JP3089085B2 - Manufacturing method of superconducting accelerating cavity for electron beam - Google Patents
Manufacturing method of superconducting accelerating cavity for electron beamInfo
- Publication number
- JP3089085B2 JP3089085B2 JP04065265A JP6526592A JP3089085B2 JP 3089085 B2 JP3089085 B2 JP 3089085B2 JP 04065265 A JP04065265 A JP 04065265A JP 6526592 A JP6526592 A JP 6526592A JP 3089085 B2 JP3089085 B2 JP 3089085B2
- Authority
- JP
- Japan
- Prior art keywords
- electron beam
- manufacturing
- superconducting
- cell
- accelerating cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010894 electron beam technology Methods 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000003466 welding Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 4
- 239000011324 bead Substances 0.000 description 11
- 239000001307 helium Substances 0.000 description 9
- 229910052734 helium Inorganic materials 0.000 description 9
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 239000010955 niobium Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910001275 Niobium-titanium Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
Landscapes
- Particle Accelerators (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子ビーム用超伝導加
速空洞の製造方法に関する。The present invention relates to a method for manufacturing a superconducting accelerating cavity for an electron beam.
【0002】[0002]
【従来の技術】従来、電子ビーム用超伝導加速空洞は、
例えば図4(A)〜(I)のようにして製造されてい
た。まず、図4(A)に示すように型1とポンチ2を用
いて平板状の超伝導材料(Nb)3をプレス加工し、図
4(B)に示す形状にする。次いで、開先加工(図4
(C))して、ハーフセル5を成型する(図4
(D))。つづいて、図4(E)のように2つのハーフ
セル5,5を図5(F)のように合わせた後、EBM
(電子ビーム溶接)により、シングルセル6を作る。な
お、図中の7は熔接ビードを示す。更に、図4(H)の
ような数個のシングルセル6を、EBMにより連結し、
マルチセル8を作る(図4(I))。2. Description of the Related Art Conventionally, a superconducting accelerating cavity for an electron beam has
For example, it was manufactured as shown in FIGS. First, as shown in FIG. 4A, a flat superconducting material (Nb) 3 is pressed using a mold 1 and a punch 2 to obtain a shape shown in FIG. 4B. Next, groove processing (FIG. 4)
(C)) to form the half cell 5 (FIG. 4)
(D)). Subsequently, as shown in FIG. 4E, the two half cells 5, 5 are aligned as shown in FIG.
A single cell 6 is formed by (electron beam welding). In addition, 7 in a figure shows a welding bead. Further, several single cells 6 as shown in FIG. 4H are connected by EBM,
A multi-cell 8 is made (FIG. 4 (I)).
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来技
術によれば、マルチセル8を作るまでの工数が多いとい
う問題点がある。また、従来通り製作されたマルチセル
8ではビ−ド部に対して垂直方向に表面電流が流れるの
で、ビード部での高周波損失が大きいという問題点を有
する。However, according to the prior art, there is a problem that the number of steps required to make the multicell 8 is large. Also, in the conventional multi-cell 8, a surface current flows in a direction perpendicular to the bead portion, so that there is a problem that a high-frequency loss is large in the bead portion.
【0004】本発明は上記事情に鑑みてなされたもの
で、マルチセルを製作するまでの工数を従来に比べて低
減できるとともに、ビード部での高周波損失を減少でき
る電子ビーム用超伝導加速空洞の製造方法を提供するこ
とを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and can manufacture a superconducting accelerating cavity for an electron beam capable of reducing the number of steps required for manufacturing a multi-cell as compared with the related art and reducing high-frequency loss at a bead portion. The aim is to provide a method.
【0005】[0005]
【課題を解決するための手段】本発明は、一対の半割マ
ルチセルをプレス加工により成型した後、前記半割マル
チセルを分割面で熔接することを特徴とする電子ビーム
用超伝導加速空洞の製造方法である。According to the present invention, there is provided a method for manufacturing a superconducting accelerating cavity for an electron beam, comprising forming a pair of half multi-cells by press working, and then welding the half multi-cells at a split surface. Is the way.
【0006】[0006]
【作用】本発明によれば、 (1) マルチセルを製作するまでの工数を低減できる。 (2) 熔接ビードと表面電流の向きが平行になるため、高
周波損失が減少し、加速器の運転効率が増す。 (3) 高周波損失の減少により温度上昇が抑えられ、クエ
ンチが起こりくく、超伝導性の安定した加速空洞が得ら
れる。According to the present invention, (1) the number of steps required to manufacture a multi-cell can be reduced. (2) Since the direction of the welding bead and the surface current are parallel, the high-frequency loss is reduced and the operating efficiency of the accelerator is increased. (3) The temperature rise is suppressed by the reduction of high-frequency loss, quenching does not easily occur, and a stable superconducting cavity is obtained.
【0007】[0007]
【実施例】以下、本発明の一実施例について図1(A)
〜(C)を参照して説明する。FIG. 1A shows an embodiment of the present invention.
This will be described with reference to FIGS.
【0008】まず、図1(A)に示すように下型11と
上型12間に板状の超伝導材料(ニオブ)13を配置し
た。つづいて、プレス加工して半割マルチセル14を2
つ(一対)成型した後、開先加工を行なった(図1
(B)参照)。2つの半割マルチセル14,14を長手
熔接にて接合し、1つのマルチセル15を製作した(図
1(C)参照)。できあがったマルチセル15は、その
両端にフランジを取り付けて超伝導加速空洞クライオス
タットに組み込まれる。First, as shown in FIG. 1A, a plate-shaped superconducting material (niobium) 13 was arranged between a lower mold 11 and an upper mold 12. Then, press processing is performed to divide half multi-cell 14 into 2
After forming (one pair), beveling was performed (Fig. 1
(B)). The two half multi-cells 14, 14 were joined by longitudinal welding to produce one multi-cell 15 (see FIG. 1C). The completed multi-cell 15 is installed in a superconducting accelerating cavity cryostat with flanges attached to both ends.
【0009】しかして、上記実施例によれば、下型11
と上型12間に板状の超伝導材料(ニオブ)13を配置
し、これをプレス加工して半割マルチセル14を2つ成
型した後、開先加工を行ない、2つの半割マルチセル1
4,14を長手熔接にて接合してマルチセル15を製作
するため、マルチセル15を製作するまでの工数を従来
に比べて低減できる。Thus, according to the above embodiment, the lower mold 11
A plate-like superconducting material (niobium) 13 is arranged between the upper mold 12 and the upper mold 12, and is pressed to form two half multi-cells 14.
Since the multi-cell 15 is manufactured by joining the 4 and 14 by longitudinal welding, the number of steps required to manufacture the multi-cell 15 can be reduced as compared with the related art.
【0010】また、従来は図3(A)に示すように熔接
ビード5に対して表面電流の向き9が垂直になっている
が、本発明の場合図3(B)に示すように表面電流が熔
接ビード16の方向に沿って流れるため、ビード部での
高周波損失を減少できる。Conventionally, the direction 9 of the surface current is perpendicular to the welding bead 5 as shown in FIG. 3A, but in the case of the present invention, as shown in FIG. Flows along the direction of the weld bead 16, so that high-frequency loss at the bead portion can be reduced.
【0011】図2は、電子ビーム用超伝導加速器システ
ムの全体構成図である。前記マルチセル15は、液体ヘ
リウム槽17中の液体ヘリウム18中に配置されてい
る。前記液体ヘリウム槽17は、窒素シ−ルド板19を
介して真空槽20内に配置されている。前記液体ヘリウ
ム槽17にはヘリウム液化装置21が連結されている。
なお、図中の22は高周波、23aは加速前の電子ビー
ム、23bは加速後の電子ビームを示す。こうしたシス
テムにおいて、液体ヘリウム18中で冷却された超伝導
加速空洞に高周波22を入力し、これと電子ビーム23
aを同期させることにより、ビームを加速させる。しか
るに、上記実施例に係るマルチセル15を使用すると、
空洞壁面での高周波損失が減少し、その入力量を軽減で
きる。なお、上記実施例では、超伝導材料としてニオブ
を用いた場合について述べたが、これに限らず、例えば
ニオブ−チタン合金を用いてもよい。FIG. 2 is an overall configuration diagram of a superconducting accelerator system for an electron beam. The multi-cell 15 is disposed in a liquid helium 18 in a liquid helium tank 17. The liquid helium tank 17 is disposed in a vacuum tank 20 via a nitrogen shield plate 19. A helium liquefaction device 21 is connected to the liquid helium tank 17.
In the drawing, 22 indicates a high frequency, 23a indicates an electron beam before acceleration, and 23b indicates an electron beam after acceleration. In such a system, a radio frequency 22 is input to a superconducting accelerating cavity cooled in liquid helium 18 and this is combined with an electron beam 23.
The beam is accelerated by synchronizing a. However, when the multi-cell 15 according to the above embodiment is used,
High-frequency loss on the cavity wall surface is reduced, and the input amount can be reduced. In the above embodiment, the case where niobium is used as the superconducting material has been described. However, the present invention is not limited to this. For example, a niobium-titanium alloy may be used.
【0012】[0012]
【発明の効果】以上詳述した如く本発明によれば、マル
チセルを製作するまでの工数を低減できるとともに、ビ
ード部での高周波損失を減少できる電子ビーム用超伝導
加速空洞の製造方法が得られる。As described above in detail, according to the present invention, it is possible to obtain a method of manufacturing a superconducting accelerating cavity for an electron beam, which can reduce the number of steps required to manufacture a multi-cell and reduce a high-frequency loss in a bead portion. .
【図1】本発明の一実施例に係る電子ビーム用超伝導加
速空洞の製造方法を工程順に示す説明図。FIG. 1 is an explanatory view showing a method of manufacturing a superconducting acceleration cavity for an electron beam according to an embodiment of the present invention in the order of steps.
【図2】本発明の一実施例に係るマルチセルを組み込ん
だ電子ビーム用超伝導加速器システムの全体構成図。FIG. 2 is an overall configuration diagram of an electron beam superconducting accelerator system incorporating a multi-cell according to one embodiment of the present invention.
【図3】本発明の一実施例に係るマルチセルと従来のマ
ルチセルにおけるいて熔接ビード部での表面電流向きを
比較した説明図。FIG. 3 is an explanatory view comparing the surface current directions at a weld bead portion in a multicell according to one embodiment of the present invention and a conventional multicell.
【図4】従来の電子ビーム用超伝導加速空洞の製造方法
を工程順に示す説明図。FIG. 4 is an explanatory view showing a method of manufacturing a conventional superconducting acceleration cavity for an electron beam in the order of steps.
11…下型、12…上型、13…板状の超伝導材料(ニ
オブ)、14…半割マルチセル、15…マルチセル、1
6…熔接ビード、17…液体ヘリウム槽、18…液体ヘ
リウム、19…窒素シ−ルド板、20…真空槽、21…
ヘリウム液化装置、23a,23b…電子ビーム。11 lower mold, 12 upper mold, 13 plate-like superconducting material (niobium), 14 half multicell, 15 multicell, 1
6 ... welding bead, 17 ... liquid helium tank, 18 ... liquid helium, 19 ... nitrogen shield plate, 20 ... vacuum tank, 21 ...
Helium liquefier, 23a, 23b ... Electron beam.
フロントページの続き (56)参考文献 特開 平4−190599(JP,A) 特開 平3−274805(JP,A) 特開 平2−250403(JP,A) 特開 昭62−181508(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05H 9/00 ZAA H01L 39/00 ZAA Continuation of front page (56) References JP-A-4-190599 (JP, A) JP-A-3-274805 (JP, A) JP-A-2-250403 (JP, A) JP-A-62-181508 (JP) , A) (58) Fields investigated (Int. Cl. 7 , DB name) H05H 9/00 ZAA H01L 39/00 ZAA
Claims (1)
り成型した後、前記半割マルチセルを分割面で熔接する
ことを特徴とする電子ビーム用超伝導加速空洞の製造方
法。1. A method for manufacturing a superconducting accelerating cavity for an electron beam, comprising forming a pair of half-multicells by press working, and then welding the half-multicells at a split surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04065265A JP3089085B2 (en) | 1992-03-23 | 1992-03-23 | Manufacturing method of superconducting accelerating cavity for electron beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04065265A JP3089085B2 (en) | 1992-03-23 | 1992-03-23 | Manufacturing method of superconducting accelerating cavity for electron beam |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05266996A JPH05266996A (en) | 1993-10-15 |
JP3089085B2 true JP3089085B2 (en) | 2000-09-18 |
Family
ID=13281921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04065265A Expired - Fee Related JP3089085B2 (en) | 1992-03-23 | 1992-03-23 | Manufacturing method of superconducting accelerating cavity for electron beam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3089085B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006021111B3 (en) | 2005-12-02 | 2007-08-02 | Deutsches Elektronen-Synchrotron Desy | Process for producing hollow bodies of resonators |
-
1992
- 1992-03-23 JP JP04065265A patent/JP3089085B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05266996A (en) | 1993-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7746192B2 (en) | Polyhedral contoured microwave cavities | |
US4245769A (en) | Laminate bonding method | |
US6097153A (en) | Superconducting accelerator cavity with a heat affected zone having a higher RRR | |
JP3089085B2 (en) | Manufacturing method of superconducting accelerating cavity for electron beam | |
JPS6313306A (en) | Electromagnet iron core and manufacture thereof | |
US3783503A (en) | Method of producing a composite conductor band for use in making a tubular superconductor | |
JP3130606B2 (en) | Method of manufacturing support frame for shadow mask type color cathode ray tube | |
Delayen et al. | Recent developments in the application of RF superconductivity to high-brightness and high-gradient ion beam accelerators | |
Welander et al. | Parallel-Feed SRF Accelerator Structures | |
Hosoyama et al. | Crab cavity for KEKB | |
Shepard et al. | Superconducting intermediate-velocity drift-tube cavities for the RIA driver linac | |
Theiss et al. | Experimental investigation of a novel circuit for millimeter-wave TWTs | |
KR102663242B1 (en) | Precision sealing type rf acceleration cavity | |
Herrmannsfeldt et al. | Electromagnetic and mechanical properties of niobium cavities for a superconducting electron linear accelerator | |
JPH02159101A (en) | Joining method for superconducting thin film waveguide | |
JPH03135000A (en) | Superconducting accelerating tube | |
US3599032A (en) | Crossed-fields traveling wave tubes | |
Storey et al. | Fabrication of a SRF Deflecting Cavity for the ARIEL-Linac | |
Benaroya et al. | Tests of a niobium split-ring superconducting heavy-ion accelerating structure | |
JPH01191501A (en) | Joint method for superconducting waveguide | |
Dhar et al. | Distributed Coupling Linac for Efficient Acceleration of High Charge Electron Bunches | |
Bensiek et al. | SUPERCONDUCTING PERFORUANCE OF CEBAF/CORNELL PROTOTYPE CAVITIES FABRICATED BY BABCOCK h HILCOX | |
RU2024100C1 (en) | Klystron manufacturing process | |
JPS6313235A (en) | Manufacture of magnetron | |
Padamsee | Progress and Plans for R&D and the Conceptual Design of the ILC High Gradient Structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000620 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080714 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |