JP3089593B2 - Rebar exploration method using SQUID sensor - Google Patents

Rebar exploration method using SQUID sensor

Info

Publication number
JP3089593B2
JP3089593B2 JP26221493A JP26221493A JP3089593B2 JP 3089593 B2 JP3089593 B2 JP 3089593B2 JP 26221493 A JP26221493 A JP 26221493A JP 26221493 A JP26221493 A JP 26221493A JP 3089593 B2 JP3089593 B2 JP 3089593B2
Authority
JP
Japan
Prior art keywords
rebar
reinforcing bar
squid sensor
sensor
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26221493A
Other languages
Japanese (ja)
Other versions
JPH07120558A (en
Inventor
登 石川
山川裕司
一夫 茅根
哲 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP26221493A priority Critical patent/JP3089593B2/en
Publication of JPH07120558A publication Critical patent/JPH07120558A/en
Application granted granted Critical
Publication of JP3089593B2 publication Critical patent/JP3089593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、SQUID(Supercon
ducting Quatum Interference Device:超伝導量子干渉
素子)センサを利用してコンクリート中の鉄筋を探査す
る方法に関する。
The present invention relates to a SQUID (Supercon
The present invention relates to a method for searching for a reinforcing bar in concrete using a ducting quench interference device (superconducting quantum interference device) sensor.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
コンクリート中の鉄筋探査装置としては、電磁波を用い
た装置や、電磁誘導を利用した装置や、超音波を利用し
た装置などが知られているが、鉄筋の位置や深さを測定
できる限界はコンクリートのかぶり厚さが150mm程
度までであり、また、測定精度も悪いという問題を有し
ている。
2. Description of the Related Art
Devices that use electromagnetic waves, devices that use electromagnetic induction, and devices that use ultrasonic waves are known as devices for searching for reinforcing bars in concrete.However, the limit of measuring the position and depth of reinforcing bars is concrete. The fogging thickness is up to about 150 mm, and the measurement accuracy is poor.

【0003】ところで、生体磁場計測の分野において、
絶対温度近くまで冷却したときに起こるジョセフソン効
果を利用して微小磁場を測定するSQUIDセンサが知
られている。
In the field of biomagnetic field measurement,
2. Description of the Related Art There is known an SQUID sensor that measures a minute magnetic field by using a Josephson effect that occurs when the device is cooled to a temperature close to an absolute temperature.

【0004】本発明は上記問題をSQUIDセンサを利
用することにより解決するものであって、コンクリート
中の深い位置にある鉄筋を高精度で探査することができ
る鉄筋探査方法を提供することを目的とする。
The present invention solves the above-mentioned problem by using a SQUID sensor, and an object of the present invention is to provide a method for searching for a reinforcing bar capable of detecting a reinforcing bar at a deep position in concrete with high accuracy. I do.

【0005】[0005]

【課題を解決するための手段】そのために、本発明のS
QUIDセンサを利用した鉄筋探査方法は、。コンクリ
ート中の鉄筋1の方向に対して直角方向に1次微分型S
QUIDセンサ2を並べ、該センサを鉄筋の方向(y方
向)に対して直角方向(x方向)に走査して、鉄筋の方
向(y方向)成分の磁束密度に対して、直角方向(x方
向)の1次微分を測定することにより、鉄筋の位置、深
さを測定することを特徴とする。なお、上記構成に付加
した番号は、本発明の理解を容易にするために図面と対
比させるためのもので、これにより本発明の構成が何ら
限定されるものではない。
For this purpose, the present invention relates to
How to search for a reinforcing bar using a QUID sensor. First-order differential type S perpendicular to the direction of reinforcing bar 1 in concrete
Arranging QUID sensor 2, the direction (y direction rebar said sensor
Direction (x direction) with respect to the direction of the rebar, and the first derivative in the direction perpendicular to the direction (x direction) with respect to the magnetic flux density of the direction (y direction) of the rebar is measured. And measuring the depth. The numbers added to the above configuration are for comparison with the drawings to facilitate understanding of the present invention, and the configuration of the present invention is not limited by this.

【0006】[0006]

【作用】本発明においては、鉄筋の方向(y方向)成分
の磁束密度に対して、直角方向(x方向)の1次微分を
測定するため、鉄筋内の磁場源の向きを考慮する必要が
なく測定が容易になる。
In the present invention, it is necessary to consider the direction of the magnetic field source in the reinforcing bar in order to measure the first derivative of the magnetic flux density in the direction (y direction) of the reinforcing bar in the direction perpendicular to the direction (x direction). Measurement becomes easier.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1および図2は本発明の1実施例を示し、図
1は鉄筋探査方法を説明するための模式図、図2は測定
データを示す図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show one embodiment of the present invention. FIG. 1 is a schematic diagram for explaining a method of searching for a reinforcing bar, and FIG. 2 is a diagram showing measurement data.

【0008】図1において、1はコンクリート中に埋設
された鉄筋を示し、この鉄筋1の方向(y方向)に対し
て直角方向(x方向)に1次微分型SQUIDセンサ2
を並べ、1次微分型SQUIDセンサ2をx方向に走査
して、鉄筋1で生じる磁束の1次微分を測定する。
In FIG. 1, reference numeral 1 denotes a reinforcing bar buried in concrete, and a first-order differential SQUID sensor 2 in a direction (x direction) perpendicular to the direction of the reinforcing bar 1 (y direction).
Are scanned in the x direction by the primary differential type SQUID sensor 2 to measure the primary differential of the magnetic flux generated in the reinforcing bar 1.

【0009】一般に、磁気双極子mが座標原点にあると
き、距離r離れた位置での磁束密度Bは、下記式で表
される。
Generally, when the magnetic dipole m is at the coordinate origin, the magnetic flux density B at a position separated by a distance r is represented by the following equation.

【0010】 B=−(1/4π)[mr2 −3(mr)r]/r5 … 磁気双極子のx、y、z方向成分をmx、my、mz
し、走査線上にて距離r離れた位置での磁束密度の各方
向成分をBx、By、Bzとすると、BxとBzはmxとmz
の関数となるのに対して、Byはmyの関数となる。By
は鉄筋内の磁場源の向きに関わらず、myのみにより変
化するため、鉄筋内の磁場源の向きを考慮する必要がな
くなる。またx方向に走査したとき、Byは鉄筋を中心
にして対称的に変化するため、測定が容易になる。
B = − (1 / 4π) [mr 2 −3 (mr) r] / r 5 ... The x, y, and z components of the magnetic dipole are m x , m y , and m z, and the directional components of the magnetic flux density at a position separated by a distance r Te B x, B y, When B z, B x and B z is m x and m z
Whereas the function, B y is a function of m y. B y
Regardless of the orientation of the magnetic field source within the rebar, to change only the m y, it is not necessary to consider the direction of the magnetic field source within the rebar. Also when scanned in the x direction, B y is to vary symmetrically about the rebar facilitates measurement.

【0011】式からx方向の1次微分を求めると図2
に示すようになり、図2中のx1、x2を用いて鉄筋の位
置x0と深さz0は下記の式、式で表される。
When the first derivative in the x direction is obtained from the equation, FIG.
The position x 0 and the depth z 0 of the reinforcing bar are represented by the following equations using x 1 and x 2 in FIG.

【0012】[0012]

【数1】 (Equation 1)

【0013】鉄筋径Dが13mm、22mm、32mm
で実験を行ったところ、x0 の精度がσ=3mm、式
に対する回帰直線が z0=−3.74+0.93(x2−x1);R=0.98 … であった。また、深さz0 は310mmまで測定でき、
ノイズから換算すると数mまで測定可能と思われる。
[0013] Reinforcing bar diameter D is 13mm, 22mm, 32mm
As a result, the precision of x 0 was σ = 3 mm, and the regression line for the equation was z 0 = −3.74 + 0.93 (x 2 −x 1 ); R = 0.98. Also, the depth z 0 can be measured up to 310 mm,
When converted from noise, it seems that measurement is possible up to several meters.

【0014】[0014]

【数2】 (Equation 2)

【0015】[0015]

【0016】[0016]

【発明の効果】以上の説明から明らかなように本発明に
よれば、深い位置にある鉄筋の微小磁場の計測が可能に
なるので、従来の鉄筋探査方法に比較して、より深い位
置にある鉄筋を高い空間分解能で、鉄筋内の磁場の向き
をそろえる必要なく、鉄筋の位置、深さを測定すること
ができる
According to apparent the present invention from the above description, deep since it is possible to measure the minute magnetic field rebar in position, as compared with the conventional reinforcing bars exploration methods, more deep position
Direction of the magnetic field inside the rebar with high spatial resolution
Measuring the position and depth of rebar without having to align
Can be .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例を示し、鉄筋探査方法を説明
するための模式図である。
FIG. 1 is a schematic diagram illustrating an embodiment of the present invention and illustrating a method for searching for a reinforcing bar.

【図2】本発明における測定原理を示す図である。FIG. 2 is a diagram showing a measurement principle in the present invention.

【符号の説明】[Explanation of symbols]

1…鉄筋、2…1次微分型SQUIDセンサ 1. Reinforcing bar, 2. Primary differential SQUID sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 茅根 一夫 千葉県千葉市美浜区中瀬1丁目8番地 セイコー電子工業株式会社内 (72)発明者 中山 哲 千葉県千葉市美浜区中瀬1丁目8番地 セイコー電子工業株式会社内 (56)参考文献 特開 昭62−98287(JP,A) 特開 平2−290588(JP,A) 特開 昭58−210683(JP,A) 特開 平4−232482(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01V 3/08 G01B 7/00 G01N 27/72 G01R 33/035 ZAA ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuo Chine 1-8-8 Nakase, Mihama-ku, Chiba-shi, Chiba Seiko Electronic Industries Co., Ltd. (72) Inventor Satoshi Nakayama 1-8-1, Nakase, Mihama-ku, Chiba-shi, Chiba (56) References JP-A-62-98287 (JP, A) JP-A-2-290588 (JP, A) JP-A-58-210683 (JP, A) JP-A-4-232482 ( JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01V 3/08 G01B 7/00 G01N 27/72 G01R 33/035 ZAA

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】コンクリート中の鉄筋の方向に対して直角
方向に1次微分型SQUIDセンサを並べ、該センサを
鉄筋の方向に対して直角方向に走査して、鉄筋の方向成
分の磁束密度に対して、直角方向の1次微分を測定する
ことにより、鉄筋の位置、深さを測定することを特徴と
するSQUIDセンサを利用した鉄筋探査方法。
1. A first-order differential SQUID sensor is arranged in a direction perpendicular to the direction of a reinforcing bar in concrete, and the sensor is
The position and depth of the rebar are measured by scanning in the direction perpendicular to the direction of the rebar and measuring the first derivative in the direction perpendicular to the magnetic flux density of the directional component of the rebar. A method for searching for a reinforcing bar using a SQUID sensor.
JP26221493A 1993-10-20 1993-10-20 Rebar exploration method using SQUID sensor Expired - Fee Related JP3089593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26221493A JP3089593B2 (en) 1993-10-20 1993-10-20 Rebar exploration method using SQUID sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26221493A JP3089593B2 (en) 1993-10-20 1993-10-20 Rebar exploration method using SQUID sensor

Publications (2)

Publication Number Publication Date
JPH07120558A JPH07120558A (en) 1995-05-12
JP3089593B2 true JP3089593B2 (en) 2000-09-18

Family

ID=17372669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26221493A Expired - Fee Related JP3089593B2 (en) 1993-10-20 1993-10-20 Rebar exploration method using SQUID sensor

Country Status (1)

Country Link
JP (1) JP3089593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103910A1 (en) * 2005-03-25 2006-10-05 Kyushu Institute Of Technology Nondestructive inspection method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5013363B2 (en) * 2005-10-11 2012-08-29 国立大学法人大阪大学 Nondestructive inspection equipment
CN101907693B (en) * 2010-07-07 2013-01-09 中国科学院上海微系统与信息技术研究所 Method for quantitatively calibrating and eliminating crosstalk of SQUID (Superconducting Quantum Interference Device) planar three-shaft magnetometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103910A1 (en) * 2005-03-25 2006-10-05 Kyushu Institute Of Technology Nondestructive inspection method and device
JPWO2006103910A1 (en) * 2005-03-25 2008-09-04 国立大学法人九州工業大学 Nondestructive inspection method and device
JP4639339B2 (en) * 2005-03-25 2011-02-23 国立大学法人九州工業大学 Nondestructive inspection method and apparatus

Also Published As

Publication number Publication date
JPH07120558A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
JP3204542B2 (en) Magnetic field source measurement device
CA1267192A (en) Ferrous object locator and classifier
US6534982B1 (en) Magnetic resonance scanner with electromagnetic position and orientation tracking device
US5720345A (en) Casing joint detector
Stamenov et al. Sample size, position, and structure effects on magnetization measurements using second-order gradiometer pickup coils
US5705924A (en) Hall effect sensor for detecting an induced image magnet in a smooth material
US3764897A (en) Electromagnetic thickness gauging using a transmitting coil shaped to provide a constant field over a range of measuring distances
Guertin et al. Application of a vibrating sample magnetometer to magnetic measurements under hydrostatic pressure
US6833706B2 (en) Hole displacement measuring system and method using a magnetic field
Wikswo et al. Magnetic susceptibility imaging for nondestructive evaluation (using SQUID magnetometer)
JP3089593B2 (en) Rebar exploration method using SQUID sensor
JPS5856912B2 (en) 2D magnetic scale device
JP4291454B2 (en) Posture position measuring apparatus and measuring method
Ramasamy et al. Characterization of TDEM system with SQUID and fluxgate magnetometers for geophysical applications
JP2623090B2 (en) Distance measuring device
JPH07104403B2 (en) Magnetic field measuring method and apparatus thereof
CN108919368B (en) System and method for eliminating residual magnetic interference of microsatellite
WO1994024584A1 (en) Methods of detecting location of magnetically-marked elongated buried objects
Shangguan et al. A localization method for submarines based on array probes magnetic measurement at two positions to overcome the influence of background field
JP3019714B2 (en) Measuring device for incremental permeability of magnetic steel sheet
Das et al. Determination of depth of shallowly buried objects by electromagnetic induction
Moulder et al. Detection and sizing of surface flaws with a SQUID-based eddy current probe
Deak et al. Dynamic calculation of the responsivity of monodomain fluxgate magnetometers
Ali et al. A grain detection system for grain-oriented electrical steels
JP2961945B2 (en) Magnetometer

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees