JP3089888B2 - Fine particle dispersed glass - Google Patents

Fine particle dispersed glass

Info

Publication number
JP3089888B2
JP3089888B2 JP05093739A JP9373993A JP3089888B2 JP 3089888 B2 JP3089888 B2 JP 3089888B2 JP 05093739 A JP05093739 A JP 05093739A JP 9373993 A JP9373993 A JP 9373993A JP 3089888 B2 JP3089888 B2 JP 3089888B2
Authority
JP
Japan
Prior art keywords
glass
cucl
cubr
mol
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05093739A
Other languages
Japanese (ja)
Other versions
JPH06279055A (en
Inventor
勝昭 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP05093739A priority Critical patent/JP3089888B2/en
Publication of JPH06279055A publication Critical patent/JPH06279055A/en
Application granted granted Critical
Publication of JP3089888B2 publication Critical patent/JP3089888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はCuClおよびCuBr
等の微粒子分散ガラスに関する。このCuClおよびC
uBr等の微粒子分散ガラスは非線形光電子材料、紫外
線吸収フィルターガラスとして用いられる。
This invention relates to CuCl and CuBr.
And the like. This CuCl and C
Particle-dispersed glass such as uBr is used as a nonlinear optoelectronic material or an ultraviolet absorbing filter glass.

【0002】[0002]

【従来の技術】CuClやCuBr等の微粒子をマトリ
ックスガラス中に分散させたガラスは、励起子の閉じ込
めにより励起子の並進運動が量子化されることにより比
較的大きな3次非線形特性を示すことが、例えば、ソリ
ッド ステート コミュン第56巻、第921頁(So
lid State Commun,56,P921
(1985))に報告されており、CuClやCuBr
等の微粒子分散ガラスが光スイッチや光コンピューター
用等の非線形光電子材料として注目を集めている。ま
た、CuClやCuBr等の微粒子を含有したガラスは
従来から紫外線吸収ガラスの一つとしてよく知られた材
料である。
2. Description of the Related Art Glass in which fine particles such as CuCl and CuBr are dispersed in a matrix glass exhibits relatively large third-order nonlinear characteristics due to quantization of translational motion of excitons due to confinement of excitons. For example, Solid State Commun, Vol. 56, pp. 921 (So
lid State Commun, 56, P921
(1985)), CuCl and CuBr
Fine particle-dispersed glass has attracted attention as a nonlinear optoelectronic material for optical switches and optical computers. Glass containing fine particles such as CuCl and CuBr is a material that has been well known as one of the ultraviolet absorbing glasses.

【0003】このようなCuClやCuBr等の微粒子
分散ガラスの製造においては、一般にガラス工学ハンド
ブック第760頁(朝倉書店、1963年)に記載され
ているがごとく、マトリックスとなるガラスとして、シ
リケートガラスやボロシリケートガラスが用いられてい
る。そして、ガラスをマトリックスとするCuClやC
uBr等の微粒子分散ガラスは、これらのガラスの出発
原料とCuClやCuBr等の微粒子の出発原料とを含
む混合物を加熱・溶融してガラス融液とした後、ガラス
融液を室温まで冷却して微粒子の構成元素がイオンとし
てマトリックス中に溶解しているガラスを得て、次い
で、このガラスを室温から所定の温度まで昇温させ、こ
の所定の温度で熱処理(保持)して微粒子を析出させる
方法(一般に溶融法と呼ばれる)によって製造されてい
る。
[0003] In the production of such a glass in which fine particles such as CuCl and CuBr are dispersed, as described in Glass Engineering Handbook, page 760 (Asakura Shoten, 1963), silicate glass or glass is used as a matrix glass. Borosilicate glass is used. And CuCl or C with glass as matrix
The fine particle-dispersed glass such as uBr is obtained by heating and melting a mixture containing the starting materials of these glasses and the starting material of fine particles such as CuCl and CuBr to form a glass melt, and then cooling the glass melt to room temperature. A method in which a glass in which constituent elements of fine particles are dissolved as ions in a matrix is obtained, and then the glass is heated from room temperature to a predetermined temperature, and heat-treated (held) at the predetermined temperature to precipitate fine particles. (Generally called a melting method).

【0004】[0004]

【発明が解決しようとする課題】しかしながらシリケー
トガラスやボロシリケートガラスをマトリックスガラス
とするCuClやCuBr等の微粒子分散ガラスを製造
する場合、出発原料を加熱、溶融して微粒子の構成元素
がマトリックス中に溶解している均一ガラスを得る工程
において、CuClやCuBr等の微粒子を構成する元
素のマトリックスへの溶解度が小さいためガラス中に溶
解せず、分離してしまい、原料中にCuClやCuBr
等の微粒子の出発原料を多量に添加してもガラス中に溶
解する微粒子構成元素の濃度を高めることができず、結
果的に熱処理によって析出する微粒子の濃度は低いもの
となってしまうという欠点がある。
However, in the case of producing fine particle-dispersed glass such as CuCl or CuBr using silicate glass or borosilicate glass as a matrix glass, the starting material is heated and melted so that the constituent elements of the fine particles are contained in the matrix. In the process of obtaining a molten homogeneous glass, the elements constituting the fine particles such as CuCl and CuBr have low solubility in the matrix, so that they do not dissolve in the glass but are separated and CuCl or CuBr is contained in the raw material.
However, even if a large amount of starting materials such as fine particles are added, the concentration of fine particle constituent elements dissolved in glass cannot be increased, and as a result, the concentration of fine particles precipitated by heat treatment becomes low. is there.

【0005】ところで、3次の非線形特性の大きさを表
す非線形感受率の値(|χ(3) |)は、微粒子分散ガラ
ス中の微粒子の体積率に比例するため、従来の溶融法に
より得られるCuClやCuBr微粒子分散ガラスを用
いて光スイッチや光コンピューター等の非線形光電子素
子を作製した場合、例えば、インターナショナル カン
ファレンス オン サイエンス アンド テクノロジー
オブ ニューグラス第394頁(Internati
onal Conference on Scienc
e and Technology of New G
lasses,P394(1991))に記載されてい
るがごとく、CuCl微粒子分散ボロシリケイトガラス
中のCuCl微粒子の体積率が10-3程度(CuCl濃
度、0.5mol%程度)のもので、|χ(3) |は、1
-6esuのオーダーで、半導体レーザーの光強度で動
作させるには不十分であった。
The value of the nonlinear susceptibility (| χ (3) |), which represents the magnitude of the third-order nonlinear characteristic, is proportional to the volume ratio of the fine particles in the fine particle-dispersed glass. When a nonlinear optoelectronic device such as an optical switch or an optical computer is manufactured using CuCl or CuBr fine particle-dispersed glass, for example, International Conference on Science and Technology of New Glass, p. 394 (Internati)
onal Conference on Science
e and Technology of New G
As described in J. Lases, P394 (1991), the volume fraction of CuCl fine particles in the borosilicate glass dispersed with CuCl fine particles is about 10 −3 (CuCl concentration, about 0.5 mol%), and | χ ( 3) | is 1
On the order of 0 -6 esu, it was insufficient to operate at the light intensity of the semiconductor laser.

【0006】また、薄肉のCuCl微粒子分散ガラスを
作製した場合、光吸収曲線の立ち上がりがブロードで傾
きの緩やかなものとなり、光学フィルター(シャープカ
ットフィルター)特性を維持したまま薄肉化を図ること
は困難であった。本発明は、非線形光電子材料及び光学
フィルター材料としての従来のCuClやCuBr等の
微粒子分散ガラスにおける上記欠点を解決すべくなされ
たものであり、本発明の目的は、高い濃度のCuClや
CuBr等の微粒子を含む微粒子分散ガラスを提供する
ことにある。
Further, when a thin CuCl fine particle-dispersed glass is produced, the rising of the light absorption curve is broad and has a gentle slope, and it is difficult to reduce the thickness while maintaining the optical filter (sharp cut filter) characteristics. Met. The present invention has been made to solve the above-mentioned disadvantages in the conventional fine particle-dispersed glass such as CuCl and CuBr as a nonlinear optoelectronic material and an optical filter material, and an object of the present invention is to provide a high-concentration CuCl or CuBr such as An object of the present invention is to provide a fine particle-dispersed glass containing fine particles.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたものであり、本発明のCuClや
CuBr微粒子分散ガラスは、P2 5 およびB2 3
から選ばれる少なくとも1種と、MgO、CaO、Sr
O、BaO、ZnOおよびCdOから選ばれる少なくと
も1種と、SnOと、CuClおよびCuBr化合物か
ら選ばれる少なくとも1種とを必須成分とし、かつP2
5 とB2 3 との合量が30〜60mol%であり、
MgOとCaOとSrOとBaOとZnOとCdOとの
合量が20〜60mol%であり、SnOの量が1〜2
0mol%であり、CuClとCuBrとの合量が2〜
20mol%であり、CuCl、CuBrおよびCu
(ClX Br1-X )(ただし、0<X<1)から選ばれ
る少なくとも1種が微粒子として、ガラス中に析出して
いることを特徴としている。
DISCLOSURE OF THE INVENTION The present invention has been made to achieve the above object, and the CuCl or CuBr fine particle-dispersed glass of the present invention comprises P 2 O 5 and B 2 O 3.
At least one selected from the group consisting of MgO, CaO, and Sr
At least one selected from O, BaO, ZnO and CdO, SnO, and at least one selected from CuCl and CuBr compounds are essential components, and P 2
The total amount of O 5 and B 2 O 3 is 30 to 60 mol%,
The total amount of MgO, CaO, SrO, BaO, ZnO, and CdO is 20 to 60 mol%, and the amount of SnO is
0 mol%, and the total amount of CuCl and CuBr is 2 to 2.
20 mol%, CuCl, CuBr and Cu
At least one selected from (Cl X Br 1 -X ) (where 0 <X <1) is precipitated as fine particles in glass.

【0008】以下、本発明を詳細に説明する。本発明に
よれば、微粒子分散ガラスのマトリックスを構成する成
分として、P2 5 およびB2 3 から選ばれる少なく
とも1種と、MgO、CaO、SrO、BaO、ZnO
およびCdOから選ばれる少なくとも1種と、SnOと
を用いる。そして、これらの組成範囲を上記のように限
定することにより、CuClおよびCuBrのガラス融
液に対する溶解度を大きくすることができ、熱処理する
ことにより、CuClおよびCuBrから選ばれる少な
くとも1種の微粒子が高濃度で析出した微粒子分散ガラ
スが得られる。
Hereinafter, the present invention will be described in detail. According to the present invention, at least one selected from P 2 O 5 and B 2 O 3 is used as a component constituting the matrix of the fine particle dispersed glass, and MgO, CaO, SrO, BaO, ZnO
And at least one selected from CdO and SnO. By limiting these composition ranges as described above, the solubility of CuCl and CuBr in the glass melt can be increased, and by performing the heat treatment, at least one type of fine particles selected from CuCl and CuBr becomes high. A fine particle-dispersed glass precipitated at a concentration is obtained.

【0009】なお、析出する微粒子は、CuCl、Cu
Br単独でもよく、これらの両方でもよく、さらに、C
u(ClX Br1-X )(ただし、0<X<1、)でもよ
い。次に、本発明の微粒子分散ガラスのマトリックスと
なるガラス組成物の組成割合を上記のように限定する理
由を説明する。
The precipitated fine particles are CuCl, Cu
Br alone or both of them may be used.
u (Cl X Br 1-X ) (where 0 <X <1,). Next, the reason for limiting the composition ratio of the glass composition serving as the matrix of the fine particle-dispersed glass of the present invention as described above will be described.

【0010】P2 5 とB2 3 との合量が30mol
%未満ではガラスの熱的安定性が不充分となり、CuC
l、CuBr等の微粒子を析出させる熱処理工程におい
て、ガラス自身が結晶化し易くなるので好ましくない。
また、P2 5 とB2 3 との合量が60mol%を越
えると、ガラスの化学的耐久性が不充分となり、使用上
問題となる。従って、P2 5 とB2 3 との合量は3
0〜60mol%に限定される。P2 5 とB2 3
の合量は30〜55mol%であるのが特に好ましい。
The total amount of P 2 O 5 and B 2 O 3 is 30 mol
%, The thermal stability of the glass becomes insufficient and CuC
In a heat treatment step of precipitating fine particles such as l and CuBr, the glass itself is easily crystallized, which is not preferable.
On the other hand, when the total amount of P 2 O 5 and B 2 O 3 exceeds 60 mol%, the chemical durability of the glass becomes insufficient, which causes a problem in use. Therefore, the total amount of P 2 O 5 and B 2 O 3 is 3
It is limited to 0 to 60 mol%. The total amount of P 2 O 5 to B 2 O 3 is particularly preferably from 30~55mol%.

【0011】MgOとCaOとSrOとBaOとZnO
とCdOとの合量が60mol%を越えるとガラスの熱
的安定性が不充分となり、熱処理工程において、ガラス
自身が結晶化し易くなるので好ましくない。又、これら
の合量が20mol%未満ではガラスの化学的耐久性が
不充分となるので好ましくない。従って、MgOとCa
OとSrOとBaOとZnOとCdOとの合量は20〜
60mol%に限定される。MgOとCaOとSrOと
BaOとZnOとCdOとの合量は20〜55mol%
であるのが特に好ましい。
[0011] MgO, CaO, SrO, BaO and ZnO
If the combined amount of CdO and CdO exceeds 60 mol%, the thermal stability of the glass becomes insufficient, and the glass itself tends to crystallize in the heat treatment step, which is not preferable. On the other hand, if the total amount is less than 20 mol%, the chemical durability of the glass becomes insufficient, which is not preferable. Therefore, MgO and Ca
The total amount of O, SrO, BaO, ZnO, and CdO is 20 to
Limited to 60 mol%. The total amount of MgO, CaO, SrO, BaO, ZnO and CdO is 20 to 55 mol%
Is particularly preferred.

【0012】SnOは、熱処理によりCuCl、CuB
r等の微粒子を析出させる際、熱的還元作用を有し、C
uCl、CuBr等の微粒子の析出を適確に行うための
成分であるが、その量が20mol%を越えると未溶解
物となってマトリックス中に析出するので好ましくな
い。又、SnOの量が1mol%未満では熱処理により
CuCl、CuBr等の微粒子の析出を適確に行うこと
ができなくなるので好ましくない。従って、SnOの量
は1〜20mol%に限定される。SnOの量は1〜1
5mol%であるのが特に好ましい。なお、熱的還元を
有する成分としては、SnO以外にもSb2 3 、As
2 3 、PbO、Bi2 3 等を使用することができる
が、これらの成分はSnOに比べ熱的還元作用が弱く、
実用的ではない。
SnO is made of CuCl, CuB
has a thermal reduction effect when depositing fine particles such as
Although it is a component for accurately depositing fine particles such as uCl and CuBr, if its amount exceeds 20 mol%, it is not preferable because it becomes undissolved and precipitates in the matrix. On the other hand, if the amount of SnO is less than 1 mol%, it is not preferable because fine particles such as CuCl and CuBr cannot be accurately deposited by heat treatment. Therefore, the amount of SnO is limited to 1 to 20 mol%. The amount of SnO is 1 to 1
Particularly preferred is 5 mol%. The components having thermal reduction include Sb 2 O 3 , As, as well as SnO.
2 0 3, PbO, can be used Bi 2 0 3, etc., these components are weak thermally reducing action compared with SnO,
Not practical.

【0013】本発明の微粒子分散ガラスのマトリックス
となるガラス組成物の組成割合を上記のとおり限定する
ことによりCuCl、CuBr等を、これらの合量が2
〜22mol%となるような割合でガラス成分中に含有
され、このガラスを熱処理することにより高濃度にCu
Cl、CuBrおよびCu(ClX Br1-X )(ただ
し、0<X<1、)から選ばれる少なくとも1種の微粒
子を析出させることが可能となった。
By limiting the composition ratio of the glass composition serving as the matrix of the fine particle-dispersed glass of the present invention as described above, CuCl, CuBr, etc.
2222 mol% contained in the glass component, and the glass is heat-treated to have a high concentration of Cu.
At least one type of fine particles selected from Cl, CuBr and Cu (Cl x Br 1-x ) (where 0 <X <1) can be precipitated.

【0014】ガラス組成物中に含有されるCuClやC
uBrの原料としては、CuCl、CuBrの他にCu
2 O、CuO等の酸化物、CuCO3 等の炭酸塩、Cu
NO3 等の硝酸塩等を用いることができる。また、塩化
物としては、MgCl2 、CaCl2 、SrCl2 、B
aCl2 、ZnCl2 、CdCl2 、LiCl、NaC
l、KCl等を用いることができる。さらに、臭化物と
しては、MgBr2 、CaBr2 、SrBr2 、BaB
2 、ZnBr2 、CdBr2 、LiBr、NaBr、
KBr等を用いることができる。
CuCl or C contained in the glass composition
As a raw material of uBr, CuCl, CuBr and Cu
Oxides such as 2 O and CuO, carbonates such as CuCO 3 , Cu
A nitrate such as NO 3 can be used. Further, as chlorides, MgCl 2 , CaCl 2 , SrCl 2 , B
aCl 2 , ZnCl 2 , CdCl 2 , LiCl, NaC
1, KCl and the like can be used. Furthermore, as the bromide, MgBr 2, CaBr 2, SrBr 2, BaB
r 2 , ZnBr 2 , CdBr 2 , LiBr, NaBr,
KBr or the like can be used.

【0015】なお、本発明の微粒子分散ガラスのマトリ
ックスとなるガラス組成物においては、追加成分として
SiO2 、Al2 3 、Ga2 3 、In2 3 、Zr
2、Y2 3 を10mol%以下の割合で含有するこ
とができる。熱処理によりCuClおよびCuBrから
選ばれる少なくとも1種の微粒子を析出させる方法とし
ては、以下の方法が挙げられる。
In the glass composition of the present invention, which serves as a matrix of the fine particle-dispersed glass, SiO 2 , Al 2 O 3 , Ga 2 O 3 , In 2 O 3 , Zr
O 2 and Y 2 O 3 can be contained at a ratio of 10 mol% or less. As a method of precipitating at least one kind of fine particles selected from CuCl and CuBr by heat treatment, the following method is exemplified.

【0016】(1)ガラス融液をCuCl、CuBr等
の微粒子が析出する温度、例えば380〜600℃まで
ガラス融液を冷却して、この温度域でガラスを保持して
CuClおよびCuBr等の微粒子を析出させる。
(1) The glass melt is cooled to a temperature at which fine particles such as CuCl and CuBr precipitate, for example, 380 to 600 ° C., and the glass is held in this temperature range to hold fine particles such as CuCl and CuBr. Is precipitated.

【0017】(2)ガラス融液をCuCl、CuBr等
の微粒子が析出する温度よりも低い温度、例えば380
℃よりも低い温度まで一度冷却した後、CuCl、Cu
Br等の微粒子が析出する温度、例えば380〜600
℃まで上昇し、この温度域でガラスを保持してCuC
l、CuBr等の微粒子を析出させる。
(2) The glass melt is heated to a temperature lower than the temperature at which fine particles of CuCl, CuBr, etc. precipitate, for example, 380.
Once cooled to a temperature lower than ℃, CuCl, Cu
Temperature at which fine particles such as Br precipitate, for example, 380 to 600
° C and the glass is kept in this temperature range
l, to precipitate fine particles such as CuBr.

【0018】(3)ガラス融液を一度室温まで冷却して
ガラス個体を得て、これをCuCl、CuBr等が析出
する温度、例えば380〜600℃まで上昇し、この温
度域にガラスを保持してCuCl、CuBr等の微粒子
を析出させる。
(3) The glass melt is once cooled to room temperature to obtain a solid glass, which is raised to a temperature at which CuCl, CuBr, etc. precipitates, for example, 380 to 600 ° C., and the glass is held in this temperature range. To precipitate fine particles such as CuCl and CuBr.

【0019】[0019]

【作用】このCuCl、CuBr等の微粒子の析出は、
上記温度域(380〜600℃)でCuCl、CuBr
等に由来する銅二価イオンが還元作用を有するSnイオ
ン(SnOに由来する)と反応して、銅一価イオンが生
成し、次いでこの銅一価イオンと塩化物イオン、臭化物
イオン等が拡散、凝集して結晶核を作り、その結晶が成
長することに基づくものである。
The precipitation of fine particles such as CuCl and CuBr is
CuCl, CuBr in the above temperature range (380-600 ° C)
Reacts with Sn ions (derived from SnO) having a reducing action to form copper monovalent ions, and then the copper monovalent ions diffuse into chloride ions, bromide ions, etc. , Agglomerates to form a crystal nucleus, and the crystal grows.

【0020】[0020]

【実施例】以下、本発明を実施例に基づいて説明する。
実施例1〜18のガラスを得るための原料としては、P
2 5 、B2 3 、Mg(PO3 2 、Ca(PO3
2 、Sr(PO3 2 、Ba(PO3 2 、MgC
3 、CaCO3 、SrCO3 、BaCO3 、ZnO、
CdO、SnO、CuCl、CuBr等を用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
As a raw material for obtaining the glasses of Examples 1 to 18, P
2 O 5 , B 2 O 3 , Mg (PO 3 ) 2 , Ca (PO 3 )
2 , Sr (PO 3 ) 2 , Ba (PO 3 ) 2 , MgC
O 3 , CaCO 3 , SrCO 3 , BaCO 3 , ZnO,
CdO, SnO, CuCl, CuBr and the like were used.

【0021】(実施例1)ガラスを得るために上記原料
の中から必要な原料を適宜選択し、得られるガラスの組
成が44mol%のP2 5 、44mol%のBaO、
6mol%のSnO、6mol%のCuClとなるよう
に、全量で25g混合した。得られた混合物を耐火性ル
ツボ中で1200℃において15分間加熱して均一なガ
ラス融液とした後、鉄板上にキャストして無色で透明な
ガラスを得た。
(Example 1) Materials necessary for obtaining glass are appropriately selected from the above-mentioned materials, and the composition of the obtained glass is 44 mol% of P 2 O 5 , 44 mol% of BaO,
A total of 25 g was mixed so as to be 6 mol% of SnO and 6 mol% of CuCl. The obtained mixture was heated at 1200 ° C. for 15 minutes in a refractory crucible to form a uniform glass melt, and then cast on an iron plate to obtain a colorless and transparent glass.

【0022】次に、得られたガラスをあらかじめ500
℃に保持した電気炉の中に入れ、この温度で3時間保持
した後、このガラスを室温まで徐冷した。このようにし
て得られたガラスを粉末X線回折装置を用いて測定した
ところ、CuCl結晶ピークが観察され、CuCl微粒
子分散ガラスが得られたことが確認された。さらに、C
uCl微粒子分散ガラス中に含まれる銅結晶微粒子の大
きさを粉末X線回折装置および透過型電子顕微鏡(TE
M)を用いて測定したところ、CuCl結晶粒子の平均
粒径(直径)は40Åであった。
Next, the obtained glass was previously
The glass was gradually cooled to room temperature after it was placed in an electric furnace maintained at ℃ and maintained at this temperature for 3 hours. When the glass thus obtained was measured using a powder X-ray diffractometer, a CuCl crystal peak was observed, and it was confirmed that CuCl fine particle dispersed glass was obtained. Further, C
The size of the copper crystal fine particles contained in the uCl fine particle dispersed glass was measured using a powder X-ray diffractometer and a transmission electron microscope (TE).
M), the average particle size (diameter) of the CuCl crystal particles was 40 °.

【0023】得られたCuCl微粒子分散ガラスを15
μmの厚さに光学研磨し、その光吸収スペクトルを測定
したところ、図1の実線1で示す様に鋭いCuClの吸
収ピークが確認された。また、図1から本実施例のCu
Cl微粒子分散ガラスの光吸収曲線の立ち上がりは鋭
く、優れた分光特性を有していることも確認された。さ
らに、本実施例で得られたCuCl微粒子分散ガラス光
吸収曲線(図1の実線1)は、後で述べる比較例1のボ
ロシリケートガラスをマトリックスとする従来のCuC
l微粒子分散ガラス(52.5mol%のB2 3 、3
0.0mol%のSiO2 、0.5mol%のSnO、
6.5mol%のAl2 3 、10.0mol%のNa
2 O、0.5mol%のCuCl)の光吸収曲線(図1
の破線2)に比べ光吸収量が10倍以上増大しており、
本実施例のCuCl微粒子分散ガラス中のCuCl微粒
子濃度は前記比較例1のCuCl微粒子分散ガラス中の
CuCl微粒子濃度の10倍以上と極めて高濃度である
ことがわかる。
The obtained CuCl fine particle dispersed glass was
Optical polishing was performed to a thickness of μm, and the light absorption spectrum was measured. As a result, a sharp absorption peak of CuCl was confirmed as shown by a solid line 1 in FIG. Also, from FIG.
The rising of the light absorption curve of the Cl particle dispersed glass was sharp, and it was also confirmed that the glass had excellent spectral characteristics. Further, the light absorption curve (solid line 1 in FIG. 1) of the CuCl fine particles dispersed glass obtained in this example is the same as that of the conventional CuC using the borosilicate glass of Comparative Example 1 described later as a matrix.
l Fine particle dispersed glass (52.5 mol% B 2 O 3 , 3
0.0 mol% of SiO 2 , 0.5 mol% of SnO,
6.5 mol% Al 2 O 3 , 10.0 mol% Na
Light absorption curve of 2 O, 0.5 mol% CuCl) (FIG. 1)
The light absorption amount is increased by 10 times or more compared to the broken line 2) of
It can be seen that the concentration of the CuCl fine particles in the CuCl fine particle-dispersed glass of the present example was extremely high, at least 10 times the concentration of the CuCl fine particles in the CuCl fine particle-dispersed glass of Comparative Example 1.

【0024】また、縮退四光波混合法(Degener
ated FourWave Mixing Meth
od)により、光吸収ピーク近くの波長(380nm)
で|χ(3) |値を77Kにおいて測定したところ、10
-5esuのオーダ−であった。従って、本実施例のCu
Cl微粒子分散ガラスは比較例1のCuCl微粒子分散
ガラスの10倍以上の光学的非線形感受率(|χ
(3) |)を有することがわかる。
Further, a degenerate four-wave mixing method (Degener
added FourWave Mixing Meth
od), the wavelength near the light absorption peak (380 nm)
When | 値(3) | value was measured at 77K,
-5 The order of esu. Therefore, in the present embodiment, Cu
The glass in which the Cl fine particles are dispersed is 10 times or more the optical non-linear susceptibility (| χ) of the glass in which the CuCl fine particles are dispersed in Comparative Example 1.
(3) It can be seen that |) is satisfied.

【0025】さらに、3次の非線形特性の大きさを表す
非線形感受率の値(|χ(3) |)は微粒子分散ガラス中
の微粒子の体積率に比例するため、本実施例のCuCl
微粒子分散ガラスは、非線形感受率の値からも比較例1
のCuCl微粒子分散ガラスの10倍以上のCuCl微
粒子濃度を有していることがわかる。実施例1のガラス
組成、微粒子を析出させるための熱処理温度及び時間、
さらに、比較例1のボロシリケートガラスをマトリック
スとする従来のCuCl微粒子分散ガラス(52.5m
ol%のB2 3 、30.0mol%のSiO2 、1
0.0mol%のNa2 O、6.5mol%のAl2
3 、0.5mol%のSnO、0.5mol%のCuC
l)のCuCl微粒子の濃度を1としたときの相対濃度
を表1に示した。
Further, the value of the non-linear susceptibility (| χ (3) |) representing the magnitude of the third-order non-linear characteristic is proportional to the volume ratio of the fine particles in the fine particle-dispersed glass.
Comparative Example 1 also shows that the fine particle-dispersed glass has a non-linear susceptibility value.
It can be seen that the glass has a CuCl fine particle concentration 10 times or more that of the CuCl fine particle-dispersed glass. Glass composition of Example 1, heat treatment temperature and time for precipitating fine particles,
Further, a conventional CuCl fine particle-dispersed glass (52.5 m
ol% of B 2 O 3 , 30.0 mol% of SiO 2 , 1
0.0 mol% Na 2 O, 6.5 mol% Al 2 O
3 , 0.5 mol% SnO, 0.5 mol% CuC
Table 1 shows the relative concentration when the concentration of the CuCl fine particles of 1) was set to 1.

【0026】(実施例2〜15)実施例1と同様にして
表1〜3に示すガラスを得た後、表1〜3に示す熱処理
条件で、CuCl微粒子分散ガラスを得た。ただし、実
施例5については、原料として、CuClの代わりにC
uNO3 とCaCl2 を用いた。得られた実施例2〜1
5のガラスを粉末X線回折装置を用いて測定したとこ
ろ、実施例2〜15のガラスは、実施例1と同様にCu
Cl結晶ピークが観測され、CuCl微粒子分散ガラス
が得られたことが確認された。
(Examples 2 to 15) After obtaining the glasses shown in Tables 1 to 3 in the same manner as in Example 1, CuCl fine particle dispersed glass was obtained under the heat treatment conditions shown in Tables 1 to 3. However, in Example 5, C was used as a raw material instead of CuCl.
uNO 3 and CaCl 2 were used. Examples 2-1 obtained
When the glass of Example 5 was measured using a powder X-ray diffractometer, the glasses of Examples 2 to 15 showed Cu as in Example 1.
A Cl crystal peak was observed, and it was confirmed that CuCl fine particle dispersed glass was obtained.

【0027】また、これらのCuCl微粒子分散ガラス
の光吸収特性を実施例1と同様にして測定したところ、
いずれのCuCl微粒子分散ガラスも、実施例1で得ら
れたCuCl微粒子分散ガラスと同様に、鋭いCuCl
の吸収ピークが確認された。さらに、光吸収曲線の立ち
上がりが鋭く、優れた分光特性を有していることも確認
された。これらの光吸収特性から、それぞれのCuCl
微粒子分散ガラス中のCuCl微粒子濃度を求めたとこ
ろ、表1〜3に示す様に比較例1のボロシリケートガラ
スをマトリックスとする従来のCuCl微粒子分散ガラ
ス中のCuCl微粒子の5倍以上であり、5倍以上の光
学的非線形感受率(χ(3) )を有することがわかる。こ
れらの実施例のCuCl微粒子濃度を表1〜3に示す。
The light absorption characteristics of these CuCl fine particle dispersed glasses were measured in the same manner as in Example 1.
Any of the CuCl fine particle-dispersed glass has a sharp CuCl fine particle like the CuCl fine particle-dispersed glass obtained in Example 1.
The absorption peak of was confirmed. Furthermore, it was also confirmed that the light absorption curve had a sharp rise and had excellent spectral characteristics. From these light absorption characteristics, each CuCl
When the concentration of CuCl fine particles in the fine particle-dispersed glass was determined, as shown in Tables 1 to 3, the concentration was 5 times or more that of the conventional CuCl fine particle-dispersed glass having the borosilicate glass of Comparative Example 1 as a matrix. It can be seen that the optical nonlinear susceptibility (χ (3) ) is twice or more. Tables 1 to 3 show the CuCl fine particle concentrations of these examples.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】(実施例16、17)CuClの代わりに
CuBrを用いた他は、実施例1と同様にして表3に示
すガラスを得た。このガラスを表3に示す条件で熱処理
した後、ガラスを室温まで徐冷した。実施例16、17
のガラスを粉末X線回折装置を用いて測定したところ、
CuBr結晶ピークが観測され、CuBr微粒子分散ガ
ラスが得られたことが確認された。さらに、これらのC
uBr微粒子分散ガラスの光吸収特性を実施例1と同様
にして測定したところ、いずれのCuBr微粒子分散ガ
ラスも、実施例1で得られたCuCl微粒子分散ガラス
と同様に、鋭いCuBrの吸収ピークが確認された。ま
た、光吸収曲線の立ち上がりが鋭く、優れた分光特性を
有していることも確認された。これらの実施例のCuB
r微粒子濃度を表3に示す。
Examples 16 and 17 Glasses shown in Table 3 were obtained in the same manner as in Example 1 except that CuBr was used instead of CuCl. After heat-treating this glass under the conditions shown in Table 3, the glass was gradually cooled to room temperature. Examples 16 and 17
Was measured using a powder X-ray diffractometer,
A CuBr crystal peak was observed, and it was confirmed that CuBr fine particle dispersed glass was obtained. Furthermore, these C
When the light absorption characteristics of the uBr fine particle-dispersed glass were measured in the same manner as in Example 1, any of the CuBr fine particle-dispersed glasses showed a sharp absorption peak of CuBr similarly to the CuCl fine particle-dispersed glass obtained in Example 1. Was done. It was also confirmed that the light absorption curve had a sharp rise and had excellent spectral characteristics. CuB of these examples
Table 3 shows the concentration of the r fine particles.

【0032】(実施例18)CuClとCuBrの混合
物を用いた他は、実施例1と同様にして表3に示すガラ
スを得た。このガラスを表3に示す条件で熱処理した
後、ガラスを室温まで徐冷した。実施例18のガラスを
粉末X線回折装置を用いて測定したところ、CuClと
CuBrの混晶のピークが観測され、CuClとCuB
rの混晶微粒子分散ガラスが得られたことが確認され
た。さらに、これらの微粒子分散ガラスの光吸収特性を
実施例1と同様にして測定したところ、鋭いCuClと
CuBrの混晶の吸収ピークが確認された。また、光吸
収曲線の立ち上がりが鋭く、優れた分光特性を有してい
ることも確認された。本実施例のCuClとCuBrの
混晶の微粒子濃度を表3に示す。
Example 18 Glasses shown in Table 3 were obtained in the same manner as in Example 1 except that a mixture of CuCl and CuBr was used. After heat-treating this glass under the conditions shown in Table 3, the glass was gradually cooled to room temperature. When the glass of Example 18 was measured using a powder X-ray diffractometer, a mixed crystal peak of CuCl and CuBr was observed, and CuCl and CuB were observed.
It was confirmed that r mixed crystal fine particle dispersed glass was obtained. Further, when the light absorption characteristics of these fine particle-dispersed glasses were measured in the same manner as in Example 1, a sharp absorption peak of a mixed crystal of CuCl and CuBr was confirmed. It was also confirmed that the light absorption curve had a sharp rise and had excellent spectral characteristics. Table 3 shows the concentration of fine particles of a mixed crystal of CuCl and CuBr in this example.

【0033】(比較例)比較例1〜5のガラスを得るた
めの原料として、P2 5 、B2 3 、Ba(PO3
2 、BaCO3 、SnO、CuCl、SiO2 、Na2
CO3 、Al23 等を用いた。
Comparative Examples P 2 O 5 , B 2 O 3 , and Ba (PO 3 ) were used as raw materials for obtaining the glasses of Comparative Examples 1 to 5 .
2 , BaCO 3 , SnO, CuCl, SiO 2 , Na 2
CO 3 , Al 2 O 3 or the like was used.

【0034】(比較例1)比較例1のガラスを得るため
にこれらの原料から必要な原料を適宜選択し、得られる
ガラスの組成が52.5mol%のB2 3 、30mo
l%のSiO2 、10mol%のNa2 O、6.5mo
l%のAl2 3 、0.5mol%のSnO、0.5m
ol%のCuClとなるように全量で25g混合した。
得られた混合物を1,400℃において2時間加熱して
均一なガラス融液とした以外は実施例1と同様にしてガ
ラスを得た。次に得られたガラスを535℃に保持した
電気炉の中に入れ、この温度で10分間保持した後、こ
のガラスを室温まで徐冷した。
(Comparative Example 1) In order to obtain the glass of Comparative Example 1, necessary raw materials were appropriately selected from these raw materials, and the composition of the obtained glass was 52.5 mol% of B 2 O 3 , 30 mo.
1% SiO 2 , 10 mol% Na 2 O, 6.5mo
1% Al 2 O 3 , 0.5 mol% SnO, 0.5 m
The solution was mixed in a total amount of 25 g so as to obtain ol% of CuCl.
A glass was obtained in the same manner as in Example 1 except that the obtained mixture was heated at 1,400 ° C. for 2 hours to obtain a uniform glass melt. Next, the obtained glass was placed in an electric furnace maintained at 535 ° C., and maintained at this temperature for 10 minutes, and then the glass was gradually cooled to room temperature.

【0035】このようにして得られたガラスを粉末X線
回折装置を用いて測定したところ、CuCl結晶ピーク
が観察され、CuCl微粒子分散ガラスが得られたこと
が確認された。得られたCuCl微粒子分散ガラスの光
吸収スペクトルを測定したところ、図1の破線2で示す
ように比較例1のCuCl微粒子分散ガラスは、光吸収
曲線の立ち上がりがブロードで傾きの緩やかなものであ
った。本比較例のCuCl微粒子濃度と1.0として表
4に表す。
When the glass thus obtained was measured using a powder X-ray diffractometer, a CuCl crystal peak was observed, and it was confirmed that CuCl fine particle dispersed glass was obtained. When the light absorption spectrum of the obtained CuCl fine particle dispersed glass was measured, as shown by the broken line 2 in FIG. 1, the CuCl fine particle dispersed glass of Comparative Example 1 had a broad light absorption curve with a gentle slope. Was. Table 4 shows the CuCl fine particle concentration of this comparative example as 1.0.

【0036】[0036]

【表4】 [Table 4]

【0037】(比較例2)得られるガラスの組成が4
6.5mol%のP2 5 と46.5mol%のBaO
と0.5mol%のSnOと6.5mol%のCuCl
となるように原料を混合した以外は実施例1と同様にし
てガラスを得た。その後、このガラスを表4に示すよう
に500℃で3時間熱処理した。得られたCuCl微粒
子分散ガラスの光吸収特性を比較例1のCuCl微粒子
濃度を1として求めたところ、0.5倍と低濃度であっ
た。本比較例のCuCl微粒子濃度を表4に示す。
(Comparative Example 2) The composition of the obtained glass was 4
6.5 mol% of P 2 O 5 and 46.5 mol% of BaO
And 0.5 mol% of SnO and 6.5 mol% of CuCl
Glass was obtained in the same manner as in Example 1 except that the raw materials were mixed so that Thereafter, this glass was heat-treated at 500 ° C. for 3 hours as shown in Table 4. The light absorption characteristic of the obtained CuCl fine particle-dispersed glass was determined assuming that the CuCl fine particle concentration of Comparative Example 1 was 1, and it was as low as 0.5 times. Table 4 shows the CuCl fine particle concentration of this comparative example.

【0038】(比較例3)得られるガラスの組成が25
mol%のP2 5 と63mol%のBaOと6mol
%のSnOと6mol%のCuClとなるように原料を
混合した以外は実施例1と同様にしてガラスを得た。そ
の後、このガラスを表4に示すように480℃で5時間
熱処理した。得られたガラスを粉末X線回折装置を用い
て測定したところ、CuCl結晶微粒子の析出は確認で
きず、その代わりにガラスの結晶化が認められた。
(Comparative Example 3) The composition of the obtained glass was 25.
mol% P 2 O 5 and 63 mol% BaO and 6 mol
% Glass was obtained in the same manner as in Example 1, except that the raw materials were mixed so as to be SnO of 6% and CuCl of 6 mol%. Thereafter, this glass was heat-treated at 480 ° C. for 5 hours as shown in Table 4. When the obtained glass was measured using a powder X-ray diffractometer, precipitation of CuCl crystal fine particles could not be confirmed, and instead, crystallization of the glass was recognized.

【0039】(比較例4)得られるガラスの組成が表4
に示すように65mol%のP2 5 と23mol%の
BaOと6mol%のSnOと6mol%のCuClと
なるように原料を混合した以外は実施例1と同様にして
ガラスを得た。その後、このガラスを表4に示すように
530℃で5時間熱処理した。得られたガラスを粉末X
線回折装置及び光吸収スペクトル装置を用いて測定した
ところ、CuCl結晶微粒子の析出は確認できなかっ
た。さらに、大気中に一日放置したところガラスの劣化
が見られ、化学的耐久性に劣るものであった。
Comparative Example 4 The composition of the obtained glass was as shown in Table 4.
A glass was obtained in the same manner as in Example 1 except that the raw materials were mixed so that 65 mol% of P 2 O 5 , 23 mol% of BaO, 6 mol% of SnO, and 6 mol% of CuCl as shown in FIG. Thereafter, the glass was heat-treated at 530 ° C. for 5 hours as shown in Table 4. The obtained glass is powder X
As a result of measurement using a line diffraction apparatus and a light absorption spectrum apparatus, no precipitation of CuCl crystal fine particles could be confirmed. Further, when left in the air for one day, the glass deteriorated, and the chemical durability was poor.

【0040】(比較例5)比較例1のCuClの替わり
にCuBrを用いた他は、比較例1と同様にしてガラス
を作製したところ、CuBr結晶回折ピークが観察さ
れ、CuBr微粒子分散ガラスが得られたことが確認さ
れた。しかし、得られたCuBr微粒子分散ガラスの光
吸収スペクトルを測定したところ、光吸収曲線の立ち上
がりがブロードで傾きの緩やかなものであった。また、
CuBr微粒子分散ガラス中のCuBr微粒子濃度は比
較例1のCuCl微粒子濃度の1.2と同程度であっ
た。本比較例のCuBr微粒子の濃度を表4に示す。
(Comparative Example 5) A glass was produced in the same manner as in Comparative Example 1 except that CuBr was used instead of CuCl in Comparative Example 1. As a result, a CuBr crystal diffraction peak was observed, and a glass obtained by dispersing CuBr fine particles was obtained. Was confirmed. However, when the light absorption spectrum of the obtained CuBr fine particle-dispersed glass was measured, the rise of the light absorption curve was broad and had a gentle slope. Also,
The concentration of the CuBr fine particles in the CuBr fine particle-dispersed glass was about the same as the CuCl fine particle concentration of Comparative Example 1 of 1.2. Table 4 shows the concentration of the CuBr fine particles of this comparative example.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
高い濃度のCuCl、CuBr等の微粒子が分散された
微粒子分散ガラスを作製することができ、得られるCu
Cl、CuBr等の微粒子分散ガラスは、非線形光学材
料として良好な非線形特性を有するとともに、フィルタ
ー材料として優れた分光特性をも有するものである。
As described above, according to the present invention,
A fine particle-dispersed glass in which fine particles such as CuCl and CuBr are dispersed at a high concentration can be produced, and the resulting Cu
Fine-particle-dispersed glass such as Cl and CuBr has excellent nonlinear characteristics as a nonlinear optical material and also has excellent spectral characteristics as a filter material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のCuCl微粒子分散ガラスおよび比
較例1のCuCl微粒子分散ガラスの光吸収曲線を示す
グラフである。
FIG. 1 is a graph showing light absorption curves of CuCl fine particle dispersed glass of Example 1 and CuCl fine particle dispersed glass of Comparative Example 1.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 P2 5 およびB2 3 から選ばれる少
なくとも1種と、MgO、CaO、SrO、BaO、Z
nOおよびCdOから選ばれる少なくとも1種と、Sn
Oと、CuClおよびCuBrから選ばれる少なくとも
1種とを必須成分とし、かつP2 5 とB2 3 との合
量が30〜60mol%であり、MgOとCaOとSr
OとBaOとZnOとCdOとの合量が20〜60mo
l%であり、SnOの量が1〜20mol%であり、C
uClとCuBrとの合量が2〜20mol%であり、
CuCl、CuBrおよびCu(ClX Br1-X )(た
だし、0<X<1)から選ばれる少なくとも1種が微粒
子として、ガラス中に析出していることを特徴とする微
粒子分散ガラス。
1. A method according to claim 1, wherein at least one selected from P 2 O 5 and B 2 O 3 is combined with MgO, CaO, SrO, BaO, Z
at least one selected from nO and CdO, and Sn
O and at least one selected from CuCl and CuBr as essential components, and the total amount of P 2 O 5 and B 2 O 3 is 30 to 60 mol%, and MgO, CaO and Sr
The total amount of O, BaO, ZnO and CdO is 20 to 60 mo
1%, the amount of SnO is 1 to 20 mol%,
the total amount of uCl and CuBr is 2 to 20 mol%,
A fine particle-dispersed glass characterized in that at least one selected from CuCl, CuBr and Cu (Cl x Br 1-x ) (where 0 <X <1) is precipitated as fine particles in the glass.
【請求項2】 P2 5 およびB2 3 から選ばれる少
なくとも1種と、MgO、CaO、SrO、BaO、Z
nOおよびCdOから選ばれる少なくとも1種と、Sn
Oと、CuClおよびCuBrから選ばれる少なくとも
1種とを必須成分とし、かつP2 5 とB2 3 との合
量が30〜55mol%であり、MgOとCaOとSr
OとBaOとZnOとCdOとの合量が20〜55mo
l%であり、SnOの量が1〜15mol%であり、C
uClとCuBrとの合量が2〜20mol%であり、
CuCl、CuBrおよびCu(ClX Br1-X )(た
だし、0<X<1)から選ばれる少なくとも1種が微粒
子として、ガラス中に析出していることを特徴とする微
粒子分散ガラス。
2. At least one selected from P 2 O 5 and B 2 O 3 , and MgO, CaO, SrO, BaO, Z
at least one selected from nO and CdO, and Sn
O and at least one selected from CuCl and CuBr as essential components, and the total amount of P 2 O 5 and B 2 O 3 is 30 to 55 mol%, and MgO, CaO and Sr
The total amount of O, BaO, ZnO and CdO is 20 to 55 mo
1%, the amount of SnO is 1 to 15 mol%,
the total amount of uCl and CuBr is 2 to 20 mol%,
A fine particle-dispersed glass characterized in that at least one selected from CuCl, CuBr and Cu (Cl x Br 1-x ) (where 0 <X <1) is precipitated as fine particles in the glass.
JP05093739A 1993-03-29 1993-03-29 Fine particle dispersed glass Expired - Fee Related JP3089888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05093739A JP3089888B2 (en) 1993-03-29 1993-03-29 Fine particle dispersed glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05093739A JP3089888B2 (en) 1993-03-29 1993-03-29 Fine particle dispersed glass

Publications (2)

Publication Number Publication Date
JPH06279055A JPH06279055A (en) 1994-10-04
JP3089888B2 true JP3089888B2 (en) 2000-09-18

Family

ID=14090786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05093739A Expired - Fee Related JP3089888B2 (en) 1993-03-29 1993-03-29 Fine particle dispersed glass

Country Status (1)

Country Link
JP (1) JP3089888B2 (en)

Also Published As

Publication number Publication date
JPH06279055A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
CN1042725C (en) Ga-and/or in-containing AsGe sulfide glasses
JP2009155200A (en) Sealing material
JP2006512274A (en) ZnO-based glass ceramic
US5024974A (en) Glass having ultrafine particles of CuCl and/or CuBr precipitated therein and process for its production
EP0974559B1 (en) Low melting point composite glass solder, its filler component, as well as its uses
JPH06191877A (en) Polarization glass
JP3089888B2 (en) Fine particle dispersed glass
US5449645A (en) Glasses with PBS and/or PBSE crystals
JP3096136B2 (en) Glass composition for low-temperature fired substrate and substrate obtained therefrom
JPH08337433A (en) Matrix glass for ultraviolet-ray shielding glass and production of ultraviolet-ray shielding glass
JP3086530B2 (en) Composition for glass with dispersed fine metal particles and glass with dispersed fine metal particles
US5098460A (en) Method of making multi-component glass doped with cadmium chalcogenide microparticles
JPH06340445A (en) Yellow colored glass
TWI756245B (en) Near infrared cut filter glass
US5134095A (en) Matrix glass composition for glass doped with dispersed microcrystallites
JP2881911B2 (en) CuCl, CuBr ultrafine particle precipitated glass and method for producing the same
JP2005336024A (en) Indium oxide-containing glass and its manufacturing method
JPH10194774A (en) Filter glass for cutting near infrared light
JP2881961B2 (en) Nonlinear optical material and manufacturing method thereof
JP2509361B2 (en) Method for producing PbSe fine particle dispersed glass
JPH07239489A (en) Nonlinear optical material
US5162054A (en) Process for producing multi-component glass doped with microparticles
JP2813393B2 (en) Method for producing semiconductor-containing glass
JP2002020141A (en) Composition for glass with dispersion of copper fine particle and method for manufacturing glass with high density distribution of copper fine particle by using the composition
JPH08328060A (en) Nonlinear optical material

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees