶剤処理及び熱処
理等により、相互に転移が可能であることが知られてい
る。(例えば、米国特許第2,770,629号、同第
3,1060,635号、同第3,708,292号及
び3,357,989号明細書)。また、特開昭50−
38543号公報には、銅フタロシアニンの結晶型の違
いと電子写真特性について、記載されている。他方、特
開昭62−119547号公報には、ジハロゲノスズフ
タロシアニンを電荷発生材料として用いた電子写真感光
体が記載されており、特開平1−14405号公報に
は、X線回折図上で特定の回折ピークを有するスズフタ
ロシアニン化合物およびそれを用いた電子写真感光体が
記載されている。
[0005] In general, phthalocyanine compounds exhibit several crystal forms depending on the production method and treatment method, and it is known that the difference in crystal form has a great effect on the photoelectric conversion characteristics of the phthalocyanine compound. . Regarding the crystal form of the phthalocyanine compound, for example, looking at copper phthalocyanine, in addition to the stable β form, α, π,
Crystal forms such as x, ρ, γ, and δ are known, and it is known that these crystal forms can be mutually transformed by mechanical tension, sulfuric acid treatment, organic solvent treatment, heat treatment, and the like. I have. (For example, U.S. Pat. Nos. 2,770,629, 3,1060,635, 3,708,292 and 3,357,989). Also, Japanese Patent Application Laid-Open
Japanese Patent No. 38543 describes the difference in crystal type of copper phthalocyanine and electrophotographic characteristics. On the other hand, JP-A-62-119547 describes an electrophotographic photoreceptor using dihalogenostin phthalocyanine as a charge generating material, and JP-A-1-14405 discloses an electrophotographic photoreceptor. A tin phthalocyanine compound having a specific diffraction peak and an electrophotographic photoreceptor using the same are described.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来開
発されている上記のフタロシアニン化合物は、感光材料
として使用した場合の光感度と耐久性の点でまだ十分満
足のいくものではなかった。本発明は、従来の技術にお
ける上記のような実情に鑑みてなされたものである。す
なわち、本発明の目的は、長波長域に感度を有する光導
電性材料として有用なジクロロスズフタロシアニンの新
規な結晶の製造方法を提供することにある。本発明の他
の目的は、ジクロロスズフタロシアニンの新規な結晶を
光導電材料として用いた高い感度と耐久性を有する電子
写真感光体を提供することにある。
However, the above-mentioned phthalocyanine compounds which have been conventionally developed have not been sufficiently satisfactory in light sensitivity and durability when used as a photosensitive material. The present invention has been made in view of the above-described circumstances in the related art. That is, an object of the present invention is to provide a method for producing a novel crystal of dichlorotin phthalocyanine useful as a photoconductive material having sensitivity in a long wavelength region. Another object of the present invention is to provide an electrophotographic photosensitive member having high sensitivity and durability using a novel crystal of dichlorotin phthalocyanine as a photoconductive material.

【0007】[0007]

【課題を解決するための手段】本発明者等は、ジクロロ
スズフタロシアニンの結晶系について検討した結果、ジ
クロロスズフタロシアニンには、I〜IV型の4つの結晶
型があること、これらの結晶型は、合成後のジクロロス
ズフタロシアニンを粉砕処理したり、有機溶剤と共にミ
リング処理することによって得られるが、このうち、II
I 型及びIV型結晶は、I型及びII型に比べて不安定であ
り、特定の有機溶剤で処理することにより、容易にI型
結晶に転移することを見出だした。さらに、III 型及び
IV型結晶を経て得られたI型結晶は、III 型及びIV型結
晶を経ないで得られたI型結晶に比べて、粉末X線回折
のピークはほぼ一致するものの、ピーク強度比が全く異
なっており、電子写真特性が優れていることを見出だ
し、本発明を完成した。
The present inventors have studied the crystal system of dichlorotin phthalocyanine. As a result, the dichlorotin phthalocyanine has four crystal forms of type I to IV. Can be obtained by pulverizing the synthesized dichlorotin phthalocyanine or by milling with an organic solvent.
The type I and type IV crystals were found to be unstable compared to the type I and type II crystals, and were easily transformed into the type I crystals by treatment with a specific organic solvent. In addition, type III and
The type I crystal obtained through the type IV crystal has a powder X-ray diffraction peak almost identical to that of the type I crystal obtained without the type III and IV crystals, but the peak intensity ratio is quite low. They were found to be different and had excellent electrophotographic properties, and completed the present invention.

【0008】すなわち、本発明のジクロロスズフタロシ
アニンの製造方法は、X線回折スペクトルにおいて、λ
=1.5418A.U.のCuKα放射線に対するブラ
ッグ角(以下ブラッグ角という)(2θ±0.2°)=
8.7°、9.9°、10.9°、13.1°、15.
2°、16.3°、17.4°、21.9°、25.5
°に強い回折ピークを有するIII 型に属するジクロロス
ズフタロシアニン結晶、または、ブラッグ角(2θ±
0.2°)=9.2°、12.2°、13.4°、1
4.6°、17.0°、25.3°に強い回折ピークを
有するIV型に属するジクロロスズフタロシアニン結晶
を、ケトン類、ハロゲン化炭化水素類、酢酸エステル
類、ジメチルホルムアミドおよびピリジンからなる群か
ら選択された有機溶剤中で処理して、ブラッグ角(2θ
±0.2°)の25°から30°の範囲において、2
8.2°に最も強い回折ピークを有するI型に属するジ
クロロスズフタロシアニン結晶に転移させることを特徴
とする。本発明の電子写真感光体は、導電性支持体上
に、上記のようにして製造されたブラッグ角(2θ±
0.2°)の25°から30°の範囲において、28.
2°に最も強い回折ピークを有するジクロロスズフタロ
シアニン結晶を含有する感光層を設けてなることを特徴
とする。
That is, according to the method for producing dichlorotin phthalocyanine of the present invention, the X-ray diffraction spectrum
= 1.5418A. U. Angle to CuKα radiation (hereinafter referred to as Bragg angle) (2θ ± 0.2 °) =
8.7 °, 9.9 °, 10.9 °, 13.1 °, 15.
2 °, 16.3 °, 17.4 °, 21.9 °, 25.5
A dichlorotin phthalocyanine crystal belonging to Form III having a strong diffraction peak at 0 ° or a Bragg angle (2θ ±
0.2 °) = 9.2 °, 12.2 °, 13.4 °, 1
Form IV dichlorotin phthalocyanine crystals having strong diffraction peaks at 4.6 °, 17.0 ° and 25.3 ° were converted into ketones, halogenated hydrocarbons and acetates.
Or dimethylformamide and pyridine?
Treatment in an organic solvent selected from the above, the Bragg angle (2θ
± 0.2 °) in the range of 25 ° to 30 °, 2
It is characterized by being transformed into a dichlorotin phthalocyanine crystal belonging to Form I having the strongest diffraction peak at 8.2 °. The electrophotographic photoreceptor of the present invention has a Bragg angle (2θ ±
0.2) in the range of 25 ° to 30 °.
A photosensitive layer containing a dichlorotin phthalocyanine crystal having the strongest diffraction peak at 2 ° is provided.

【0009】以下、本発明について詳細に説明する。本
発明の製造方法において、出発原料である上記III 型ジ
クロロスズフタロシアニン結晶およびIV型ジクロロスズ
フタロシアニン結晶は、いずれも新規な結晶であり、次
のようにして製造される。すなわち、公知の方法で製造
されたジクロロスズフタロシアニン結晶をボールミル等
を用い、特定の有機溶剤中で粉砕することによって、製
造することができる。また、乾式粉砕の後、溶剤で処理
することによっても得られる。使用する有機溶剤は、II
I 型ジクロロスズフタロシアニン結晶の場合には、トル
エン、キシレン、クロロベンゼン等の芳香族炭化水素が
使用されるが、なかでも、クロロベンゼンが最も好まし
く用いられる。また、IV型ジクロロスズフタロシアニン
結晶の場合には、テトラヒドロフラン、1、4−ジオキ
サン等のエーテル類が使用される。そのなかでも、テト
ラヒドロフランが好ましく用いられる。
Hereinafter, the present invention will be described in detail. In the production method of the present invention, both the type III dichlorotin phthalocyanine crystal and the type IV dichlorotin phthalocyanine crystal, which are starting materials, are novel crystals and are produced as follows. That is, it can be produced by pulverizing dichlorotin phthalocyanine crystal produced by a known method using a ball mill or the like in a specific organic solvent. It can also be obtained by treating with a solvent after dry pulverization. The organic solvent used is II
In the case of type I dichlorotin phthalocyanine crystals, aromatic hydrocarbons such as toluene, xylene and chlorobenzene are used, and among them, chlorobenzene is most preferably used. In the case of IV-type dichlorotin phthalocyanine crystals, ethers such as tetrahydrofuran and 1,4-dioxane are used. Among them, tetrahydrofuran is preferably used.

【0010】粉砕には、ボールミルの他、サンドミル、
ニーダー等を用いることができるが、それ等に限定され
るものではない。また、必要に応じて、ガラスビーズ、
スチールビーズ等の磨砕メディア、あるいは食塩、ぼう
硝等の磨砕助剤を用いることができる。粉砕処理は、温
度範囲10〜50°C、通常は室温において、10〜1
00時間行うことが好ましい。
For grinding, a sand mill,
A kneader or the like can be used, but is not limited thereto. Also, if necessary, glass beads,
Grinding media such as steel beads, or grinding aids such as salt and silica gel can be used. The pulverization treatment is carried out in a temperature range of 10 to 50 ° C, usually at room temperature, for 10 to 1
It is preferably performed for 00 hours.

【0011】上記のようにして、ブラッグ角(2θ±
0.2°)=8.7°、9.9°、10.9°、13.
1°、15.2°、16.3°、17.4°、21.9
°、25.5°に強い回折ピークを有するIII 型のジク
ロロスズフタロシアニン結晶およびブラッグ角(2θ±
0.2°)=9.2°、12.2°、13.4°、1
4.6°、17.0°、25.3°に強い回折ピークを
有するIV型のジクロロスズフタロシアニン結晶が製造さ
れる。これらの結晶は、次いで、有機溶剤中で処理する
ことによって、ブラッグ角(2θ±0.2°)の25°
から30°の範囲において、28.2°に最も強い回折
ピークを有するI 型のジクロロスズフタロシアニン結晶
に転移させる。
As described above, the Bragg angle (2θ ±
0.2 °) = 8.7 °, 9.9 °, 10.9 °, 13.
1 °, 15.2 °, 16.3 °, 17.4 °, 21.9
III, a dichlorotin phthalocyanine crystal having strong diffraction peaks at 25.5 ° and a Bragg angle (2θ ±
0.2 °) = 9.2 °, 12.2 °, 13.4 °, 1
Form IV dichlorotin phthalocyanine crystals having strong diffraction peaks at 4.6 °, 17.0 °, and 25.3 ° are produced. These crystals are then treated in an organic solvent to give a Bragg angle (2θ ± 0.2 °) of 25 °.
From 30 to 30 ° to form I dichlorotin phthalocyanine crystals having the strongest diffraction peak at 28.2 °.

【0012】本発明において、有機溶剤としては、アセ
トン、メチルエチルケトン(MEK)等のケトン類、塩
化メチレン、クロロホルム等のハロゲン化炭化水素類、
酢酸エチル、酢酸ブチル等の酢酸エステル類、ジメチル
ホルムアミド(DMF)、ピリジンからなる群から選択
されたものが使用されるが、これらの中でも、酢酸エス
テル類が特に好ましく使用することができる。
[0012] In the present invention, as the organic solvent, ketones such as acetone, methyl ethyl ketone (MEK), halogenated hydrocarbons such as methylene chloride, chloroform and the like,
Select from the group consisting of acetates such as ethyl acetate and butyl acetate, dimethylformamide (DMF) and pyridine
Those but is used, among these, acetic acid esters can be particularly preferably used.

【0013】上記結晶転移の際に、有機溶剤中に結着樹
脂を配合してもよい。その場合、分散処理を行うことに
よって、結晶転移が行われると共に、得られた分散液
は、直接、電荷発生層形成用塗布液として使用すること
ができるので、電子写真感光体の製造上有利である。上
記有機溶剤処理に際しては、必要に応じて、ガラスビー
ズ、スチールビーズ等の磨砕メディア等を用いて磨砕を
行いながら処理することも可能である。
At the time of the above-mentioned crystal transition, a binder resin may be blended in an organic solvent. In that case, by performing a dispersion treatment, crystal transition is performed, and the obtained dispersion can be directly used as a coating solution for forming a charge generation layer, which is advantageous in the production of an electrophotographic photoreceptor. is there. In the above-mentioned organic solvent treatment, if necessary, the treatment can be carried out while grinding using a grinding medium such as glass beads or steel beads.

【0014】本発明により得られるI型結晶は、III 型
及びIV型結晶を経ないで得られたI型結晶に比べて、電
子写真特性において優れたものであって、その粉末X線
回折のピークはIII 型及びIV型結晶を経ないで得られた
I型結晶とほぼ一致するが、ピーク強度比が全く異なっ
ている。これは、III 型またはIV型結晶からI型結晶に
転移する際に、III 型、IV型結晶に取り込まれていた揮
発性成分が抜け出すために結晶格子に歪みがかかり、結
晶の成長軸が異なり、配向性に影響を及ぼすためと推測
される。
The type I crystal obtained by the present invention has better electrophotographic characteristics than the type I crystal obtained without passing through the type III and type IV crystals, The peaks are almost identical to the type I crystal obtained without passing the type III and type IV crystals, but the peak intensity ratio is completely different. This is because during the transition from the type III or IV type crystal to the type I crystal, the volatile component incorporated in the type III or IV type crystal escapes, so that the crystal lattice is distorted and the crystal growth axis differs. This is presumed to affect the orientation.

【0015】次に、本発明の製造方法で得られたジクロ
ロスズフタロシアニン結晶を、感光層における光導電材
料として使用した電子写真感光体について説明する。本
発明の電子写真感光体は、感光層が単層構造のもので
も、電荷発生層と電荷輸送層とに機能分離された積層構
造のものであってもよい。
Next, an electrophotographic photosensitive member using the dichlorotin phthalocyanine crystal obtained by the production method of the present invention as a photoconductive material in a photosensitive layer will be described. The electrophotographic photoreceptor of the present invention may have a single-layer photosensitive layer or a laminated structure in which a charge generation layer and a charge transport layer are functionally separated.

【0016】感光層が積層構造を有する場合、電荷発生
層は、上記I型ジクロロスズフタロシアニン結晶及び結
着樹脂から構成される。結着樹脂は、広範な絶縁性樹脂
から選択することができ、また、ポリ−N−ビニルカル
バゾール、ポリビニルアントラセン、ポリビニルピレン
等の有機光導電性ポリマーから選択することもできる。
好ましい結着樹脂としては、ポリビニルブチラール、ポ
リアリレート(ビスフェノールAとフタル酸の重縮合体
等)、ポリカーボネート、ポリエステル、フェノキシ樹
脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニ
ル、アクリル樹脂、ポリアクリルアミド、ポリアミド、
ポリビニルピリジン、セルロース系樹脂、ウレタン樹
脂、エポキシ樹脂、カゼイン、ポリビニルアルコール、
ポリビニルピロリドン等の絶縁性樹脂をあげることがで
きる。
When the photosensitive layer has a laminated structure, the charge generation layer is composed of the above-mentioned I-type dichlorotin phthalocyanine crystal and a binder resin. The binder resin can be selected from a wide range of insulating resins, and can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylpyrene.
Preferred binder resins include polyvinyl butyral, polyarylate (polycondensate of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, acrylic resin, polyacrylamide ,polyamide,
Polyvinyl pyridine, cellulosic resin, urethane resin, epoxy resin, casein, polyvinyl alcohol,
An insulating resin such as polyvinylpyrrolidone can be used.

【0017】電荷発生層は、上記結着樹脂を有機溶剤に
溶解した溶液に、上記I型ジクロロスズフタロシアニン
結晶を分散させて塗布液を調製し、それを導電性支持体
の上に塗布することによって形成することができる。ま
た、III 型、IV型結晶を用い、塗布液中で結晶転移させ
てもよい。その場合、使用するジクロロスズフタロシア
ニン結晶と結着樹脂の配合比は、40:1〜1:10、
好ましくは10:1〜1:4である。ジクロロスズフタ
ロシアニン結晶の比率が高すぎる場合には、塗布液の安
定性が低下し、低すぎる場合には、感度が低下するの
で、上記範囲に設定するのが好ましい。
The charge generation layer is prepared by dispersing the above-mentioned I-type dichlorotin phthalocyanine crystal in a solution in which the above-mentioned binder resin is dissolved in an organic solvent, and preparing a coating solution, and coating the solution on a conductive support. Can be formed by Alternatively, crystal transition may be performed in a coating solution using a type III or IV type crystal. In that case, the compounding ratio of the dichlorotin phthalocyanine crystal and the binder resin used is 40: 1 to 1:10,
Preferably it is 10: 1 to 1: 4. When the ratio of the dichlorotin phthalocyanine crystal is too high, the stability of the coating solution is lowered, and when it is too low, the sensitivity is lowered.

【0018】使用する溶剤としては、下引き層あるいは
電荷輸送層を溶解しないものから選択するのが好まし
い。具体的な有機溶剤としては、メタノール、エタノー
ル、イソプロパノール等のアルコール類、アセトン、M
EK、シクロヘキサノン等のケトン類、DMF、N,N
−ジメチルアセトアミド等のアミド類、ジメチルスルホ
キシド類、テトラヒドロフラン、ジオキサン、エチレン
グルコールモノメチルエーテル等のエーテル類、酢酸メ
チル、酢酸エチル等のエステル類、クロロホルム、塩化
メチレン、ジクロルエチレン、四塩化炭素、トリクロル
エチレン等の脂肪族ハロゲン化炭化水素、ベンゼン、ト
ルエン、キシレン、リグロイン、モノクロルベンゼン、
ジクロルベンゼン等の脂肪族、芳香族炭化水素等を用い
ることができる。このうち、酢酸エステル類が特に好ま
しい。
The solvent used is preferably selected from those which do not dissolve the undercoat layer or the charge transport layer. Specific organic solvents include alcohols such as methanol, ethanol, and isopropanol; acetone;
Ketones such as EK and cyclohexanone, DMF, N, N
-Amides such as dimethylacetamide, dimethylsulfoxides, ethers such as tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, and trichloride Aliphatic halogenated hydrocarbons such as ethylene, benzene, toluene, xylene, ligroin, monochlorobenzene,
Aliphatic and aromatic hydrocarbons such as dichlorobenzene can be used. Of these, acetates are particularly preferred.

【0019】塗布液の塗布は、浸漬コーティング法、ス
プレーコーティング法、スピナーコーティング法、ビー
ドコーティング法、ワイパーコーティング法、ブレード
コーティング法、ローラーコーティング法、カーテンコ
ーティング法等のコーティング法を用いることができ
る。また、乾燥は、室温における指触乾燥後、加熱乾燥
する方法が好ましい。加熱乾燥は、30〜200°Cの
温度で5分〜2時間の範囲で静止または送風下で行うこ
とができる。また、電荷発生層の膜厚は、通常、0.0
5〜5μm程度になるように塗布される。
The coating solution can be applied by a coating method such as a dip coating method, a spray coating method, a spinner coating method, a bead coating method, a wiper coating method, a blade coating method, a roller coating method, and a curtain coating method. The drying is preferably performed by touch drying at room temperature and then heating and drying. The heating and drying can be performed at a temperature of 30 to 200 ° C. for 5 minutes to 2 hours in a still or blown state. The thickness of the charge generation layer is usually 0.0
It is applied so as to have a thickness of about 5 to 5 μm.

【0020】電荷輸送層は、電荷輸送材料および結着樹
脂より構成される。電荷輸送材料としては、例えば、ア
ントラセン、ピレン、フェナントレン等の多環芳香族化
合物、インドール、カルバゾール、イミダゾール等の含
窒素複素環を有する化合物、ピラゾリン化合物、ヒドラ
ゾン化合物、トリフェニルメタン化合物、トリフェニル
アミン化合物、エナミン化合物、スチルベン化合物等、
公知のものならば如何なるものでも使用することができ
る。更にまた、ポリ−N−ビニルカルバゾール、ハロゲ
ン化ポリ−N−ビニルカルバゾール、ポリビニルアント
ラセン、ポリ−N−ビニルフェニルアントラセン、ポリ
ビニルピレン、ポリビニルアセナフチレン、ポリグリシ
ジカルバゾール、ピレン−ホルムアルデヒド樹脂、エチ
ルカルバゾール−ホルムアルデヒド樹脂等の光導電性ポ
リマーがあげられ、これ等はそれ自体で層を形成しても
よい。また、結着樹脂としては、上記した電荷発生層に
使用されるものと同様な絶縁性樹脂が使用できる。
The charge transport layer is composed of a charge transport material and a binder resin. Examples of the charge transport material include polycyclic aromatic compounds such as anthracene, pyrene, and phenanthrene; compounds having a nitrogen-containing heterocycle such as indole, carbazole and imidazole; pyrazoline compounds; hydrazone compounds; triphenylmethane compounds; and triphenylamine. Compounds, enamine compounds, stilbene compounds, etc.
Any known materials can be used. Furthermore, poly-N-vinyl carbazole, halogenated poly-N-vinyl carbazole, polyvinyl anthracene, poly-N-vinyl phenyl anthracene, polyvinyl pyrene, polyvinyl acenaphthylene, polyglycidicarbazole, pyrene-formaldehyde resin, ethyl carbazole -Photoconductive polymers such as formaldehyde resins, which may themselves form a layer. Further, as the binder resin, the same insulating resin as that used for the above-described charge generation layer can be used.

【0021】電荷輸送層は、上記電荷輸送材料と結着樹
脂および上記と同様な有機溶剤とを用いて塗布液を調製
したあと、同様に塗布して形成することができる。電荷
輸送材料と結着樹脂との配合比(重量部)は、通常5:
1〜1:5の範囲で設定される。また、電荷輸送層の膜
厚は、通常10〜30μm程度に設定される。
The charge transport layer can be formed by preparing a coating solution using the charge transport material, the binder resin, and the same organic solvent as described above, and then applying the same in the same manner. The mixing ratio (parts by weight) of the charge transport material and the binder resin is usually 5:
It is set in the range of 1-1: 5. The thickness of the charge transport layer is usually set to about 10 to 30 μm.

【0022】電子写真感光体が、単層構造を有する場合
においては、感光層は上記のジクロロスズフタロシアニ
ン結晶が電荷輸送材料および結着樹脂よりなる層に分散
された構成を有する光導電層よりなる。その場合、電荷
輸送材料と結着樹脂との配合比は、1:20〜5:1、
ジクロロスズフタロシアニン結晶と電荷輸送材料との配
合比は、1:10〜10:1程度に設定するのが好まし
い。電荷輸送材料および結着樹脂は、上記と同様なもの
が使用され、上記と同様にして光導電層が形成される。
When the electrophotographic photosensitive member has a single-layer structure, the photosensitive layer comprises a photoconductive layer having a structure in which the above-mentioned dichlorotin phthalocyanine crystal is dispersed in a layer comprising a charge transport material and a binder resin. . In that case, the mixing ratio of the charge transport material and the binder resin is 1:20 to 5: 1,
The compounding ratio of the dichlorotin phthalocyanine crystal and the charge transport material is preferably set to about 1:10 to 10: 1. The same charge transport material and binder resin as described above are used, and the photoconductive layer is formed in the same manner as described above.

【0023】導電性支持体としては、電子写真感光体と
して使用することが公知のものならば、如何なるもので
も使用することができる。本発明において、導電性支持
体上に下引き層が設けられてもよい。下引き層は、導電
性支持体からの不必要な電荷の注入を阻止するために有
効であり、感光層の帯電性を高める作用がある。さら
に、感光層と導電性支持体との密着性を高める作用もあ
る。下引き層を構成する材料としては、ポリビニルアル
コール、ポリビニルピロリドン、ポリビニルピリジン、
セルロースエーテル類、セルロースエステル類、ポリア
ミド、ポリウレタン、カゼイン、ゼラチン、ポリグルタ
ミン酸、澱粉、スターチアセテート、アミノ澱粉、ポリ
アクリル酸、ポリアクリルアミド、ジルコニウムキレー
ト化合物、ジルコニウムアルコキシド化合物、有機ジル
コニウム化合物、チタニルキレート化合物、チタニルア
ルコキシド化合物、有機チタニル化合物、シランカップ
リング剤等があげられる。下引き層の膜厚は、0.05
〜2μm程度に設定するのが好ましい。
As the conductive support, any one can be used as long as it is known to be used as an electrophotographic photosensitive member. In the present invention, an undercoat layer may be provided on the conductive support. The undercoat layer is effective for preventing unnecessary charge injection from the conductive support, and has an effect of increasing the chargeability of the photosensitive layer. Further, it also has the effect of increasing the adhesion between the photosensitive layer and the conductive support. As a material constituting the undercoat layer, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl pyridine,
Cellulose ethers, cellulose esters, polyamide, polyurethane, casein, gelatin, polyglutamic acid, starch, starch acetate, amino starch, polyacrylic acid, polyacrylamide, zirconium chelate compound, zirconium alkoxide compound, organic zirconium compound, titanyl chelate compound, Examples include titanyl alkoxide compounds, organic titanyl compounds, silane coupling agents, and the like. The thickness of the undercoat layer is 0.05
It is preferably set to about 2 μm.

【0024】[0024]

【実施例】以下、実施例によって本発明を説明する。 合成例1(ジクロロスズフタロシアニンの合成) フタロニトリル50g及び無水塩化第2スズ27gを、
1−クロルナフタレン350ml中に加え、195°C
において5時間反応させた後、生成物を濾別し、1−ク
ロルナフタレン、アセトン、メタノール、次いで水で洗
浄した後、減圧乾燥して、ジクロロスズフタロシアニン
結晶18.3g(27%)を得た。得られたジクロロス
ズフタロシアニン結晶の粉末X線回折図を、図1に示
す。
The present invention will be described below by way of examples. Synthesis Example 1 (Synthesis of dichlorotin phthalocyanine) 50 g of phthalonitrile and 27 g of anhydrous stannic chloride were added to
1-Chlornaphthalene in 350 ml, 195 ° C
After reacting for 5 hours, the product was separated by filtration, washed with 1-chloronaphthalene, acetone, methanol and then with water, and dried under reduced pressure to obtain 18.3 g (27%) of dichlorotin phthalocyanine crystals. . FIG. 1 shows a powder X-ray diffraction pattern of the obtained dichlorotin phthalocyanine crystal.

【0025】合成例2 合成例1で得られたジクロロスズフタロシアニン結晶1
gを、ガラスビーズ(1mmφ)100gとともにクロ
ロベンゼン(以下MCBという)30ml中で、ボール
ミルを用いて室温にて72時間粉砕し、得られたスラリ
ーを濾過し、メタノールで繰り返し洗浄した後、減圧乾
燥して、ジクロロスズフタロシアニンのIII 結晶0.9
7gを得た。得られたジクロロスズフタロシアニンのII
I 型結晶の粉末X線回折図を、図2に示す。熱重量分析
の結果を、図14に示す。約130℃で約11%の重量
減少が見られた(試料量は9.39mg)。
Synthesis Example 2 Dichlorotin phthalocyanine crystal 1 obtained in Synthesis Example 1
g in 100 ml of glass beads (1 mmφ) in 30 ml of chlorobenzene (hereinafter referred to as MCB) using a ball mill at room temperature for 72 hours. The obtained slurry is filtered, washed repeatedly with methanol, and dried under reduced pressure. 0.9 crystals of dichlorotin phthalocyanine
7 g were obtained. II of the obtained dichlorotin phthalocyanine
FIG. 2 shows a powder X-ray diffraction pattern of the type I crystal. FIG. 14 shows the results of the thermogravimetric analysis. At about 130 ° C., a weight loss of about 11% was observed (sample amount: 9.39 mg).

【0026】合成例3 合成例2において、粉砕時の溶剤として、テトラヒドロ
フラン(以下THFという)を用いた以外は、同様に処
理して、ジクロロスズフタロシアニンのIV型結晶0.9
3gを得た。得られたジクロロスズフタロシアニンのIV
型結晶の粉末X線回折図を、図3に示す。熱重量分析の
結果を、図15に示す。約150℃で約7%の重量減少
が見られた(試料量は9.79mg)
Synthesis Example 3 Synthesis Example 2 was repeated except that tetrahydrofuran (hereinafter referred to as THF) was used as a solvent for pulverization, to obtain dichlorotin phthalocyanine type IV crystal 0.9.
3 g were obtained. IV of the obtained dichlorotin phthalocyanine
FIG. 3 shows a powder X-ray diffraction pattern of the type crystal. FIG. 15 shows the result of the thermogravimetric analysis. About 7% weight loss was observed at about 150 ° C. (sample amount is 9.79 mg)

【0027】合成例4 合成例1で得たジクロロスズフタロシアニン5gをメノ
ウボール(20mmφ)500gとともにメノウ製ポッ
ト(500ml)に入れ、遊星型ボールミル(フリッチ
ュ社製:P−5製)にて、400rpmで1時間粉砕し
た。得られたジクロロスズフタロシアニン結晶の粉末X
線回折図を、図4に示す。
Synthetic Example 4 5 g of the dichlorotin phthalocyanine obtained in Synthetic Example 1 was put into an agate pot (500 ml) together with 500 g of agate ball (20 mmφ) and 400 rpm in a planetary ball mill (Fritsch: P-5). For 1 hour. Powder X of the obtained dichlorotin phthalocyanine crystal
The line diffraction diagram is shown in FIG.

【0028】合成例5 合成例4で得たジクロロスズフタロシアニン結晶0.5
gをMCB15ml、ガラスビーズ30gと共に室温下
24時間ミリング処理した後、ガラスビーズを濾別、乾
燥して、ジクロロスズフタロシアニンのIII 型結晶0.
45gを得た。(X線は図2と同様)
Synthesis Example 5 Dichlorotin phthalocyanine crystal obtained in Synthesis Example 4 0.5
After milling at room temperature for 24 hours together with 15 ml of MCB and 30 g of glass beads, the glass beads were separated by filtration and dried to obtain a dichlorotin phthalocyanine type III crystal.
45 g were obtained. (X-rays are the same as in Fig. 2)

【0029】合成例6 合成例5のMCBをTHFにかえて同様に処理し、ジク
ロロスズフタロシアニンのIV型結晶を0.43g得た。
(X線は図3と同様)
Synthesis Example 6 The MCB of Synthesis Example 5 was treated similarly in place of THF to obtain 0.43 g of type IV crystal of dichlorotin phthalocyanine.
(X-ray is the same as Fig. 3)

【0030】実施例1 合成例2で得たジクロロスズフタロシアニンのIII 型結
晶0.5gをn−酢酸ブチル15mlを用いて、合成例
5と同様に処理して、ジクロロスズフタロシアニンのI
型結晶0.40gを得た。得られたジクロロスズフタロ
シアニンのI型結晶の粉末X線回折図を、図5に示す。
熱重量分析の結果を、図16に示す。0〜200℃の間
で重量変化はほとんど見られなかった(試料量は9.7
8mg)。
Example 1 0.5 g of the type III crystal of dichlorotin phthalocyanine obtained in Synthesis Example 2 was treated in the same manner as in Synthesis Example 5 using 15 ml of n-butyl acetate to give the dichlorotin phthalocyanine I
0.40 g of a type crystal was obtained. FIG. 5 shows a powder X-ray diffraction pattern of the obtained type I crystal of dichlorotin phthalocyanine.
FIG. 16 shows the result of the thermogravimetric analysis. Almost no change in weight was observed between 0 and 200 ° C (the sample amount was 9.7).
8 mg).

【0031】実施例2 合成例3で得たジクロロスズフタロシアニンのIV型結晶
0.5gを用いた他は、実施例1と同様にして、本発明
のジクロロスズフタロシアニンのI型結晶0.42gを
得た。得られたジクロロスズフタロシアニンのI型結晶
の粉末X線回折図を、図6に示す。
Example 2 0.42 g of the dichlorotin phthalocyanine type I crystal of the present invention was prepared in the same manner as in Example 1 except that 0.5 g of the dichlorotin phthalocyanine type IV crystal obtained in Synthesis Example 3 was used. Obtained. FIG. 6 shows a powder X-ray diffraction chart of the obtained type I crystal of dichlorotin phthalocyanine.

【0032】比較例1 合成例4で得たジクロロスズフタロシアニン結晶0.5
gを酢酸ブチル15ml、ガラスビーズ30gと共に室
温下24時間ミリング処理した後、ガラスビーズを濾
別、乾燥して、ジクロロスズフタロシアニンのI型結晶
0.45gを得た。得られたジクロロスズフタロシアニ
ンのI型結晶の粉末X線回折図を、図7に示す。
Comparative Example 1 Dichlorotin phthalocyanine crystal obtained in Synthesis Example 4 0.5
g was milled at room temperature for 24 hours together with 15 ml of butyl acetate and 30 g of glass beads. The glass beads were separated by filtration and dried to obtain 0.45 g of type I crystals of dichlorotin phthalocyanine. FIG. 7 shows a powder X-ray diffraction pattern of the obtained type I crystal of dichlorotin phthalocyanine.

【0033】実施例3 合成例2で得られたジクロロスズフタロシアニン結晶1
部をポリビニルブチラール(商品名:エスレックBM−
1、積水化学社製)1部及びn−酢酸ブチル100部と
混合し、ガラスビーズと共にペイントシェーカーで1時
間処理して分散した後、得られた塗布液を浸漬コーティ
ング法でアルミニウム基板上に塗布し、100°Cにお
いて5分間加熱乾燥し、膜厚0.2μmの電荷発生層を
形成した。また、この溶液を乾燥し、粉末X線回折を測
定したところ、図8に示すように本発明のジクロロスズ
フタロシアニンのI型結晶であった。
Example 3 Dichlorotin phthalocyanine crystal 1 obtained in Synthesis Example 2
Part is polyvinyl butyral (trade name: Eslec BM-
1, 1 part of Sekisui Chemical Co., Ltd.) and 100 parts of n-butyl acetate, and after dispersing by treating with glass beads for 1 hour with a paint shaker, apply the obtained coating solution to an aluminum substrate by a dip coating method. Then, the resultant was dried by heating at 100 ° C. for 5 minutes to form a charge generation layer having a thickness of 0.2 μm. The solution was dried and powder X-ray diffraction was measured. As a result, it was found to be a type I crystal of dichlorotin phthalocyanine of the present invention as shown in FIG.

【0034】次に下記構造式Next, the following structural formula

【化1】 Embedded image

【0035】下記構造式The following structural formula

【化2】 で示されるポリ(4,4−シクロヘキシリデンジフェニ
レンカーボネート)3部を、モノクロロベンゼン20部
に溶解し、得られた塗布液を、電荷発生層が形成された
アルミニウム基板上に浸漬コーティング法で塗布し、1
20°Cにおいて1時間加熱乾燥し、膜厚20μmの電
荷発生層を形成した。
Embedded image 3 parts of poly (4,4-cyclohexylidenediphenylene carbonate) shown in (1) is dissolved in 20 parts of monochlorobenzene, and the obtained coating solution is applied by dip coating on an aluminum substrate on which a charge generation layer is formed. And 1
The resultant was dried by heating at 20 ° C. for 1 hour to form a charge generation layer having a thickness of 20 μm.

【0036】得られた電子写真感光体を、常温常湿(2
0℃、40%RH)の環境の中で、静電複写試験装置
(EPA−8100、川口電気(株)製)を用いて、−
6KVのコロナ放電を行い、帯電させた後、タングステ
ンランプの光を、モノクロメーターを用いて800nm
の単色光にし、感光体表面上で1μW/cm2 になるよ
うに調整し、照射した。そしてその表面電位が初期V0
(ボルト)の1/2になるまでの露光量E1/2 (erg
/cm2 )を測定し、その後10ルックスのタングステ
ン光を1秒間感光体表面上に照射し、残留電位VR を測
定した。さらに、上記の帯電、露光を1000回繰り返
した後のV0 、E1/2 、VR を測定した。その結果を表
1に示す。
The obtained electrophotographic photosensitive member was subjected to room temperature and normal humidity (2
0 ° C., 40 % RH) using an electrostatic copying tester (EPA-8100, manufactured by Kawaguchi Electric Co., Ltd.)
After performing corona discharge of 6 KV and charging the light, the light of the tungsten lamp was irradiated at 800 nm using a monochromator.
, And adjusted to 1 μW / cm 2 on the surface of the photoreceptor and irradiated. Then, the surface potential is initially V 0
(Volt) Exposure E 1/2 (erg
/ Cm 2) was measured, then irradiated with tungsten light for 10 lux on a second surface of the photosensitive member was measured residual potential V R. Furthermore, the above charge, V 0, E 1/2 after repeating 1000 times the exposure was measured V R. Table 1 shows the results.

【0037】実施例4 合成例3で得られたジクロロスズフタロシアニンを用い
た以外は、実施例3と同様にして感光体を作製し、評価
した。結果を表1に示す。また、CGL塗布液を乾燥
し、粉末X線回折を測定したところ図9に示すように本
発明のジクロロスズフタロシアニンのI型結晶であっ
た。
Example 4 A photoconductor was prepared and evaluated in the same manner as in Example 3, except that the dichlorotin phthalocyanine obtained in Synthesis Example 3 was used. Table 1 shows the results. Further, the CGL coating solution was dried and powder X-ray diffraction was measured. As a result, it was found to be a dichlorotin phthalocyanine type I crystal of the present invention as shown in FIG.

【0038】比較例2 比較例1で得られたジクロロスズフタロシアニンのI型
結晶を用いたほかは、実施例4と同様にして感光体を作
製し、評価した。結果を表1に示す。また、CGL塗布
液を乾燥し、粉末X線回折を測定したところ図10に示
すようにI型結晶のままであった。
Comparative Example 2 A photoconductor was prepared and evaluated in the same manner as in Example 4 except that the dichlorotin phthalocyanine type I crystal obtained in Comparative Example 1 was used. Table 1 shows the results. Further, the CGL coating solution was dried, and the powder X-ray diffraction was measured. As a result, as shown in FIG.

【0039】比較例3〜5 CGL塗布溶剤としてn−酢酸ブチルの代わりに、n−
ブタノールを用い表1に示した顔料(電荷発生材)用い
た他は、実施例4と同様にして感光体を作製し、評価し
た。またそれぞれのCGL塗布液を乾燥し、粉末X線回
折を測定した。結果を表1にまとめた。
Comparative Examples 3 to 5 Instead of n-butyl acetate as a CGL coating solvent, n-butyl acetate was used.
A photoconductor was prepared and evaluated in the same manner as in Example 4, except that butanol was used and the pigments (charge generating materials) shown in Table 1 were used. Further, each CGL coating solution was dried and powder X-ray diffraction was measured. The results are summarized in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【発明の効果】本発明によれば、簡単な処理で、ブラッ
グ角(2θ±0.2°)の25°から30°の範囲にお
いて、28.2°に最も強い回折ピークを有するジクロ
ロスズフタロシアニンの新規な結晶が得られる。本発明
によって得られるジクロロスズフタロシアニン結晶は、
半導体レーザーを利用するプリンター等の電子写真感光
体用の光導電材料として非常に有用であり、得られた本
発明の電子写真感光体は、優れた感度および耐久性を有
している。
According to the present invention, dichlorotin phthalocyanine having the strongest diffraction peak at 28.2 ° in a Bragg angle (2θ ± 0.2 °) range of 25 ° to 30 ° with a simple process. Is obtained. Dichlorotin phthalocyanine crystals obtained by the present invention,
It is very useful as a photoconductive material for an electrophotographic photosensitive member such as a printer using a semiconductor laser, and the obtained electrophotographic photosensitive member of the present invention has excellent sensitivity and durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 合成例1によって得られたジクロロスズフタ
ロシアニン結晶の粉末X線回折スペクトル図である。
FIG. 1 is a powder X-ray diffraction spectrum of a dichlorotin phthalocyanine crystal obtained in Synthesis Example 1.

【図2】 合成例2によって得られたジクロロスズフタ
ロシアニンのIII 型結晶の粉末X線回折スペクトル図で
ある。
FIG. 2 is a powder X-ray diffraction spectrum of a type III crystal of dichlorotin phthalocyanine obtained in Synthesis Example 2.

【図3】 合成例3によって得られたジクロロスズフタ
ロシアニンのIV型結晶の粉末X線回折スペクトル図であ
る。
FIG. 3 is a powder X-ray diffraction spectrum of a type IV crystal of dichlorotin phthalocyanine obtained in Synthesis Example 3.

【図4】 合成例4によって得られたジクロロスズフタ
ロシアニン結晶の粉末X線回折スペクトル図である。
FIG. 4 is a powder X-ray diffraction spectrum of the dichlorotin phthalocyanine crystal obtained in Synthesis Example 4.

【図5】 実施例1によって得られたジクロロスズフタ
ロシアニンのI型結晶の粉末X線回折スペクトル図であ
る。
FIG. 5 is a powder X-ray diffraction spectrum diagram of Form I crystal of dichlorotin phthalocyanine obtained in Example 1.

【図6】 実施例2によって得られたジクロロスズフタ
ロシアニンのI型結晶の粉末X線回折スペクトル図であ
る。
FIG. 6 is a powder X-ray diffraction spectrum diagram of Form I crystal of dichlorotin phthalocyanine obtained in Example 2.

【図7】 比較例1によって得られたジクロロスズフタ
ロシアニンのI型結晶の粉末X線回折スペクトル図であ
る。
FIG. 7 is a powder X-ray diffraction spectrum diagram of Form I crystal of dichlorotin phthalocyanine obtained in Comparative Example 1.

【図8】 実施例3によって得られたジクロロスズフタ
ロシアニンのI型結晶の粉末X線回折スペクトル図であ
る。
FIG. 8 is a powder X-ray diffraction spectrum diagram of Form I crystal of dichlorotin phthalocyanine obtained in Example 3.

【図9】 実施例4によって得られたジクロロスズフタ
ロシアニンのI型結晶の粉末X線回折スペクトル図であ
る。
FIG. 9 is a powder X-ray diffraction spectrum diagram of Form I crystal of dichlorotin phthalocyanine obtained in Example 4.

【図10】 比較例2及び5によって得られたジクロロ
スズフタロシアニンのI型結晶の粉末X線回折スペクト
ル図である。
FIG. 10 is a powder X-ray diffraction spectrum diagram of Form I crystal of dichlorotin phthalocyanine obtained in Comparative Examples 2 and 5.

【図11】 比較例3によって得られたジクロロスズフ
タロシアニン結晶の粉末X線回折スペクトル図である。
FIG. 11 is a powder X-ray diffraction spectrum of the dichlorotin phthalocyanine crystal obtained in Comparative Example 3.

【図12】 比較例4によって得られたジクロロスズフ
タロシアニン結晶の粉末X線回折スペクトル図である。
FIG. 12 is a powder X-ray diffraction spectrum of the dichlorotin phthalocyanine crystal obtained in Comparative Example 4.

【図13】ジクロロスズフタロシアニンのII型結晶の
粉末X線回折スペクトル図である。
FIG. 13 is an X-ray powder diffraction spectrum of a type II crystal of dichlorotin phthalocyanine.

【図14】 合成例2によって得られたジクロロスズフ
タロシアニンのIII型結晶の熱重量分析図である。
FIG. 14 is a thermogravimetric analysis diagram of a type III crystal of dichlorotin phthalocyanine obtained in Synthesis Example 2.

【図15】 合成例3によって得られたジクロロスズフ
タロシアニンのIV型結晶の熱重量分析図である。
FIG. 15 is a thermogravimetric analysis diagram of Form IV crystal of dichlorotin phthalocyanine obtained in Synthesis Example 3.

【図16】 実施例1によって得られたジクロロスズフ
タロシアニンのI 型結晶の熱重量分析図である。
FIG. 16 is a thermogravimetric analysis diagram of Form I crystal of dichlorotin phthalocyanine obtained in Example 1.

フロントページの続き (72)発明者 大門 克己 神奈川県南足柄市竹松1600番地 富士ゼ ロックス株式会社竹松事業所内 (72)発明者 飯島 正和 神奈川県南足柄市竹松1600番地 富士ゼ ロックス株式会社竹松事業所内 (72)発明者 真下 清和 神奈川県南足柄市竹松1600番地 富士ゼ ロックス株式会社竹松事業所内 (56)参考文献 特開 平5−140473(JP,A) 特開 平5−66594(JP,A) 特開 平4−93366(JP,A) 特開 平3−73961(JP,A) 特開 平1−210388(JP,A) 特開 平1−133790(JP,A) 特開 昭57−148745(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09B 67/50 G03G 5/06 371 Continued on the front page (72) Inventor Katsumi Daimon 1600 Takematsu, Fuji Xerox Co., Ltd., Takematsu Office, Minami Ashigara City, Kanagawa Prefecture (72) Inventor Masakazu Iijima 1600, Takematsu Office, Fuji Xerox Co., Ltd. ) Inventor Seika Mashimo 1600 Takematsu, Minamiashigara-shi, Kanagawa Prefecture Fuji Xerox Co., Ltd. Takematsu Office (56) References JP-A-5-140473 (JP, A) JP-A-5-66594 (JP, A) JP-A-3-93366 (JP, A) JP-A-3-73961 (JP, A) JP-A-1-210388 (JP, A) JP-A-1-133790 (JP, A) JP-A-57-148745 (JP, A) A) (58) Field surveyed (Int. Cl. 7 , DB name) C09B 67/50 G03G 5/06 371

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 X線回折スペクトルにおいて、ブラッグ
角(2θ±0.2°)=8.7°、9.9°、10.9
°、13.1°、15.2°、16.3°、17.4
°、21.9°、25.5°に強い回折ピークを有する
ジクロロスズフタロシアニン結晶、または、ブラッグ角
(2θ±0.2°)=9.2°、12.2°、13.4
°、14.6°、17.0°、25.3°に強い回折ピ
ークを有するジクロロスズフタロシアニン結晶を、ケト
ン類、ハロゲン化炭化水素類、酢酸エステル類、ジメチ
ルホルムアミドおよびピリジンからなる群から選択され
有機溶剤中で処理し、ブラッグ角(2θ±0.2°)
の25°から30°の範囲において、28.2°に最も
強い回折ピークを有するジクロロスズフタロシアニン結
晶に転移させることを特徴とするブラッグ角(2θ±
0.2°)の25°から30°の範囲において、28.
2°に最も強い回折ピークを有するジクロロスズフタロ
シアニン結晶の製造方法。
1. In an X-ray diffraction spectrum, Bragg angles (2θ ± 0.2 °) = 8.7 °, 9.9 °, 10.9 °
°, 13.1 °, 15.2 °, 16.3 °, 17.4
Dichlorotin phthalocyanine crystal having strong diffraction peaks at °, 21.9 °, and 25.5 °, or Bragg angle (2θ ± 0.2 °) = 9.2 °, 12.2 °, 13.4
The dichlorotin phthalocyanine crystals having strong diffraction peaks at °, 14.6 °, 17.0 °, and 25.3 ° were converted to keto crystals.
, Halogenated hydrocarbons, acetates, dimethyl
Selected from the group consisting of ruformamide and pyridine
And treated with an organic solvent, a Bragg angle (2θ ± 0.2 °)
In the range of 25 ° to 30 °, a Bragg angle (2θ ± 2) characterized by transition to a dichlorotin phthalocyanine crystal having the strongest diffraction peak at 28.2 °.
0.2) in the range of 25 ° to 30 °.
A method for producing a dichlorotin phthalocyanine crystal having the strongest diffraction peak at 2 °.
【請求項2】 有機溶剤が、結着樹脂を含有することを
特徴とする請求項1記載のブラッグ角(2θ±0.2
°)の25°から30°の範囲において、28.2°に
最も強い回折ピークを有するジクロロスズフタロシアニ
ン結晶の製造方法。
2. The Bragg angle (2θ ± 0.2) according to claim 1, wherein the organic solvent contains a binder resin.
°) in the range of 25 ° to 30 °, a method for producing a dichlorotin phthalocyanine crystal having the strongest diffraction peak at 28.2 °.
【請求項3】 有機溶剤が、酢酸エステル類であること
を特徴とする請求項1記載のブラッグ角(2θ±0.2
°)の25°から30°の範囲において、28.2°に
最も強い回折ピークを有するジクロロスズフタロシアニ
ン結晶の製造方法。
3. The Bragg angle (2θ ± 0.2) according to claim 1, wherein the organic solvent is an acetic acid ester.
°) in the range of 25 ° to 30 °, a method for producing a dichlorotin phthalocyanine crystal having the strongest diffraction peak at 28.2 °.
【請求項4】 導電性支持体上に請求項1記載のブラッ
グ角(2θ±0.2°)の25°から30°の範囲にお
いて、28.2°に最も強い回折ピークを有するジクロ
ロスズフタロシアニン結晶を含有する感光層を設けてな
ることを特徴とする電子写真感光体。
4. A dichlorotin phthalocyanine having the strongest diffraction peak at 28.2 ° on a conductive support in a Bragg angle (2θ ± 0.2 °) range of 25 ° to 30 ° according to claim 1. An electrophotographic photoreceptor comprising a photosensitive layer containing crystals.
JP03326721A 1991-05-01 1991-11-15 Method for producing novel dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the crystal Expired - Fee Related JP3092270B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03326721A JP3092270B2 (en) 1991-11-15 1991-11-15 Method for producing novel dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the crystal
US07/874,093 US5283145A (en) 1991-05-01 1992-04-27 Crystals of dichlorotin phthalocyanine, method of preparing the crystal, and electrophotographic photoreceptor comprising the crystal
US07/927,961 US5308728A (en) 1991-08-16 1992-08-11 Dichlorotin phthalocyanine crystal, process for producing the same, and electrophotographic photoreceptor using the same
US08/144,012 US5416207A (en) 1991-08-16 1993-11-01 Dichlorotin phthalocyanine crystal, process for producing the same, and electrophotographic photoreceptor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03326721A JP3092270B2 (en) 1991-11-15 1991-11-15 Method for producing novel dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the crystal

Publications (2)

Publication Number Publication Date
JPH05140472A JPH05140472A (en) 1993-06-08
JP3092270B2 true JP3092270B2 (en) 2000-09-25

Family

ID=18190938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03326721A Expired - Fee Related JP3092270B2 (en) 1991-05-01 1991-11-15 Method for producing novel dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the crystal

Country Status (1)

Country Link
JP (1) JP3092270B2 (en)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2865020B2 (en) 1994-06-10 1999-03-08 富士ゼロックス株式会社 Novel charge transporting polymer and organic electronic device using the same
JP2827976B2 (en) * 1994-10-18 1998-11-25 富士ゼロックス株式会社 Organic electronic devices using charge transporting copolyester
US5639581A (en) * 1994-10-24 1997-06-17 Fuji Xerox Co., Ltd. Charge transporting polymer, process for producing the same, and organic electronic device containing the same
US5654119A (en) * 1995-04-06 1997-08-05 Fuji Xerox Co., Ltd. Organic electronic device comprising charge-transporting polyester and image forming apparatus
US5731118A (en) * 1995-08-25 1998-03-24 Fuji Xerox Co., Ltd. Charge transporting random copolyester resin, process for producing the same and organic electronic device using the same
JP3058069B2 (en) * 1995-10-18 2000-07-04 富士ゼロックス株式会社 Novel charge transporting polymer and organic electronic device using the same
US5677097A (en) * 1996-01-18 1997-10-14 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor
JP3797168B2 (en) 2001-09-20 2006-07-12 富士ゼロックス株式会社 Image forming method
JP2003149950A (en) 2001-11-09 2003-05-21 Fuji Xerox Co Ltd Image forming device
JP2004109917A (en) 2002-09-20 2004-04-08 Fuji Xerox Co Ltd Image forming apparatus
JP4192713B2 (en) 2003-07-25 2008-12-10 富士ゼロックス株式会社 Arylamine compound, charge transport material, electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2008076657A (en) * 2006-09-20 2008-04-03 Fuji Xerox Co Ltd Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2008076656A (en) 2006-09-20 2008-04-03 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2008096923A (en) 2006-10-16 2008-04-24 Fuji Xerox Co Ltd Image forming apparatus and process cartridge
JP4872601B2 (en) 2006-10-27 2012-02-08 富士ゼロックス株式会社 Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP4872600B2 (en) 2006-10-27 2012-02-08 富士ゼロックス株式会社 Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP4957239B2 (en) 2006-12-27 2012-06-20 富士ゼロックス株式会社 Image forming apparatus
JP2008216812A (en) 2007-03-06 2008-09-18 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP4905228B2 (en) 2007-04-09 2012-03-28 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2008262050A (en) 2007-04-12 2008-10-30 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8679709B2 (en) 2007-06-28 2014-03-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution
JP2009156970A (en) 2007-12-25 2009-07-16 Fuji Xerox Co Ltd Charging member cleaning member, method of producing charging member cleaning member, charging device, process cartridge and image forming apparatus
JP4618311B2 (en) 2008-03-19 2011-01-26 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP4666051B2 (en) 2008-10-24 2011-04-06 富士ゼロックス株式会社 Charging member, charging device, process cartridge, and image forming apparatus
JP5345831B2 (en) 2008-12-16 2013-11-20 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
US8273511B2 (en) 2008-12-25 2012-09-25 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, processing cartridge, and image forming apparatus
JP4702447B2 (en) 2008-12-25 2011-06-15 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2010217438A (en) 2009-03-16 2010-09-30 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2010231077A (en) 2009-03-27 2010-10-14 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming device
JP4900413B2 (en) 2009-03-27 2012-03-21 富士ゼロックス株式会社 Image forming apparatus and process cartridge
JP2011008117A (en) 2009-06-26 2011-01-13 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP5428574B2 (en) 2009-06-26 2014-02-26 富士ゼロックス株式会社 Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP5560755B2 (en) 2010-02-10 2014-07-30 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5598013B2 (en) 2010-02-19 2014-10-01 富士ゼロックス株式会社 Image carrier for image forming apparatus, process cartridge, and image forming apparatus
JP5540962B2 (en) 2010-07-15 2014-07-02 富士ゼロックス株式会社 Image carrier for image forming apparatus, process cartridge, and image forming apparatus
JP5659643B2 (en) 2010-09-10 2015-01-28 富士ゼロックス株式会社 Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8748070B2 (en) 2011-01-28 2014-06-10 Fuji Xerox Co., Ltd. Thiol group-containing charge transporting material, thiol group-containing charge transporting material-dissolving solution, photoelectric conversion device, electrophotographic photoreceptor, image forming apparatus, and process cartridge
US9389525B2 (en) 2011-03-09 2016-07-12 Fuji Xerox Co., Ltd. Fluorine-containing resin particle dispersion, method for preparing fluorine-containing resin particle dispersion, coating liquid which contains fluorine-containing resin particles, method for preparing coating film which contains fluorine-containing resin particles, coating film which contains fluorine-containing resin particles, molded body, electrophotographic photoreceptor, method for preparing electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP5724519B2 (en) 2011-03-28 2015-05-27 富士ゼロックス株式会社 Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP5724518B2 (en) 2011-03-28 2015-05-27 富士ゼロックス株式会社 Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2013037289A (en) 2011-08-10 2013-02-21 Fuji Xerox Co Ltd Electrophotographic photoreceptor, image forming device, and process cartridge
JP5861525B2 (en) 2012-03-26 2016-02-16 富士ゼロックス株式会社 Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP6123714B2 (en) 2014-03-19 2017-05-10 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2015184462A (en) 2014-03-24 2015-10-22 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2017062401A (en) 2015-09-25 2017-03-30 富士ゼロックス株式会社 Cylindrical member for electrophotographic photoreceptor, electrophotographic photoreceptor, image forming apparatus, process cartridge, and manufacturing method for cylindrical member for electrophotographic photoreceptor
JP2017062400A (en) 2015-09-25 2017-03-30 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6794631B2 (en) 2016-02-19 2020-12-02 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2017161778A (en) 2016-03-10 2017-09-14 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, image forming apparatus, and conductive substrate for electrophotographic photoreceptor
JP2018017929A (en) 2016-07-28 2018-02-01 富士ゼロックス株式会社 Conductive support body for electrophotographic photoreceptor, electrophotographic photoreceptor, process cartridge and image forming apparatus
JP6801283B2 (en) 2016-08-01 2020-12-16 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus
JP6737081B2 (en) 2016-09-02 2020-08-05 富士ゼロックス株式会社 Image forming device
JP6838324B2 (en) 2016-09-05 2021-03-03 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus
JP2018049060A (en) 2016-09-20 2018-03-29 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2018049148A (en) 2016-09-21 2018-03-29 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, and image formation device
JP2018054707A (en) 2016-09-26 2018-04-05 富士ゼロックス株式会社 Image forming apparatus and process cartridge
JP6759949B2 (en) 2016-10-04 2020-09-23 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6825382B2 (en) 2017-01-23 2021-02-03 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6935674B2 (en) 2017-03-22 2021-09-15 富士フイルムビジネスイノベーション株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2019061094A (en) 2017-09-27 2019-04-18 富士ゼロックス株式会社 Image forming apparatus
JP2019061073A (en) 2017-09-27 2019-04-18 富士ゼロックス株式会社 Image forming apparatus and image forming method
JP2019061146A (en) 2017-09-27 2019-04-18 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2019061091A (en) 2017-09-27 2019-04-18 富士ゼロックス株式会社 Image forming device and unit for image forming device
US20190302632A1 (en) 2018-04-03 2019-10-03 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, electrophotographic photoreceptor for positive charging, process cartridge, and image forming apparatus
JP2019184700A (en) 2018-04-04 2019-10-24 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
EP3582012A1 (en) 2018-06-15 2019-12-18 Fuji Xerox Co., Ltd Dispersant attached polytetrafluoroethylene particle, composition, layered material, electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2022150036A (en) 2021-03-25 2022-10-07 富士フイルムビジネスイノベーション株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus

Also Published As

Publication number Publication date
JPH05140472A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
JP3092270B2 (en) Method for producing novel dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the crystal
JP2584682B2 (en) Electrophotographic photoreceptor using titanyl phthalocyanine crystal
GB2255980A (en) Hydroxygallium phthocyanine
JPH05279591A (en) Preparation of novel crystal of hydroxygallium phthalocyanine and electrophotographic photoreceptor made using the same
US5283145A (en) Crystals of dichlorotin phthalocyanine, method of preparing the crystal, and electrophotographic photoreceptor comprising the crystal
US5416207A (en) Dichlorotin phthalocyanine crystal, process for producing the same, and electrophotographic photoreceptor using the same
US5643703A (en) Hydroxygallium phthalocyanine crystal, process for preparing same, and electrophotographic photoreceptor comprising same
JP2882977B2 (en) Method for producing hydroxygallium phthalocyanine crystal and electrophotographic photoreceptor using the same
JP3028004B2 (en) Method for producing novel crystal of chlorogallium phthalocyanine and electrophotographic photoreceptor using the crystal
JP2965399B2 (en) Mixed crystal of indium phthalocyanine halide and gallium phthalocyanine halide and electrophotographic photoreceptor using the same
JP2541030B2 (en) Novel crystal of hydroxyindium phthalocyanine and electrophotographic photoreceptor using the same
JP3097293B2 (en) Electrophotographic photoreceptor
JP2586855B2 (en) Novel crystal of hydroxyindium phthalocyanine and electrophotographic photoreceptor using the same
JP2586857B2 (en) Novel crystal of hydroxyindium phthalocyanine and electrophotographic photoreceptor using the same
JP2586856B2 (en) Novel crystal of hydroxyindium phthalocyanine and electrophotographic photoreceptor using the same
JP2819745B2 (en) Vanadyl phthalocyanine crystal, production method thereof and electrophotographic photoreceptor
JP2586859B2 (en) Novel crystal of hydroxyindium phthalocyanine and electrophotographic photoreceptor using the same
JP2965400B2 (en) Dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the same
JP2586858B2 (en) Novel crystal of hydroxyindium phthalocyanine and electrophotographic photoreceptor using the same
JP2541031B2 (en) Dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the same
JPH0593150A (en) Novel crystal of hydroxyaluminum phthalocyanine, photoconductive material comprising the novel crystal, and electrophotographic photoreceptor containing the same
JP2586854B2 (en) Dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the same
JPH05247361A (en) Production of chlorogallium phthalocyanine crystal
JPH06234937A (en) Phthalocyanine crystal mixture, its production, and electrophotographic photoreceptor made using the same
GB2255569A (en) Chlorogallium phthalocyanine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees