JP3091655B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP3091655B2
JP3091655B2 JP32002194A JP32002194A JP3091655B2 JP 3091655 B2 JP3091655 B2 JP 3091655B2 JP 32002194 A JP32002194 A JP 32002194A JP 32002194 A JP32002194 A JP 32002194A JP 3091655 B2 JP3091655 B2 JP 3091655B2
Authority
JP
Japan
Prior art keywords
layer
degrees
semiconductor laser
laser device
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32002194A
Other languages
Japanese (ja)
Other versions
JPH08181385A (en
Inventor
正治 本多
昌幸 庄野
隆俊 池上
靖之 別所
良治 ▲広▼山
裕之 賀勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18116872&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3091655(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32002194A priority Critical patent/JP3091655B2/en
Publication of JPH08181385A publication Critical patent/JPH08181385A/en
Application granted granted Critical
Publication of JP3091655B2 publication Critical patent/JP3091655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザ素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device.

【0002】[0002]

【従来の技術】最近、発振波長が630nm〜680n
m帯付近の半導体レーザ素子としてAlGaInP系半
導体レーザ素子が活発に研究開発されている。
2. Description of the Related Art Recently, an oscillation wavelength is 630 nm to 680 n.
AlGaInP-based semiconductor laser devices have been actively researched and developed as semiconductor laser devices near the m band.

【0003】この630nm帯は視感度が高いことか
ら、斯る発振帯域の素子はレーザーポインターやライン
マーカー等に使用されている。このような製品に使用さ
れる場合、斯る素子は電池駆動で使用されるのが一般的
であり、低消費電力化が望まれている。
Since the 630 nm band has high visibility, elements in such an oscillation band are used for laser pointers, line markers, and the like. When used in such products, such devices are generally used on a battery, and low power consumption is desired.

【0004】また、光ディスクなどの光記録媒体に対し
て記録、再生、又は消去を行う情報処理装置用光源やレ
ーザプリンター装置用光源等として、可視光領域の波長
で発振する半導体レーザ素子の需要が高まっている。こ
れら情報処理装置やレーザプリンター装置は情報密度を
高めること、即ち半導体レーザ素子の短波長化が要求さ
れており、AlGaInP系半導体レーザ素子が注目さ
れている。このような用途においても、装置の低消費電
力化を図るために半導体レーザ素子の低消費電力化に関
係した発振しきい値電流(Ith)の低減が要求されてい
る。
There is also a demand for a semiconductor laser device that oscillates at a wavelength in the visible light region as a light source for an information processing device or a laser printer device for recording, reproducing, or erasing an optical recording medium such as an optical disk. Is growing. In these information processing devices and laser printer devices, it is required to increase the information density, that is, to shorten the wavelength of the semiconductor laser device, and AlGaInP-based semiconductor laser devices have been receiving attention. Even in such applications, a reduction in the oscillation threshold current (I th ) related to the reduction in power consumption of the semiconductor laser device is required in order to reduce the power consumption of the device.

【0005】ところで、630nm帯の引張り歪みをも
つ量子井戸層と無歪みの量子障壁層が交互に積層された
活性層を備えた引張歪型AlGaInP系半導体レーザ
素子や引張り歪みをもつ量子井戸層と圧縮歪みをもつ量
子障壁層が交互に積層された活性層を備えた歪み補償型
AlGaInP系半導体レーザ素子では、量子井戸層が
圧縮歪み又は無歪みをもつ一般的な素子より発振しきい
値電流が小さくなることが知られている。
Incidentally, a tensile-strained AlGaInP-based semiconductor laser device having an active layer in which a quantum well layer having a tensile strain of 630 nm and an unstrained quantum barrier layer are alternately stacked, a quantum well layer having a tensile strain, In a strain-compensated AlGaInP-based semiconductor laser device including an active layer in which quantum barrier layers having compressive strain are alternately stacked, the oscillation threshold current is higher than that of a general device in which the quantum well layer has compressive strain or no strain. It is known to be smaller.

【0006】しかしながら、上記一般的な素子はTEモ
ードで発振するのに対して量子井戸層が引張り歪みをも
つ素子はTMモードで発振するため、この量子井戸層が
引張り歪みをもつ素子は、従来装置の光学系では使用で
きない場合が生じる。このため、量子井戸層に圧縮歪み
を有する圧縮歪型AlGaInP系半導体レーザ素子の
発振しきい値電流の低減が依然として望まれる。
[0006] However, the above-mentioned general device oscillates in the TE mode, whereas the device in which the quantum well layer has tensile strain oscillates in the TM mode. In some cases, it cannot be used in the optical system of the apparatus. Therefore, it is still desired to reduce the oscillation threshold current of a compression-strained AlGaInP-based semiconductor laser device having a compression strain in the quantum well layer.

【0007】勿論、他の用途にも適したTMモードで発
振する半導体レーザ素子においても、更なる発振しきい
値電流の低減が望まれている。
Needless to say, further reduction in the oscillation threshold current is desired for a semiconductor laser device that oscillates in the TM mode suitable for other uses.

【0008】[0008]

【発明が解決しようとする課題】上記AlGaInP系
半導体レーザ素子は、共振器長を短くすることにより、
発振しきい値電流を小さくできることも知られている。
しかし、このように共振器長を短くするだけでは信頼性
を十分に確保できず、例えば信頼性に密接に関連する最
高発振温度(Tmax:発振可能な最高発振温度であり、
用途に応じて要求される値は異なる)を大きくできな
い。
The above-mentioned AlGaInP-based semiconductor laser device has a structure in which the cavity length is shortened.
It is also known that the oscillation threshold current can be reduced.
However, the reliability cannot be sufficiently ensured only by shortening the resonator length in this manner. For example, the maximum oscillation temperature (T max : the maximum oscillation temperature at which oscillation is possible, which is closely related to the reliability,
The required value varies depending on the application).

【0009】この結果、更なる低消費電力のAlGaI
nP系半導体レーザ素子を実用化できないといった問題
があった。例えば、Tmaxが50℃以上且つIthが50
mA以下の発振波長が630nm帯の圧縮歪型半導体レ
ーザ素子、Tmaxが70℃以上且つIthが30mA以下
の発振波長が670nm帯の圧縮歪型半導体レーザ素
子、Tmaxが60℃以上且つIthが30mA以下の発振
波長が630nm帯の歪補償型半導体レーザ素子は実用
化に至っていない。
As a result, even lower power consumption AlGaI
There is a problem that an nP-based semiconductor laser device cannot be put to practical use. For example, if T max is 50 ° C. or more and I th is 50
mA following the oscillation wavelength compressive strain type semiconductor laser element of 630nm band, T max is compressive strain type semiconductor laser device 70 ° C. or more and I th is the following oscillation wavelength 30 mA 670 nm band, T max is and 60 ° C. or higher I A strain-compensated semiconductor laser device having a th of 30 mA or less and an oscillation wavelength of 630 nm has not been put to practical use.

【0010】本発明は上述の問題点を鑑み成されたもの
であり、信頼性が高く且つ低消費電力の半導体レーザ素
子を提供することが目的である。
The present invention has been made in view of the above-mentioned problems, and has as its object to provide a semiconductor laser device having high reliability and low power consumption.

【0011】[0011]

【課題を解決するための手段】本発明の半導体レーザ素
子は、第1導電型のGaAs半導体基板と、該基板の一
主面上に形成された第1導電型のクラッド層と、該第1
導電型のクラッド層上に形成され量子井戸層と量子障壁
層とが交互に積層されてなる量子井戸構造を有する活性
層と、該活性層上に形成された前記第1導電型とは逆導
電型である第2導電型のクラッド層と、を備えたAlG
aInP系の半導体レーザ素子において、前記量子井戸
層が圧縮歪みを有し、且つ前記基板の前記一主面が{1
00}面から<011>方向に9度以上17度以下に傾
斜した面であり、且つ共振器長が150μm以上300
μm以下であることを特徴とする。
According to the present invention, there is provided a semiconductor laser device comprising: a first conductivity type GaAs semiconductor substrate; a first conductivity type cladding layer formed on one main surface of the substrate;
An active layer having a quantum well structure formed on a conductive type cladding layer and having a quantum well layer and a quantum barrier layer alternately stacked thereon, and a conductive type opposite to the first conductive type formed on the active layer; AlG comprising a cladding layer of the second conductivity type is a type, the
In the aInP-based semiconductor laser device, the quantum well layer has a compressive strain, and the one main surface of the substrate is # 1.
A plane inclined from 9 degrees to 17 degrees in the <011> direction from the 00 ° plane, and having a cavity length of 150 μm to 300
μm or less.

【0012】また、本発明の別の半導体レーザ素子は、
第1導電型のGaAs半導体基板と、該基板の一主面上
に形成された第1導電型のクラッド層と、該第1導電型
のクラッド層上に形成され互いに逆の歪みを有する量子
井戸層と量子障壁層とが交互に積層されてなる量子井戸
構造を有する活性層と、該活性層上に形成された前記第
1導電型とは逆導電型である第2導電型のクラッド層
と、を備えたAlGaInP系の半導体レーザ素子にお
いて、前記基板の一主面が{100}面から<011>
方向に9度以上17度以下に傾斜した面であり、且つ共
振器長が150μm以上300μm以下であることを特
徴とする。
Further, another semiconductor laser device according to the present invention comprises:
A GaAs semiconductor substrate of a first conductivity type, a cladding layer of the first conductivity type formed on one main surface of the substrate, and a quantum well formed on the cladding layer of the first conductivity type and having opposite strains to each other An active layer having a quantum well structure in which layers and quantum barrier layers are alternately stacked; and a second conductive type clad layer formed on the active layer and having a conductivity type opposite to the first conductivity type. AlGaInP-based semiconductor laser devices with
And one principal surface of the substrate is shifted from the {100} plane to <011>
The surface is inclined from 9 degrees to 17 degrees in the direction, and the cavity length is from 150 μm to 300 μm.

【0013】特に、前記基板の前記一主面は、{10
0}面から<011>方向に11度以上17度以下に傾
斜した面であることを特徴とする。
In particular, the one main surface of the substrate is $ 10
It is a surface inclined from 11 ° to 17 ° in the <011> direction from the 0 ° plane.

【0014】更に、前記基板の前記一主面は、{10
0}面から<011>方向に略13度に傾斜した面であ
ることを特徴とする。
Further, the one main surface of the substrate is $ 10
The surface is characterized by being inclined at approximately 13 degrees in the <011> direction from the 0 ° plane.

【0015】また、前記第1導電型のクラッド層が(A
x1Ga1-x10.5In0.5Pからなり、前記第2導電型
のクラッド層が(Alx2Ga1-x20.5In0.5Pからな
り、前記量子井戸層が(Alx3Ga1-x3y3In1-y3
からなり、前記量子障壁層が(Alx4Ga1-4y4In
1-y4Pからなると共に、前記組成比x1、x2、x3、
及びx4が1≧x1,x2>x4>x3≧0、及び1>
y3,y4>0の関係を満足することを特徴とする。
た、前記共振器長が200μm以上300μm以下であ
ることを特徴とする。
Further, the first conductivity type cladding layer may be (A)
l x1 Ga 1-x1 ) 0.5 In 0.5 P, the second conductivity type cladding layer is made of (Al x2 Ga 1-x2 ) 0.5 In 0.5 P, and the quantum well layer is made of (Al x3 Ga 1-x3). ) Y3 In 1-y3 P
And the quantum barrier layer is composed of (Al x4 Ga 1-4 ) y4 In
1-y4 P and the composition ratios x1, x2, x3,
And x4 are 1 ≧ x1, x2>x4> x3 ≧ 0, and 1>
It is characterized by satisfying the relationship of y3, y4> 0. Ma
Further, the resonator length is not less than 200 μm and not more than 300 μm.
It is characterized by that.

【0016】[0016]

【作用】本発明の構成では、活性層の量子井戸層が圧縮
歪みを有し、加えてGaAs半導体基板の一主面が{1
00}面から<011>方向に9度以上17度以下に傾
斜した面であり、且つ共振器長が150μm以上300
μm以下であるので、最高発振温度を高く且つ発振しき
い値電流を小さくできる。
According to the structure of the present invention, the quantum well layer of the active layer has a compressive strain, and in addition, one main surface of the GaAs semiconductor substrate has
A plane inclined from 9 degrees to 17 degrees in the <011> direction from the 00 ° plane, and having a cavity length of 150 μm to 300
Since it is not more than μm, the maximum oscillation temperature can be increased and the oscillation threshold current can be decreased.

【0017】本発明の別の構成では、活性層の量子井戸
層と量子障壁層とが互いに逆の歪みを有し、加えてGa
As半導体基板の一主面が{100}面から<011>
方向に9度以上17度以下に傾斜した面であり、且つ共
振器長が150μm以上300μm以下であるので、最
高発振温度をより高く且つ発振しきい値電流をより小さ
くできる。
In another embodiment of the present invention, the quantum well layer and the quantum barrier layer of the active layer have opposite strains to each other,
One main surface of the As semiconductor substrate is changed from the {100} plane to <011>
Since the surface is inclined from 9 degrees to 17 degrees in the direction and the cavity length is from 150 μm to 300 μm, the maximum oscillation temperature can be higher and the oscillation threshold current can be smaller.

【0018】特に、前記半導体基板の前記一主面が、
{100}面から<011>方向に11度以上17度以
下に傾斜した面である場合、更に最高発振温度を高く且
つ発振しきい値電流を小さくできる。
In particular, the one main surface of the semiconductor substrate is
When the plane is inclined from 11 ° to 17 ° in the <011> direction from the {100} plane, the maximum oscillation temperature can be further increased and the oscillation threshold current can be further reduced.

【0019】更に、前記半導体基板の前記一主面が、
{100}面から<011>方向に略13度に傾斜した
面である場合、最高発振温度を著しく高く且つ発振しき
い値電流を著しく小さくできる。
Further, the one main surface of the semiconductor substrate is:
When the plane is inclined at approximately 13 degrees in the <011> direction from the {100} plane, the maximum oscillation temperature can be extremely high and the oscillation threshold current can be extremely small.

【0020】[0020]

【実施例】本発明の第1実施例に係る発振波長が630
nm帯の圧縮歪型AlGaInP系半導体レーザ素子を
図を用いて説明する。尚、図1はこの半導体レーザ素子
の模式断面構造図、図2はこの半導体レーザ素子の活性
層近傍の模式バンド構造図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The oscillation wavelength according to the first embodiment of the present invention is 630.
A compression-strain type AlGaInP-based semiconductor laser device in the nm band will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional structure diagram of the semiconductor laser device, and FIG. 2 is a schematic band structure diagram near an active layer of the semiconductor laser device.

【0021】図中、1はn型GaAs半導体基板で、そ
の一主面は(100)面から[011]方向に角度θ
(θ=9〜17度:以下角度θをオフ角度θという)で
傾斜した面である。前記一主面上には層厚0.3μmの
n型Ga0.5In0.5Pバッファ層2及び層厚0.8〜
0.9μmのn型(AlxaGa1-xa0.5In0.5P(x
a>ya,yb>p≧0:本実施例ではxa=0.7)
クラッド層3がこの順序で形成されている。
In the figure, reference numeral 1 denotes an n-type GaAs semiconductor substrate whose one main surface has an angle θ from the (100) plane in the [011] direction.
(Θ = 9 to 17 degrees: hereinafter, angle θ is referred to as off-angle θ). An n-type Ga 0.5 In 0.5 P buffer layer 2 having a thickness of 0.3 μm and a thickness of 0.8 to
0.9 μm n-type (Al xa Ga 1-xa ) 0.5 In 0.5 P (x
a> ya, yb> p ≧ 0: xa = 0.7 in this embodiment)
The cladding layer 3 is formed in this order.

【0022】前記n型クラッド層3上には、層厚200
〜500Åのアンドープの(AlyaGa1-ya0.5In
0.5P(ya≧r:本実施例ではya=0.5)光ガイ
ド層4、層厚50Åの圧縮歪みを有する(Alp
1-pqIn1-qP(q<0.51:本実施例ではp=
0.1、q=0.44)圧縮歪量子井戸層5a、5a、
5a、5a(典型的には全10層以下、本実施例では全
4層)と層厚40Åの(AlrGa1-r0.5In0.5
(xa,xb,xc>r>p:本実施例ではr=0.
5)量子障壁層5b、5b、5b(典型的には全9層以
下、本実施例では全3層)とが交互に積層されてなる圧
縮歪多重量子井戸構造(圧縮歪MQW構造)からなるア
ンドープの活性層5、及び層厚200〜500Åのアン
ドープの(AlybGa1-yb0.5In0.5P(yb≧r:
本実施例ではyb=0.5)光ガイド層6がこの順序で
形成されている。尚、本実施例の圧縮歪量子井戸層5
a、5a、・・の歪量Δa/a0(Δa=量子井戸層の
格子定数−GaAs半導体基板の格子定数a0)は+
0.5%であり、量子障壁層5b、5b、5bは略無歪
みである。
On the n-type cladding layer 3, a layer thickness of 200
Undoped (Al ya Ga 1-ya ) 0.5 In of ~ 500 °
0.5 P (ya ≧ r: ya = 0.5 in this embodiment) The light guide layer 4 has a compressive strain of 50 ° (Al p G).
a 1-p ) q In 1-q P (q <0.51: p = p in this embodiment)
0.1, q = 0.44) Compressive strain quantum well layers 5a, 5a,
5a, 5a (typically all 10 layers or less, in this embodiment all four layers) with a layer thickness 40Å (Al r Ga 1-r ) 0.5 In 0.5 P
(Xa, xb, xc>r> p: In this embodiment, r = 0.
5) Compression strain multiple quantum well structure (compression strain MQW structure) in which quantum barrier layers 5b, 5b, 5b (typically all 9 layers or less, all 3 layers in this embodiment) are alternately stacked. Undoped active layer 5 and undoped (Al yb Ga 1-yb ) 0.5 In 0.5 P (yb ≧ r) having a thickness of 200 to 500 °:
(In this embodiment, yb = 0.5) The light guide layer 6 is formed in this order. The compression-strain quantum well layer 5 of this embodiment
The amount of distortion Δa / a 0 (a = a lattice constant of the quantum well layer−a lattice constant a 0 of the GaAs semiconductor substrate) of a, 5a,.
0.5%, and the quantum barrier layers 5b, 5b, 5b are substantially strain-free.

【0023】前記光ガイド層6上には、層厚300Åの
p型(AlxbGa1-xb0.5In0.5P(xb>ya,y
b>p≧0:本実施例ではxb=0.7)クラッド層7
が形成されている。このp型クラッド層7上には、層厚
8Åのp型(AltGa1-t uIn1-uP(t<v:本実
施例ではt=0、u=0.5)量子井戸層8a、8a、
・・・(全10層)と層厚12Åのp型(Alv
1-vwIn1-wP(望ましくはv=xb=xc:本実
施例ではv=0.7、w=0.5)量子障壁層8b、8
b、・・・(全9層)とが交互に積層されてなる多重量
子障壁構造(MQB)層8が形成されている。このMQ
B層は活性層から電子がオーバフローするのを干渉によ
り防止するものである。
The light guide layer 6 has a thickness of 300 °
p-type (AlxbGa1-xb)0.5In0.5P (xb> ya, y
b> p ≧ 0: xb = 0.7 in this embodiment) Cladding layer 7
Are formed. On the p-type cladding layer 7, a layer thickness
8Å p-type (AltGa1-t) uIn1-uP (t <v: real
(In the example, t = 0, u = 0.5) The quantum well layers 8a, 8a,
... (10 layers in total) and p-type (AlvG
a1-v)wIn1-wP (desirably v = xb = xc: real
In the embodiment, v = 0.7, w = 0.5) quantum barrier layers 8b, 8
b,... (all 9 layers) are alternately stacked and have a large weight
A child barrier structure (MQB) layer 8 is formed. This MQ
The B layer prevents electrons from overflowing from the active layer due to interference.
Is to prevent

【0024】前記多重量子障壁構造層8上には、厚さ
0.9μm、下面幅5μmのレーザ共振器長方向([0
1−1]方向)に延伸したストライプ状リッジ部を有
し、このリッジ部の両側には層厚が0.2〜0.3μm
の平坦部を有するp型(AlxcGa1-xc0.5In0.5
(xc>ya,yb>p≧0:本実施例ではxc=0.
7)クラッド層9が形成されている。尚、本実施例で
は、前記平坦部上に前記クラッド層9とAl組成比が異
なり、このクラッド層9とエッチング速度が異なる、例
えば層厚20Åのp型Ga0.5In0.5Pエッチング停止
層9aを有する。
On the multi-quantum barrier structure layer 8, a laser resonator having a thickness of 0.9 μm and a lower surface width of 5 μm ([0
1-1] direction, and a stripe-shaped ridge portion extending in both directions, and a layer thickness of 0.2 to 0.3 μm on both sides of the ridge portion.
(Al xc Ga 1 -xc ) 0.5 In 0.5 P having a flat portion of
(Xc> ya, yb> p ≧ 0: In this embodiment, xc = 0.
7) The cladding layer 9 is formed. In this embodiment, a p-type Ga 0.5 In 0.5 P etching stop layer 9 a having a different thickness from the cladding layer 9 and an etching rate different from that of the cladding layer 9, for example, a layer thickness of 20 ° is formed on the flat portion. Have.

【0025】前記エッチング停止層9a上及びp型クラ
ッド層9のリッジ部の両側側面を覆うように層厚1μm
のn型GaAs電流阻止層10、10が形成されてお
り、該リッジ部面上には層厚0.1μmのp型Ga0.5
In0.5Pからなるコンタクト層11が形成されてい
る。
A layer thickness of 1 μm is formed so as to cover both sides of the ridge portion of the p-type cladding layer 9 on the etching stop layer 9a.
N-type GaAs current blocking layers 10 and 10 are formed, and a 0.1 μm-thick p-type Ga 0.5
A contact layer 11 made of In 0.5 P is formed.

【0026】前記電流阻止層10、10及びコンタクト
層11上には、このコンタクト層11上の層厚が2〜5
μmであるp型GaAsキャップ層12が形成されてい
る。
On the current blocking layers 10, 10 and the contact layer 11, the thickness of the contact layer 11 is 2 to 5
A p-type GaAs cap layer 12 of μm is formed.

【0027】前記キャップ層12上面にはAu−Crか
らなるp型側オーミック電極13が、前記n型GaAs
半導体基板1下面にはAu−Sn−Crからなるn型側
オーミック電極14が形成されている。
On the upper surface of the cap layer 12, a p-type ohmic electrode 13 made of Au--Cr is provided.
On the lower surface of the semiconductor substrate 1, an n-type ohmic electrode 14 made of Au-Sn-Cr is formed.

【0028】この半導体レーザ素子は、図2から判るよ
うに、活性層5はその量子障壁層5b、5b、5bとバ
ンドギャップが等しい光ガイド層4、6に挟まれ、その
外側をこの光ガイド層4、6よりバンドギャップが大き
いクラッド層3、7により挟まれた構成になっている。
尚、屈折率はバンドギャップが大きくなるにつれて小さ
くなるので、屈折率についての説明は割愛する。
In this semiconductor laser device, as can be seen from FIG. 2, the active layer 5 is sandwiched between the light guide layers 4, 6 having the same band gap as the quantum barrier layers 5b, 5b, 5b. The structure is sandwiched between the cladding layers 3 and 7 having a larger band gap than the layers 4 and 6.
Since the refractive index decreases as the band gap increases, the description of the refractive index is omitted.

【0029】次に、斯る半導体レーザ素子の製造方法に
ついて簡単に説明する。
Next, a method of manufacturing such a semiconductor laser device will be briefly described.

【0030】最初に、GaAs半導体基板1上に、コン
タクト層11までの各層をMOCVD法(有機金属気相
成長法)により連続成長する。次に、前記コンタクト層
11上にストライプ状のSiO2等からなるマスクを形
成し、このマスクを介した状態でコンタクト層11及び
クラッド層9を前記エッチング停止層9aまで選択的に
エッチングする。続いて、電流阻止層10、10をMO
CVD法により形成し、次に前記マスクを除去して前記
コンタクト層11を露出させた後、電流阻止層10、1
0及びコンタクト層11上にキャップ層12をMOCV
D法により形成する。次に、前記キャップ層12上面に
はp型側オーミック電極13を、前記n型GaAs半導
体基板1下面にはn型側オーミック電極14を蒸着法及
び熱処理により作製する。
First, layers up to the contact layer 11 are continuously grown on the GaAs semiconductor substrate 1 by MOCVD (metal organic chemical vapor deposition). Next, a mask made of stripe-shaped SiO 2 or the like is formed on the contact layer 11, and the contact layer 11 and the clad layer 9 are selectively etched to the etching stop layer 9a with the mask interposed therebetween. Subsequently, the current blocking layers 10 and 10 are
After being formed by the CVD method, and then removing the mask to expose the contact layer 11, the current blocking layers 10, 1
0 and the cap layer 12 on the contact layer 11
Formed by Method D. Next, a p-type ohmic electrode 13 is formed on the upper surface of the cap layer 12, and an n-type ohmic electrode 14 is formed on the lower surface of the n-type GaAs semiconductor substrate 1 by vapor deposition and heat treatment.

【0031】図3は、斯る半導体レーザ素子の前記主面
が(100)面から[011]方向に9度、13度、及
び17度傾斜した面である場合と、比較例として同方向
に5度傾斜した面である場合と、における最高発振温度
max(℃)と共振器長L(μm)の関係を示し、図
中、オフ角度θ=5度は白抜きの三角、オフ角度θ=9
度は白抜きの四角、オフ角度θ=13度は白抜きの丸、
オフ角度θ=17度は黒塗りの丸で表す。尚、この測定
は、通常のステムの良放熱体(銅ブロック)上にハンダ
等で接着載置(固着)されたSiヒートシンク(厚みは
50〜500μm)上に、ジャンクションダウンで素子
を錫等を介して圧着載置(固着)した状態において連続
発振状態で行った。また、測定した素子は、その光出射
前端面、光出射後端面にそれぞれ30%、50%の反射
率を有する反射膜をコートした。
FIG. 3 shows a case where the principal surface of the semiconductor laser device is inclined at 9 °, 13 °, and 17 ° in the [011] direction from the (100) plane. The relationship between the maximum oscillation temperature T max (° C.) and the cavity length L (μm) is shown for the case where the surface is inclined at 5 degrees, and the off angle θ = 5 degrees is a white triangle and the off angle θ in FIG. = 9
The degree is a white square, the off angle θ = 13 degrees is a white circle,
The off angle θ = 17 degrees is represented by a black circle. In this measurement, the element was tin-bonded with a junction down on a Si heat sink (thickness: 50 to 500 μm) which was adhesively mounted (fixed) on a good radiator (copper block) of a normal stem with solder or the like. The operation was performed in a continuous oscillation state in a state of being mounted (fixed) by pressure bonding through the substrate. The measured element was coated with a reflective film having a reflectance of 30% and 50%, respectively, on the end face before light emission and the end face after light emission.

【0032】この図3から、斯る半導体レーザ素子は、
オフ角度θが9度以上17度以下の場合に、共振器長が
短くなるにしたがって最高発振温度が漸次的に低下する
従来の現象とは異なって、共振器長が200μm近傍で
ピークをもつと共に、150μm以上300μm以下で
最高発振温度が50℃より大、200μm以上300μ
m以下で最高発振温度が60℃以上になることが判る。
From FIG. 3, the semiconductor laser device is
When the off angle θ is 9 degrees or more and 17 degrees or less, unlike the conventional phenomenon in which the maximum oscillation temperature gradually decreases as the length of the resonator decreases, the peak has a peak near the resonator length of 200 μm. , The maximum oscillation temperature is greater than 50 ° C. at 150 μm or more and 300 μm or less, and 200 μm or more and 300 μm
It can be seen that the maximum oscillation temperature becomes 60 ° C. or more when the temperature is less than m.

【0033】図4は、図3と同じ測定を行って得た最高
発振温度Tmax(℃)と半導体基板のオフ角度θ(度)
の関係を示す。尚、共振器長Lは一例として200μm
である。
FIG. 4 shows the maximum oscillation temperature T max (° C.) obtained by performing the same measurement as in FIG. 3, and the off angle θ (degree) of the semiconductor substrate.
Shows the relationship. Note that the resonator length L is 200 μm as an example.
It is.

【0034】この図4から、斯る半導体レーザ素子は、
オフ角度θが9度以上17度以下で最高発振温度が60
℃以上となり、特にオフ角度θが11度以上17度以下
で60℃より大と良好になり、更に略13度がよいこと
が判る。尚、共振器長が150μm以上300μm以下
であれば前記オフ角度θと最高発振温度Tmaxには同様
の傾向がある。
From FIG. 4, the semiconductor laser device is
The maximum oscillation temperature is 60 when the off angle θ is 9 degrees or more and 17 degrees or less.
° C or more, and particularly when the off-angle θ is 11 ° or more and 17 ° or less, which is better than 60 ° C, it is understood that about 13 ° is more preferable. When the resonator length is 150 μm or more and 300 μm or less, the off angle θ and the maximum oscillation temperature Tmax have the same tendency.

【0035】図5は、前記図3と同じ測定を行って得た
最高発振温度Tmax(℃)、発振しきい値電流Ith(m
A)、及び共振器長L(μm)の関係を示す。図中、白
抜きの丸は最高発振温度、黒塗りの丸はしきい値電流を
示す。尚、オフ角度は一例として13度を示す。
FIG. 5 shows the maximum oscillation temperature T max (° C.) and the oscillation threshold current I th (m) obtained by performing the same measurement as in FIG.
A) and the relationship between the resonator length L (μm) are shown. In the figure, white circles indicate the maximum oscillation temperature, and black circles indicate the threshold current. The off angle is 13 degrees as an example.

【0036】この図5から、斯る半導体レーザ素子でも
従来素子と同様に共振器長が短くなるに従ってしきい値
電流が漸次的に小さくなることが判る。特に、共振器長
が300μm以下でしきい値電流が50mAより小にな
り、共振器長が200μm以下でしきい値電流が40m
A程度以下となることが判る。そして、50℃、光出力
5mW(連続発振)の条件で2000時間以上の信頼性
を確認した。
It can be seen from FIG. 5 that the threshold current of such a semiconductor laser device gradually decreases as the cavity length becomes shorter, similarly to the conventional device. In particular, when the resonator length is 300 μm or less, the threshold current becomes smaller than 50 mA, and when the resonator length is 200 μm or less, the threshold current becomes 40 m.
It turns out that it is about A or less. Then, reliability of 2000 hours or more was confirmed under the conditions of 50 ° C. and an optical output of 5 mW (continuous oscillation).

【0037】尚、図示はしないが、共振器長が150μ
m以上300μm以下、且つオフ角度θが9度以上17
度以下であれば、しきい値電流が50mA程度以下とな
り、長時間の信頼性が得られる。
Although not shown, the resonator length is 150 μm.
m to 300 μm, and the off angle θ is 9 degrees to 17
If it is lower than the threshold, the threshold current is lower than about 50 mA, and long-term reliability can be obtained.

【0038】これら図3〜図5から、斯る半導体レーザ
素子は、共振器長が150μm以上300μm以下、望
ましくは200μm以上300μm以下がよく、且つオ
フ角度θが9度以上17度以下、好ましくは11度以上
17度以下がよく、更に好ましいのは略13度であるこ
とが判る。
3 to 5 that the semiconductor laser device has a cavity length of 150 to 300 μm, preferably 200 to 300 μm, and an off angle θ of 9 to 17 degrees, preferably It is understood that the angle is preferably 11 degrees or more and 17 degrees or less, and more preferably about 13 degrees.

【0039】本発明の第2実施例に係る発振波長が67
0nm帯の圧縮歪型AlGaInP系半導体レーザ素子
を図を用いて説明する。尚、図6はこの半導体レーザ素
子の模式断面構造図、図7はこの半導体レーザ素子の活
性層近傍の模式バンド構造図である。
The oscillation wavelength according to the second embodiment of the present invention is 67
A 0 nm band compression-strain type AlGaInP-based semiconductor laser device will be described with reference to the drawings. FIG. 6 is a schematic cross-sectional structure diagram of the semiconductor laser device, and FIG. 7 is a schematic band structure diagram near the active layer of the semiconductor laser device.

【0040】本実施例が第1実施例と異なる点は、活性
層及びその近傍とクラッド層中にMQB層がない点で異
なり、第1実施例と同一部分又は対応する部分には同一
符号を付して説明は簡略化する。
This embodiment is different from the first embodiment in that there is no MQB layer in the active layer and its vicinity and in the cladding layer, and the same parts as those in the first embodiment or corresponding parts are denoted by the same reference numerals. The description will be simplified.

【0041】n型クラッド層3上には、層厚200Åの
アンドープの(AlyaGa1-ya0. 5In0.5P(ya≧
r:本実施例ではya=0.5)光ガイド層4、層厚8
0Åの圧縮歪みを有する(AlpGa1-pqIn1-q
(q<0.51:本実施例ではp=0、q=0.44)
圧縮歪量子井戸層5a、5a、5a、5a(典型的には
全10層以下、本実施例では全4層)と層厚40Åの
(AlrGa1-r0.5In0 .5P(xa,xb,xc>r
>p:本実施例ではr=0.5)量子障壁層5b、5
b、5b(典型的には全9層以下、本実施例では全3
層)とが交互に積層されてなる圧縮歪多重量子井戸構造
(圧縮歪MQW構造)からなるアンドープの活性層5、
及び層厚200Åのアンドープの(AlybGa1-yb
0.5In0.5P(yb≧r:本実施例ではyb=0.5)
光ガイド層6がこの順序で形成されている。尚、本実施
例の圧縮歪量子井戸層5a、5a、・・の歪量Δa/a
0は+0.5%であり、量子障壁層5b、5b、5bは
略無歪みである。
[0041] On the n-type cladding layer 3, the layer thickness 200Å undoped (Al ya Ga 1-ya) 0. 5 In 0.5 P (ya ≧
r: ya = 0.5 in this embodiment) light guide layer 4, layer thickness 8
(Al p Ga 1-p ) q In 1-q P having 0 ° compression strain
(Q <0.51: p = 0 and q = 0.44 in this embodiment)
Compressive strain quantum well layer 5a, 5a, 5a, 5a (typically all 10 layers or less, in this embodiment all four layers) with a layer thickness 40Å (Al r Ga 1-r ) 0.5 In 0 .5 P ( xa, xb, xc> r
> P: r = 0.5 in this embodiment) quantum barrier layers 5b, 5
b, 5b (typically all 9 layers or less, in this example all 3 layers)
Undoped active layer 5 having a compression-strained multiple quantum well structure (compression-strained MQW structure) in which
And undoped (Al yb Ga 1-yb ) with a layer thickness of 200 °
0.5 In 0.5 P (yb ≧ r: yb = 0.5 in this embodiment)
The light guide layer 6 is formed in this order. Note that the strain amount Δa / a of the compression-strained quantum well layers 5a, 5a,.
0 is + 0.5%, and the quantum barrier layers 5b, 5b, 5b are substantially strain-free.

【0042】図7から判るように、この半導体レーザ素
子は、活性層5がその量子障壁層5b、5b、・・・と
バンドギャップが等しい光ガイド層4、6に挟まれ、そ
の外側を光ガイド層4、6よりバンドギャップの大きい
クラッド層3、9に挟まれた構成である。
As can be seen from FIG. 7, in this semiconductor laser device, the active layer 5 is sandwiched between the light guide layers 4, 6 having the same band gap as the quantum barrier layers 5b, 5b,. The structure is sandwiched between cladding layers 3 and 9 having a larger band gap than guide layers 4 and 6.

【0043】図8は、斯る半導体レーザ素子の前記主面
が、(100)面から[011]方向に9度、13度、
及び17度傾斜した面である場合と、比較例として同方
向に5度傾斜した面である場合と、における最高発振温
度Tmax(℃)と共振器長L(μm)の関係を示す。図
中、オフ角度θ=5度は白抜きの三角、オフ角度θ=9
度は白抜きの四角、オフ角度θ=13度は白抜きの丸、
オフ角度θ=17度は黒塗りの丸で表す。尚、この測定
は、通常のステムの良放熱体(銅ブロック)上にハンダ
等で接着載置(固着)されたSiヒートシンク(厚みは
50〜500μm)上に、ジャンクションダウンで素子
を錫等を介して圧着載置(固着)した状態において連続
発振状態で行った。また、測定した素子は、その光出射
前端面、光出射後端面にそれぞれ30%、30%の反射
率を有する反射膜をコートした。
FIG. 8 shows that the principal surface of the semiconductor laser device is 9 degrees, 13 degrees in the [011] direction from the (100) plane.
The relationship between the maximum oscillation temperature T max (° C.) and the cavity length L (μm) is shown for a case where the surface is inclined at 17 degrees and a case where the surface is inclined at 5 degrees in the same direction as a comparative example. In the figure, the off angle θ = 5 degrees is a white triangle, and the off angle θ = 9.
The degree is a white square, the off angle θ = 13 degrees is a white circle,
The off angle θ = 17 degrees is represented by a black circle. In this measurement, the element was tin-bonded with a junction down on a Si heat sink (thickness: 50 to 500 μm) which was adhesively mounted (fixed) on a good radiator (copper block) of a normal stem with solder or the like. The operation was performed in a continuous oscillation state in a state of being mounted (fixed) by pressure bonding through the substrate. The measured element was coated with a reflective film having a reflectance of 30% and 30%, respectively, on the end face before light emission and the end face after light emission.

【0044】この図8から、斯る半導体レーザ素子は、
オフ角度θが9度以上17度以下の場合に、共振器長が
短くなるにしたがって最高発振温度が漸次的に低下する
従来の現象とは異なって、共振器長が250μm近傍で
ピークをもつと共に、150μm以上300μm以下で
最高発振温度が70℃より大、200μm以上300μ
m以下で最高発振温度が80℃より大になることが判
る。
As shown in FIG. 8, the semiconductor laser device is
When the off angle θ is 9 degrees or more and 17 degrees or less, unlike the conventional phenomenon in which the maximum oscillation temperature gradually decreases as the length of the resonator decreases, the peak has a peak near the resonator length of 250 μm, , The maximum oscillation temperature is greater than 70 ° C. at 150 μm or more and 300 μm or less, and 200 μm or more and 300 μm
It can be seen that the maximum oscillation temperature is higher than 80 ° C. when the temperature is less than m.

【0045】図9は、図8と同じ測定を行って得た最高
発振温度Tmax(℃)と半導体基板のオフ角度θ(度)
の関係を示す。尚、共振器長Lは一例として200μm
である。
FIG. 9 shows the maximum oscillation temperature T max (° C.) obtained by performing the same measurement as in FIG. 8 and the off angle θ (degree) of the semiconductor substrate.
Shows the relationship. Note that the resonator length L is 200 μm as an example.
It is.

【0046】この図9から、斯る半導体レーザ素子は、
オフ角度θが9度以上17度以下で最高発振温度が80
℃より大となり、特にオフ角度θが11度以上17度以
下で100℃以上と良好になり、更に略13度がよいこ
とが判る。尚、共振器が150μm以上300μm以下
であれば前記オフ角度θと最高発振温度Tmaxには同様
の傾向がある。
From FIG. 9, the semiconductor laser device is
The maximum oscillation temperature is 80 when the off angle θ is 9 degrees or more and 17 degrees or less.
It can be seen that the temperature is higher than 100 ° C., particularly 100 ° C. or higher when the off angle θ is 11 ° or more and 17 ° or less, and that the angle is more preferably about 13 °. If the resonator is 150 μm or more and 300 μm or less, the off angle θ and the maximum oscillation temperature Tmax have the same tendency.

【0047】図10は、前記図8と同じ測定を行って得
た最高発振温度Tmax(℃)、発振しきい値電流I
th(mA)、及び共振器長L(μm)の関係を示す。図
中、白抜きの丸は最高発振温度、黒塗りの丸はしきい値
電流を示す。尚、オフ角度は一例として13度を示す。
FIG. 10 shows the maximum oscillation temperature T max (° C.) and the oscillation threshold current I obtained by performing the same measurements as in FIG.
The relationship between th (mA) and the cavity length L (μm) is shown. In the figure, white circles indicate the maximum oscillation temperature, and black circles indicate the threshold current. The off angle is 13 degrees as an example.

【0048】この図10から、斯る半導体レーザ素子で
も従来素子と同様に共振器長が短くなるに従ってしきい
値電流が漸次的に小さくなることが判る。特に、共振器
長が300μm以下でしきい値電流が30mA以下にな
り、共振器長が200μm以下でしきい値電流が25m
A程度以下となることが判る。そして、50℃、光出力
5mW(連続発振)の条件で2000時間以上の信頼性
を確認した。
It can be seen from FIG. 10 that the threshold current of such a semiconductor laser device gradually decreases as the cavity length becomes shorter, similarly to the conventional device. In particular, when the resonator length is 300 μm or less, the threshold current becomes 30 mA or less, and when the resonator length is 200 μm or less, the threshold current becomes 25 m
It turns out that it is about A or less. Then, reliability of 2000 hours or more was confirmed under the conditions of 50 ° C. and an optical output of 5 mW (continuous oscillation).

【0049】尚、図示はしないが、共振器長が150μ
m以上300μm以下、且つオフ角度θが9度以上17
度以下であれば、しきい値電流が30mA程度以下とな
り、長時間の信頼性が得られる。
Although not shown, the resonator length is 150 μm.
m to 300 μm, and the off angle θ is 9 degrees to 17
If the temperature is not more than the threshold, the threshold current is not more than about 30 mA, and long-term reliability can be obtained.

【0050】これら図8〜図10から、斯る半導体レー
ザ素子は、共振器長が150μm以上300μm以下、
望ましくは200μm以上300μm以下がよく、且つ
オフ角度θが9度以上17度以下、好ましくは11度以
上17度以下がよく、更に好ましいのは略13度である
ことが判る。
8 to 10 that the semiconductor laser device has a cavity length of 150 μm or more and 300 μm or less,
It is found that the thickness is desirably 200 μm or more and 300 μm or less, and the off angle θ is 9 degrees or more and 17 degrees or less, preferably 11 degrees or more and 17 degrees or less, and more preferably about 13 degrees.

【0051】上記第1、第2実施例では、活性層の量子
井戸層の歪み量を+0.5%としたが、この歪み量と異
なった値の圧縮歪を有する量子井戸層でも効果が得ら
れ、量子井戸層は上記に限らず10層以下1層以上の間
で適宜選択される。
In the first and second embodiments, the amount of strain of the quantum well layer of the active layer is set to + 0.5%. However, an effect can be obtained even with a quantum well layer having a different compressive strain from the amount of strain. The quantum well layer is not limited to the above, and is appropriately selected from 10 layers or less and 1 or more layers.

【0052】本発明の第3実施例に係る発振波長が63
0nm帯の歪補償型AlGaInP系半導体レーザ素子
を図を用いて説明する。尚、図11はこの半導体レーザ
素子の活性層近傍の模式バンド構造図である。本実施例
が第1実施例と異なる点は、活性層のみであるので、第
1実施例と同一部分又は対応する部分には同一符号を付
して説明は簡略化する。
The oscillation wavelength according to the third embodiment of the present invention is 63
A 0 nm band strain-compensating AlGaInP-based semiconductor laser device will be described with reference to the drawings. FIG. 11 is a schematic band structure diagram near the active layer of the semiconductor laser device. The present embodiment is different from the first embodiment only in the active layer. Therefore, the same portions as those in the first embodiment or corresponding portions are denoted by the same reference numerals and the description is simplified.

【0053】n型クラッド層3上には、層厚200〜5
00Åのアンドープの(AlyaGa 1-ya0.5In0.5
(ya≧r:本実施例ではya=0.5)光ガイド層
4、層厚100Åの引張り歪みを有する(Alp
1-pqIn1-qP(q>0.51:本実施例ではp=
0、q=0.65)引張歪み量子井戸層5a、5a、5
a(典型的には全10層以下、本実施例では全3層)と
圧縮歪みを有する層厚40Åの(AlrGa1-rsIn
1-sP(s<0.51、本実施例ではs=0.44、r
=0.5)圧縮歪み量子障壁層5b、5b(典型的には
全9層以下、本実施例では全2層)とが交互に積層され
てなる歪補償型多重量子井戸構造(歪み補償型MQW構
造)からなるアンドープの活性層5、及び層厚200〜
500Åのアンドープの(AlybGa1-yb0.5In0.5
P(yb≧r:本実施例ではyb=0.5)光ガイド層
6がこの順序で形成されている。尚、本実施例の引張り
歪量子井戸層5a、5a、5aの歪量Δa/a0は−1
%であり、圧縮歪み量子障壁層5b、5bの歪量Δa/
0は+0.5%である。
On the n-type cladding layer 3, a layer thickness of 200 to 5
Undoped (AlyaGa 1-ya)0.5In0.5P
(Ya ≧ r: ya = 0.5 in this embodiment) Light guide layer
4. It has a tensile strain of 100 ° in thickness (AlpG
a1-p)qIn1-qP (q> 0.51: p =
0, q = 0.65) Tensile strain quantum well layers 5a, 5a, 5
a (typically all 10 layers or less, in this example all 3 layers)
(Al) with a layer thickness of 40 ° having compressive strainrGa1-r)sIn
1-sP (s <0.51, s = 0.44 in this embodiment, r
= 0.5) Compressive strain quantum barrier layers 5b, 5b (typically
9 layers or less, and in this embodiment, all 2 layers) are alternately laminated.
Strain-compensated multiple quantum well structure (strain-compensated MQW structure)
Undoped active layer 5 consisting of
500 ° undoped (AlybGa1-yb)0.5In0.5
P (yb ≧ r: yb = 0.5 in this embodiment) Light guide layer
6 are formed in this order. In addition, the tension of this embodiment
Strain amount Δa / a of strained quantum well layers 5a, 5a, 5a0Is -1
%, And the strain amount Δa / of the compressively-strained quantum barrier layers 5b and 5b.
a0Is + 0.5%.

【0054】図12は、斯る半導体レーザ素子の前記主
面が、(100)面から[011]方向に9度、13
度、及び17度傾斜した面である場合と、比較例として
同方向に5度傾斜した面である場合と、における最高発
振温度Tmax(℃)と共振器長L(μm)の関係を示
す。図中、オフ角度θ=5度は白抜きの三角、オフ角度
θ=9度は白抜きの四角、オフ角度θ=13度は白抜き
の丸、オフ角度θ=17度は黒塗りの丸で示す。尚、こ
の測定は、通常のステムの良放熱体(銅ブロック)上に
ハンダ等で接着載置(固着)されたSiヒートシンク
(厚みは50〜500μm)上に、ジャンクションダウ
ンで素子を錫等を介して圧着載置(固着)した状態にお
いて連続発振状態で行った。また、測定した素子は、そ
の光出射前端面、光出射後端面にそれぞれ30%、50
%の反射率を有する反射膜をコートした。
FIG. 12 shows that the principal surface of the semiconductor laser device is 9 degrees from the (100) plane in the [011] direction, and is 13 degrees.
The relationship between the maximum oscillation temperature T max (° C.) and the cavity length L (μm) is shown for a case where the surface is inclined at 17 degrees and 17 degrees and a case where the surface is inclined at 5 degrees in the same direction as a comparative example. . In the figure, the off angle θ = 5 degrees is a white triangle, the off angle θ = 9 degrees is a white square, the off angle θ = 13 degrees is a white circle, and the off angle θ = 17 degrees is a black circle. Indicated by In this measurement, the element was tin-bonded with a junction down on a Si heat sink (thickness: 50 to 500 μm) which was adhesively mounted (fixed) on a good radiator (copper block) of a normal stem with solder or the like. The operation was performed in a continuous oscillation state in a state of being mounted (fixed) by pressure bonding through the substrate. In addition, the measured elements have 30% and 50%, respectively, on the end face before light emission and the end face after light emission.
% Was applied.

【0055】この図12から、斯る半導体レーザ素子
は、オフ角度θが9度以上17度以下の場合に、共振器
長が短くなるにしたがって最高発振温度が漸次的に低下
する従来の現象とは異なって、共振器長が250μm近
傍でピークをもつと共に、150μm以上300μm以
下で最高発振温度が60℃程度以上、200μm以上3
00μm以下で最高発振温度が70℃程度以上になるこ
とが判る。
FIG. 12 shows that the semiconductor laser device has a conventional phenomenon that the maximum oscillation temperature gradually decreases as the resonator length becomes shorter when the off angle θ is 9 degrees or more and 17 degrees or less. Are different from each other in that the peak has a peak in the vicinity of 250 μm, the maximum oscillation temperature is in the range of about 60 ° C. or more, and
It can be seen that the maximum oscillation temperature becomes about 70 ° C. or more when the thickness is less than 00 μm.

【0056】図13は、図12と同じ測定を行って得た
最高発振温度Tmax(℃)と半導体基板のオフ角度θ
(度)の関係を示す。尚、共振器長Lは一例として20
0μmである。
FIG. 13 shows the maximum oscillation temperature T max (° C.) obtained by performing the same measurement as in FIG. 12 and the off angle θ of the semiconductor substrate.
(Degree). The resonator length L is 20 as an example.
0 μm.

【0057】この図13から、斯る半導体レーザ素子
は、オフ角度θが9度以上17度以下で最高発振温度が
60℃より大となり、特にオフ角度θが11度以上17
度以下で70℃より大と良好になり、更に略13度がよ
いことが判る。尚、共振器が150μm以上300μm
以下であれば前記オフ角度θと最高発振温度Tmaxには
同様の傾向がある。
As shown in FIG. 13, the semiconductor laser device has a maximum oscillation temperature of more than 60 ° C. when the off angle θ is 9 degrees or more and 17 degrees or less, and particularly, the off angle θ is 11 degrees or more and 17 degrees or less.
It can be seen that the temperature is better than 70 ° C. below the temperature, and that approximately 13 ° is better. Note that the resonator is 150 μm or more and 300 μm.
If it is below, the off angle θ and the maximum oscillation temperature Tmax have the same tendency.

【0058】図14は、前記図12と同じ測定を行って
得た最高発振温度Tmax(℃)、発振しきい値電流(m
A)、及び共振器長L(μm)の関係を示す。図中、白
抜きの丸は最高発振温度、黒塗りの丸はしきい値電流を
示す。尚、オフ角度は一例として13度を示す。
FIG. 14 shows the maximum oscillation temperature T max (° C.) and the oscillation threshold current (m) obtained by performing the same measurement as in FIG.
A) and the relationship between the resonator length L (μm) are shown. In the figure, white circles indicate the maximum oscillation temperature, and black circles indicate the threshold current. The off angle is 13 degrees as an example.

【0059】この図14から、斯る半導体レーザ素子で
も従来素子と同様に共振器長が短くなるに従ってしきい
値電流が漸次的に小さくなることが判る。特に、共振器
長が300μm以下でしきい値電流が30mA以下にな
り、共振器長が200μm以下でしきい値電流が25m
A程度以下となることが判る。そして、50℃、光出力
5mW(連続発振)の条件で2000時間以上の信頼性
を確認した。
It can be seen from FIG. 14 that the threshold current of such a semiconductor laser device gradually decreases as the cavity length becomes shorter, similarly to the conventional device. In particular, when the resonator length is 300 μm or less, the threshold current becomes 30 mA or less, and when the resonator length is 200 μm or less, the threshold current becomes 25 m
It turns out that it is about A or less. Then, reliability of 2000 hours or more was confirmed under the conditions of 50 ° C. and an optical output of 5 mW (continuous oscillation).

【0060】尚、図示はしないが、共振器長が150μ
m以上300μm以下、且つオフ角度θが9度以上17
度以下であれば、しきい値電流が30mA程度以下とな
り、長時間の信頼性が得られる。
Although not shown, the resonator length is 150 μm.
m to 300 μm, and the off angle θ is 9 degrees to 17
If the temperature is not more than the threshold, the threshold current is not more than about 30 mA, and long-term reliability can be obtained.

【0061】これら図12〜図14から、斯る半導体レ
ーザ素子は、共振器長が150μm以上300μm以
下、望ましくは200μm以上300μm以下がよく、
且つオフ角度θが9度以上17度以下、好ましくは11
度以上17度以下がよく、更に好ましいのは略13度で
あることが判る。
From FIG. 12 to FIG. 14, the semiconductor laser device has a cavity length of 150 μm or more and 300 μm or less, preferably 200 μm or more and 300 μm or less.
And the off angle θ is 9 degrees or more and 17 degrees or less, and preferably 11 degrees or less.
It is understood that the temperature is preferably from 17 degrees to 17 degrees, and more preferably about 13 degrees.

【0062】上述では、活性層の量子井戸層、量子障壁
層の歪み量を夫々−1%、0.5%としたが、この歪み
量と異なった値でも効果が得られ、各歪み量は適宜選択
される。また量子井戸層、量子障壁層の各層数も適宜選
択される。また、量子井戸層と量子障壁層歪みが上述と
逆の関係にある場合にも効果がある。
In the above description, the strain amounts of the quantum well layer and the quantum barrier layer of the active layer are set to -1% and 0.5%, respectively. However, an effect can be obtained even if the strain amounts are different from each other. It is appropriately selected. Also, the number of each of the quantum well layer and the quantum barrier layer is appropriately selected. The effect is also obtained when the strain of the quantum well layer and the strain of the quantum barrier layer are opposite to those described above.

【0063】更に、上記実施例では、GaAs半導体基
板1の一主面が(100)面から[011]方向に傾斜
した面であったが、これらと等価な関係にあることが望
ましい。即ち、GaAs半導体基板の一主面(結晶成長
面)は、(100)面から[0−1−1]方向に傾斜し
た面、(010)面から[101]又は[−10−1]
方向に傾斜した面、(001)面から[110]又は
[−1−10]方向に傾斜した面でもよく、即ち{10
0}面から<011>方向に傾斜した面であればよい。
Furthermore, in the above-described embodiment, one main surface of the GaAs semiconductor substrate 1 is a surface inclined in the [011] direction from the (100) plane, but it is preferable that these surfaces have an equivalent relationship. That is, one main surface (crystal growth surface) of the GaAs semiconductor substrate is a surface inclined in the [0-1-1] direction from the (100) surface, and is [101] or [−10-1] from the (010) surface.
The plane may be a plane inclined in the direction, or a plane inclined in the [110] or [-1-10] direction from the (001) plane, that is, {10}
Any surface may be used as long as it is inclined from the 0 ° plane in the <011> direction.

【0064】また、本発明の素子は、量子井戸構造から
なる活性層上に形成された第2導電型のクラッド層が上
述のようにストライプ状リッジ部を有し、該第2導電型
のクラッド層上にリッジ部の両側を覆うように第1導電
型の電流阻止層が設けられたリッジ型が好ましく、スト
ライプ状リッジ部は<01−1>方向に延在するのが好
ましい。尚、第2導電型のクラッド層中には、上述のよ
うにMQB層やエッチング停止層を適宜設けてもよく、
又可飽和光吸収層などを備えてもよい。
Further, according to the device of the present invention, the second conductivity type clad layer formed on the active layer having the quantum well structure has the stripe-shaped ridge portion as described above. A ridge type in which a current blocking layer of the first conductivity type is provided on the layer so as to cover both sides of the ridge portion is preferable, and the stripe-shaped ridge portion preferably extends in the <01-1> direction. Incidentally, the MQB layer and the etching stop layer may be appropriately provided in the second conductivity type cladding layer as described above,
Further, a saturable light absorbing layer may be provided.

【0065】尚、上述で(AlzGa1-z0.5In0.5
(z≧0)は、GaAs半導体基板と略格子整合するも
のを示し、好ましくは(AlzGa1-z0.51In0.49
である。
In the above, (Al z Ga 1 -z ) 0.5 In 0.5 P
(Z ≧ 0) indicates a material substantially lattice-matched with the GaAs semiconductor substrate, and is preferably (Al z Ga 1 -z ) 0.51 In 0.49 P
It is.

【0066】[0066]

【発明の効果】本発明の構成では、活性層の量子井戸層
が圧縮歪みを有し、加えてGaAs半導体基板の一主面
が{100}面から<011>方向に9度以上17度以
下に傾斜した面であり、且つ共振器長が150μm以上
300μm以下であるので、最高発振温度を高く且つ発
振しきい値電流を小さくできる。従って、消費電力を小
さく且つ信頼性を高くできる。
According to the structure of the present invention, the quantum well layer of the active layer has a compressive strain, and one main surface of the GaAs semiconductor substrate is at least 9 degrees and at most 17 degrees in the <011> direction from the {100} plane. And the resonator length is 150 μm or more and 300 μm or less, so that the maximum oscillation temperature can be increased and the oscillation threshold current can be decreased. Therefore, power consumption can be reduced and reliability can be increased.

【0067】本発明の別の構成では、活性層の量子井戸
層と量子障壁層とが互いに逆の歪みを有し、加えてGa
As半導体基板の一主面が{100}面から<011>
方向に9度以上17度以下に傾斜した面であり、且つ共
振器長が150μm以上300μm以下であるので、最
高発振温度をより高く且つ発振しきい値電流をより小さ
くできる。従って、消費電力をより小さく且つ信頼性を
より高くできる。
In another configuration of the present invention, the quantum well layer and the quantum barrier layer of the active layer have opposite strains to each other, and
One main surface of the As semiconductor substrate is changed from the {100} plane to <011>
Since the surface is inclined from 9 degrees to 17 degrees in the direction and the cavity length is from 150 μm to 300 μm, the maximum oscillation temperature can be higher and the oscillation threshold current can be smaller. Therefore, power consumption can be reduced and reliability can be increased.

【0068】特に、前記半導体基板の前記一主面が、
{100}面から<011>方向に11度以上17度以
下に傾斜した面である場合、更に最高発振温度を高く且
つ発振しきい値電流を小さくでき、この結果、更に消費
電力をより小さく且つ信頼性をより高くできる。
In particular, the one main surface of the semiconductor substrate is
In the case of a plane inclined from 11 degrees to 17 degrees from the {100} plane in the <011> direction, the maximum oscillation temperature can be further increased and the oscillation threshold current can be further reduced. As a result, power consumption can be further reduced and Higher reliability.

【0069】更に、前記半導体基板の前記一主面が、
{100}面から<011>方向に略13度に傾斜した
面である場合、最高発振温度を著しく高く且つ発振しき
い値電流を著しく小さくでき、この結果、消費電力を著
しく小さく且つ信頼性を著しく高くできる。
Further, the one main surface of the semiconductor substrate is
When the plane is inclined at approximately 13 degrees in the <011> direction from the {100} plane, the maximum oscillation temperature can be significantly increased and the oscillation threshold current can be significantly reduced, and as a result, the power consumption can be significantly reduced and the reliability can be reduced. Can be significantly higher.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る半導体レーザ素子の
模式断面構造図である。
FIG. 1 is a schematic sectional structural view of a semiconductor laser device according to a first embodiment of the present invention.

【図2】上記実施例の半導体レーザ素子の活性層近傍の
模式バンド構造図である。
FIG. 2 is a schematic band structure diagram near an active layer of the semiconductor laser device of the embodiment.

【図3】上記実施例と比較例の半導体レーザ素子の最高
発振温度、共振器長、及びGaAs半導体基板のオフ角
度の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the maximum oscillation temperature, the cavity length, and the off angle of the GaAs semiconductor substrate of the semiconductor laser devices of the above-described example and the comparative example.

【図4】上記実施例の半導体レーザ素子の最高発振温度
とGaAs半導体基板のオフ角度の関係を示す図であ
る。
FIG. 4 is a diagram showing the relationship between the maximum oscillation temperature of the semiconductor laser device of the embodiment and the off angle of the GaAs semiconductor substrate.

【図5】上記実施例の半導体レーザ素子の発振しきい値
電流及び最高発振温度と共振器長の関係を示す図であ
る。
FIG. 5 is a diagram showing the relationship between the oscillation threshold current, the maximum oscillation temperature, and the resonator length of the semiconductor laser device of the above embodiment.

【図6】本発明の第2実施例に係る半導体レーザ素子の
模式断面構造図である。
FIG. 6 is a schematic sectional structural view of a semiconductor laser device according to a second embodiment of the present invention.

【図7】上記実施例の半導体レーザ素子の活性層近傍の
模式バンド構造図である。
FIG. 7 is a schematic band structure diagram near an active layer of the semiconductor laser device of the above embodiment.

【図8】上記実施例と比較例の半導体レーザ素子の最高
発振温度、共振器長、及びGaAs半導体基板のオフ角
度との関係を示す図である。
FIG. 8 is a diagram showing a relationship among the maximum oscillation temperature, the cavity length, and the off angle of the GaAs semiconductor substrate of the semiconductor laser devices of the above-described example and the comparative example.

【図9】上記実施例の半導体レーザ素子の最高発振温度
とGaAs半導体基板のオフ角度を示す図である。
FIG. 9 is a diagram showing the maximum oscillation temperature of the semiconductor laser device of the embodiment and the off angle of the GaAs semiconductor substrate.

【図10】上記実施例の半導体レーザ素子の発振しきい
値電流及び最高発振温度と共振器長の関係を示す図であ
る。
FIG. 10 is a diagram showing the relationship between the oscillation threshold current, the maximum oscillation temperature, and the resonator length of the semiconductor laser device of the above embodiment.

【図11】本発明の第3実施例に係る半導体レーザ素子
の活性層近傍の模式バンド構造図である。
FIG. 11 is a schematic band structure diagram near an active layer of a semiconductor laser device according to a third embodiment of the present invention.

【図12】上記実施例と比較例の半導体レーザ素子の最
高発振温度、共振器長、及びGaAs半導体基板のオフ
角度の関係を示す図である。
FIG. 12 is a diagram showing the relationship between the maximum oscillation temperature, the resonator length, and the off angle of the GaAs semiconductor substrate of the semiconductor laser devices of the above example and the comparative example.

【図13】上記実施例の半導体レーザ素子の最高発振温
度とGaAs半導体基板のオフ角度の関係を示す図であ
る。
FIG. 13 is a diagram showing the relationship between the maximum oscillation temperature of the semiconductor laser device of the embodiment and the off angle of the GaAs semiconductor substrate.

【図14】上記実施例の半導体レーザ素子の発振しきい
値電流及び最高発振温度と共振器長の関係を示す図であ
る。
FIG. 14 is a diagram showing the relationship between the oscillation threshold current, the maximum oscillation temperature, and the resonator length of the semiconductor laser device of the above embodiment.

【符号の説明】[Explanation of symbols]

1 n型GaAs半導体基板 3 n型(AlxaGa1-xa0.5In0.5Pクラッド層 5a 量子井戸層 5b 量子障壁層 5 活性層 9 p型(AlxbGa1-xb0.5In0.5Pクラッド層 Reference Signs List 1 n-type GaAs semiconductor substrate 3 n-type (Al xa Ga 1-xa ) 0.5 In 0.5 P clad layer 5 a quantum well layer 5 b quantum barrier layer 5 active layer 9 p-type (Al xb Ga 1-xb ) 0.5 In 0.5 P clad layer

フロントページの続き (72)発明者 別所 靖之 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 ▲広▼山 良治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 賀勢 裕之 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平6−77592(JP,A) 特開 昭63−288082(JP,A) 特開 昭60−91692(JP,A) 特開 平1−166588(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 Continuation of the front page (72) Inventor Yasuyuki Bessho 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Inside Sanyo Electric Co., Ltd. (72) Inventor ▲ Hiro ▼ Ryoharu Yama 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Hiroyuki Kase 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-6-77592 (JP, A) JP-A-63-288808 (JP, A) JP-A-60-91692 (JP, A) JP-A-1-166588 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01S5 / 00-5/50

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1導電型のGaAs半導体基板と、該
基板の一主面上に形成された第1導電型のクラッド層
と、該第1導電型のクラッド層上に形成され量子井戸層
と量子障壁層とが交互に積層されてなる量子井戸構造を
有する活性層と、該活性層上に形成された前記第1導電
型とは逆導電型である第2導電型のクラッド層と、を備
たAlGaInP系の半導体レーザ素子において、前
記量子井戸層が圧縮歪みを有し、且つ前記基板の前記一
主面が{100}面から<011>方向に9度以上17
度以下に傾斜した面であり、且つ共振器長が150μm
以上300μm以下であることを特徴とする半導体レー
ザ素子。
A first conductivity type GaAs semiconductor substrate; a first conductivity type cladding layer formed on one main surface of the substrate; and a quantum well layer formed on the first conductivity type cladding layer. And an active layer having a quantum well structure in which quantum barrier layers are alternately stacked, a second conductivity type clad layer formed on the active layer and having a conductivity type opposite to the first conductivity type, In the AlGaInP-based semiconductor laser device provided with , the quantum well layer has a compressive strain, and the one main surface of the substrate is at least 9 degrees in the <011> direction from the {100} plane.
The surface is inclined to less than 10 degrees, and the cavity length is 150 μm
A semiconductor laser device having a thickness of at least 300 μm.
【請求項2】 第1導電型のGaAs半導体基板と、該
基板の一主面上に形成された第1導電型のクラッド層
と、該第1導電型のクラッド層上に形成され互いに逆の
歪みを有する量子井戸層と量子障壁層とが交互に積層さ
れてなる量子井戸構造を有する活性層と、該活性層上に
形成された前記第1導電型とは逆導電型である第2導電
型のクラッド層と、を備えたAlGaInP系の半導体
レーザ素子において、前記基板の一主面が{100}面
から<011>方向に9度以上17度以下に傾斜した面
であり、且つ共振器長が150μm以上300μm以下
であることを特徴とする半導体レーザ素子。
2. A GaAs semiconductor substrate of a first conductivity type, a cladding layer of a first conductivity type formed on one main surface of the substrate, and a reverse cladding layer formed on the cladding layer of the first conductivity type. An active layer having a quantum well structure in which quantum well layers having strain and quantum barrier layers are alternately stacked, and a second conductive layer formed on the active layer and having a conductivity type opposite to the first conductivity type AlGaInP-based semiconductor having a mold-type cladding layer
In the laser device, one main surface of the substrate is a surface inclined from 9 ° to 17 ° in a <011> direction from a {100} plane, and a cavity length is from 150 μm to 300 μm. Semiconductor laser device.
【請求項3】 前記基板の前記一主面は、{100}面
から<011>方向に11度以上17度以下に傾斜した
面であることを特徴とする請求項1又は2記載の半導体
レーザ素子。
3. The semiconductor laser according to claim 1, wherein the one main surface of the substrate is a surface inclined from 11 degrees to 17 degrees in a <011> direction from a {100} plane. element.
【請求項4】 前記基板の前記一主面は、{100}面
から<011>方向に略13度に傾斜した面であること
を特徴とする請求項3記載の半導体レーザ素子。
4. The semiconductor laser device according to claim 3, wherein the one main surface of the substrate is a surface inclined at about 13 degrees in a <011> direction from a {100} plane.
【請求項5】 前記第1導電型のクラッド層が(Alx1
Ga1-x10.5In0.5Pからなり、前記第2導電型のク
ラッド層が(Alx2Ga1-x20.5In0.5Pからなり、
前記量子井戸層が(Alx3Ga1-x3y3In1-y3Pから
なり、前記量子障壁層が(Alx4Ga1-4y4In1-y4
Pからなると共に、前記組成比x1、x2、x3、及び
x4が1≧x1,x2>x4>x3≧0、及び1>y
3,y4>0の関係を満足することを特徴とする請求項
1、2、3又は4記載の半導体レーザ素子。
5. The method according to claim 1, wherein the first conductivity type cladding layer is (Al x 1
Ga 1-x1 ) 0.5 In 0.5 P, and the second conductivity type cladding layer is made of (Al x2 Ga 1-x2 ) 0.5 In 0.5 P;
The quantum well layer is made of (Al x3 Ga 1-x3) y3 In 1-y3 P, the quantum barrier layer (Al x4 Ga 1-4) y4 In 1-y4
P, and the composition ratios x1, x2, x3, and x4 are 1 ≧ x1, x2>x4> x3 ≧ 0, and 1> y
5. The semiconductor laser device according to claim 1, wherein a relationship of 3, y4> 0 is satisfied.
【請求項6】 前記共振器長が200μm以上300μ
m以下であることを特徴とする請求項1、2、3、4又
は5記載の半導体レーザ素子。
6. The resonator according to claim 1, wherein said resonator length is not less than 200 μm and not more than 300 μm.
m, or less than m.
Is a semiconductor laser device according to 5.
JP32002194A 1994-12-22 1994-12-22 Semiconductor laser device Expired - Fee Related JP3091655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32002194A JP3091655B2 (en) 1994-12-22 1994-12-22 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32002194A JP3091655B2 (en) 1994-12-22 1994-12-22 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH08181385A JPH08181385A (en) 1996-07-12
JP3091655B2 true JP3091655B2 (en) 2000-09-25

Family

ID=18116872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32002194A Expired - Fee Related JP3091655B2 (en) 1994-12-22 1994-12-22 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3091655B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199835B2 (en) * 1996-08-28 2008-12-24 株式会社リコー Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP4088318B2 (en) * 1996-08-27 2008-05-21 株式会社リコー Semiconductor light emitting device, method for manufacturing semiconductor light emitting device, and optical fiber communication system
JPH10335742A (en) * 1997-06-04 1998-12-18 Toshiba Corp Semiconductor laser system
JP2001094219A (en) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd Semiconductor light-emitting device
JP3982985B2 (en) 1999-10-28 2007-09-26 シャープ株式会社 Manufacturing method of semiconductor laser device
JP5300996B2 (en) * 2012-02-10 2013-09-25 ローム株式会社 Semiconductor laser element

Also Published As

Publication number Publication date
JPH08181385A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
JPH11307866A (en) Nitride compound semiconductor laser element
JP3428797B2 (en) Semiconductor laser device
JP5323802B2 (en) Semiconductor laser element
US5311534A (en) Semiconductor laser devices
JPH07235733A (en) Semiconductor laser element
JP3091655B2 (en) Semiconductor laser device
US5586136A (en) Semiconductor laser device with a misoriented substrate
JPS60145687A (en) Semiconductor laser
US7362786B2 (en) Semiconductor laser element having tensile-strained quantum-well active layer
JP3538515B2 (en) Semiconductor laser device
JP3025747B2 (en) Semiconductor laser device
JP3778840B2 (en) Semiconductor laser device and manufacturing method thereof
JP2860217B2 (en) Semiconductor laser device and method of manufacturing the same
JP6120903B2 (en) Semiconductor laser element
JP3219871B2 (en) Semiconductor laser device
JP3291447B2 (en) Semiconductor laser device
JP3291431B2 (en) Semiconductor laser device and method of manufacturing the same
JP3138095B2 (en) Semiconductor laser device
JP2003179306A (en) Semiconductor laser element and its manufacturing method
JP3667883B2 (en) Semiconductor laser element
JP3211330B2 (en) Semiconductor laser array device
JP3432842B2 (en) Semiconductor laser device
JP3138503B2 (en) Semiconductor laser device
JP3592730B2 (en) Semiconductor laser device
JPH07131114A (en) Semiconductor laser element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100721

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees