JP3087771B2 - Current control device - Google Patents

Current control device

Info

Publication number
JP3087771B2
JP3087771B2 JP03116711A JP11671191A JP3087771B2 JP 3087771 B2 JP3087771 B2 JP 3087771B2 JP 03116711 A JP03116711 A JP 03116711A JP 11671191 A JP11671191 A JP 11671191A JP 3087771 B2 JP3087771 B2 JP 3087771B2
Authority
JP
Japan
Prior art keywords
current
main circuit
electromagnet
power supply
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03116711A
Other languages
Japanese (ja)
Other versions
JPH04321812A (en
Inventor
精 石田
常生 久米
前村  明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP03116711A priority Critical patent/JP3087771B2/en
Publication of JPH04321812A publication Critical patent/JPH04321812A/en
Application granted granted Critical
Publication of JP3087771B2 publication Critical patent/JP3087771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0457Details of the power supply to the electromagnets

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば磁気軸受や磁気
浮上装置に用いている電磁石に、電流を供給する電流制
御装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a current control device for supplying a current to an electromagnet used for a magnetic bearing or a magnetic levitation device, for example.

【0002】[0002]

【従来の技術】従来のスイッチング形の電流制御装置を
図2に示す。図2において、1は電流を与えたい電磁
石、2は偏差演算器、3は位相制御器、4はパルス幅変
調器、5は比較器、6は発振器、7はスイッチング主回
路、8は電流検出器である。偏差演算器2は電流指令I
s と電磁石1の電流に相当する信号If を比較し、その
差を出力する。その信号を受ける位相制御器3は少なく
とも電圧増幅器を持ち積分器や微分器で位相制御をす
る。その指令信号はパルス幅変調器4内の比較器5に与
えられ、発振器6の三角波信号と比較され方形波に整形
される。7は例えば特開昭63−199506に示され
るような構成のスイッチング素子を用いたスイッチング
主回路であり、パルス幅変調器4の信号に応じて電磁石
1に与える印加電圧を切り替える。ハイレベルの信号を
受ければ図中の矢印の方向に電流を増加する極性の主回
路電源電圧を印加し、ローレベルの信号を受ければ逆方
向に増加する極性の主回路電源電圧を印加する。このよ
うに、パルス幅変調器4のパルス列を受けて、電流の増
加、減少を繰り返すので三角波状のリップルが生じる。
その電流は電流検出器8によって検出され、前記のよう
に偏差演算器2で指令値と比較される。以上のような構
成のもとで、指令値Is より検出信号If の方が小さけ
れば偏差演算器2の信号に応じて位相制御器3が大きな
指令を出力し、パルス幅変調器4が働いてハイレベルの
時間確率が高いパルス列を出力する。そこでスイッチン
グ主回路7が電磁石1に印加する主回路電源電圧は、図
の矢印の方向に電流を増加する確率の方が高くなり、平
均的に電流が加速される。このようにして、ついには指
令値Is に応じた電流が電磁石1に流れ、電流制御され
るのである。この電流制御の応答性は、主回路電源電圧
に依存する。電磁石1の電流Iと印加電圧VにはV=L
(dI/dt)+IRの関係がある。この右辺第2項は
第1項に比べて一般に小さい場合が多く、電流の変化率
dI/dtはおよそ印加電圧VとインダクタンスLの比
V/Lに比例する。すなわち電流制御の応答性を示す電
流変化率は、印加電圧に比例するのである。
2. Description of the Related Art FIG. 2 shows a conventional switching type current controller. In FIG. 2, 1 is an electromagnet to which a current is to be applied, 2 is a deviation calculator, 3 is a phase controller, 4 is a pulse width modulator, 5 is a comparator, 6 is an oscillator, 7 is a switching main circuit, and 8 is current detection. It is a vessel. The deviation calculator 2 calculates the current command I
s and a signal If corresponding to the current of the electromagnet 1 are compared, and the difference is output. The phase controller 3 receiving the signal has at least a voltage amplifier and controls the phase with an integrator or a differentiator. The command signal is supplied to a comparator 5 in the pulse width modulator 4 and is compared with a triangular wave signal of an oscillator 6 to be shaped into a square wave. Reference numeral 7 denotes a switching main circuit using a switching element having a configuration as disclosed in, for example, JP-A-63-199506, and switches an applied voltage to be applied to the electromagnet 1 in accordance with a signal from the pulse width modulator 4. When a high-level signal is received, a main circuit power supply voltage having a polarity increasing the current in the direction of the arrow in the figure is applied, and when a low-level signal is received, a main circuit power supply voltage having a polarity increasing in the opposite direction is applied. As described above, the current is repeatedly increased and decreased in response to the pulse train of the pulse width modulator 4, so that a triangular ripple is generated.
The current is detected by the current detector 8 and compared with the command value in the deviation calculator 2 as described above. Under the above arrangement, the smaller the better the command value I s from the detection signal I f in accordance with a deviation calculator 2 outputs a signal of the phase control device 3 large command, the pulse width modulator 4 It works and outputs a pulse train with a high level time probability. Therefore, the main circuit power supply voltage applied to the electromagnet 1 by the switching main circuit 7 has a higher probability of increasing the current in the direction of the arrow in the figure, and the current is accelerated on average. In this way, finally flows into the current electromagnet 1 according to the command value I s, is being current controlled. The responsiveness of this current control depends on the main circuit power supply voltage. V = L for the current I and the applied voltage V of the electromagnet 1
(DI / dt) + IR. Generally, the second term on the right side is generally smaller than the first term, and the current change rate dI / dt is approximately proportional to the ratio V / L of the applied voltage V to the inductance L. That is, the current change rate indicating the response of the current control is proportional to the applied voltage.

【0003】[0003]

【発明が解決しようとする課題】上記のように、印加電
圧が電流変化率の大きさを変えて、電流制御ループの応
答性に影響を与えるのは、スイッチング素子に与えるO
N−Offの指令が100%ONになった時である。な
ぜなら、ON−Offのパルス列が与えられている時、
電流は順方向と逆方向の流れを繰り返してノコギリ波を
成し、指令値に追従しているからである。従って、最大
応答周波数が印加電圧に影響されることになるのであ
る。主回路電源電圧が上昇すれば電流制御の応答性は向
上し、下降すれば応答性も悪くなるのである。このよう
に電源変動により電流制御系の応答性が影響を受ける
と、その外に設けられた制御ループの特性を最大限にあ
げている場合などに影響を受けることがある。元来、不
安定系を成す磁石の吸引力を利用して非接触支持する磁
気軸受などでは、系の設計を最適にしている時に、各要
素の利得が小さくなっても、大きくなっても安定性を損
なう場合があるのである。主回路電源の電圧が電流ルー
プの特性に影響する場合もそうであり、これを回避する
ため安定化電源を用いていたが、高価になるだけでなく
複雑になるという課題があった。
As described above, the reason that the applied voltage changes the magnitude of the current change rate and affects the responsiveness of the current control loop is that O applied to the switching element.
This is when the N-Off command is turned on 100%. Because when ON-Off pulse train is given,
This is because the current repeats forward and reverse flows to form a sawtooth wave and follows the command value. Therefore, the maximum response frequency is affected by the applied voltage. As the main circuit power supply voltage increases, the responsiveness of the current control improves, and as the main circuit power supply voltage decreases, the responsiveness deteriorates. When the responsiveness of the current control system is affected by the power supply fluctuation as described above, the response may be affected when the characteristics of a control loop provided outside the system are maximized. Originally, for magnetic bearings that support non-contact by utilizing the attractive force of a magnet that forms an unstable system, when the system design is optimized, even if the gain of each element is small or large, it is stable. In some cases, it may impair the performance. This is also the case when the voltage of the main circuit power supply affects the characteristics of the current loop. In order to avoid this, a stabilized power supply has been used, but there has been a problem that it is not only expensive but also complicated.

【0004】[0004]

【課題を解決するための手段】本発明は、電磁石への供
給電流を制御する電流制御装置において、前記電磁石に
電流を供給するスイッチング主回路と、電流指令値と前
記電磁石電流検出値とを比較してその偏差を出力する偏
差演算器と、前記偏差を入力し、前記スイッチング主回
路のパワー電源電圧に応じて時定数の変化する可変フィ
ルタと、この可変フィルタの出力を入力する位相制御器
と、この位相制御器の出力を入力するパルス幅変調器
と、このパルス幅変調器の出力に応じて前記スイッチン
グ主回路から電磁石に与える印加電圧を切り換えるよう
にしたことを特徴とするものである。
According to the present invention, there is provided a current control device for controlling a current supplied to an electromagnet, wherein a switching main circuit for supplying a current to the electromagnet is compared with a current command value and the electromagnet current detection value. A deviation calculator that outputs the deviation, a variable filter that receives the deviation, changes a time constant according to the power supply voltage of the switching main circuit, and a phase controller that receives the output of the variable filter. A pulse width modulator to which an output of the phase controller is inputted, and a voltage applied from the switching main circuit to the electromagnet is switched in accordance with an output of the pulse width modulator.

【0005】[0005]

【作用】本発明によれば、電源電圧が最も低くなった時
を初期状態とすると、その時の該電圧の検出信号は最も
小さくなり、その信号を受けた可変フィルタは時定数が
最も小さくなって、全体としての電流制御ループは、あ
る特性をもつことになる。この時、電源電圧が最も高く
なったとすると、電源電圧の検出信号は最も高くなり、
その信号を受けた可変フィルタの時定数が最も大きくな
る。電源電圧が高くなってdI/dtが大きくなるが、
制御ループ内に設けた可変フィルタにより時定数を大き
くして動特性を低下させたため、これらが相殺してルー
プ特性が一定に保たれるのである。従って電源電圧が変
動しても、電流制御特性が変化しない系を構成できるの
である。
According to the present invention, when the time when the power supply voltage becomes the lowest is set as the initial state, the detection signal of the voltage at that time becomes the smallest, and the variable filter receiving the signal has the smallest time constant. , The current control loop as a whole will have certain characteristics. At this time, if the power supply voltage becomes the highest, the detection signal of the power supply voltage becomes the highest,
The time constant of the variable filter receiving the signal becomes the largest. Although the power supply voltage increases and dI / dt increases,
Since the dynamic characteristics are lowered by increasing the time constant by the variable filter provided in the control loop, these are canceled out and the loop characteristics are kept constant. Therefore, a system in which the current control characteristics do not change even when the power supply voltage changes can be configured.

【0006】[0006]

【実施例】図1は本発明の具体的実施例をあらわす図で
ある。1〜8は図2のものと同じであり9が可変フィル
タ、10が電圧検出器である。電圧検出器10はスイッ
チング主回路7の主回路電源電圧を検出し、対応する電
圧信号を出力する。可変フィルタ9は偏差演算器2の出
力信号を入力とし、位相制御器3に出力信号を与えるロ
ーパスフィルタであるが、その時定数が、該電圧検出器
10の信号により制御され、大きな入力に対しては時定
数を大きくし、小さな入力に対しては時定数を小さくす
る働きがある。そして、この入力信号と時定数の大きさ
が比例関係にある。このような系において、主回路電源
電圧がとりうる最も低い電圧と、最も高い電圧の場合に
ついて説明する。まず、最も低い電圧VL になっている
時を考えると、dI/dtはVL /Lに等しい。この時
パルス幅変調器4のパルス列が100%ONの状態にな
る直前の状態とすると、電圧検出器10の信号はvL
最も小さく、可変フィルタの時定数もTL と最も小さ
く、フィルタは1/(1+TL S)の伝達特性を持ち、
高周波域ではおよそ1/TL Sの特性に等しくなる。次
に、最も高い電圧VH になった時のことを考えると、d
I/dtはVH /Lになり、主回路部の電流変化率は
(VH /L)/(VL /L)=VH /VL 倍大きくな
る。VH を検出した電圧検出器10は対応する信号vH
を可変フィルタ9に与えるのでフィルタの伝達特性は1
/(1+TH S)になり、高周波域ではおよそ1/TH
Sの特性となる。フィルタの高周波域特性は(1/TH
S)/(1/TL S)=TL /TH =vL /vH =VL
/VH倍となるので、全体としては(VH /VL )×
(VL /VH )=1となり、一定となる。すなわち主回
路電源電圧が変わっても可変フィルタが補償するので高
周波域の特性を一定に保つ働きがある。
FIG. 1 is a diagram showing a specific embodiment of the present invention. Reference numerals 1 to 8 are the same as those in FIG. 2; 9 is a variable filter, and 10 is a voltage detector. Voltage detector 10 detects a main circuit power supply voltage of switching main circuit 7 and outputs a corresponding voltage signal. The variable filter 9 is a low-pass filter that receives the output signal of the deviation calculator 2 and supplies the output signal to the phase controller 3. The time constant of the variable filter 9 is controlled by the signal of the voltage detector 10. Has the effect of increasing the time constant and decreasing the time constant for small inputs. The magnitude of the time constant is proportional to the input signal. In such a system, the case where the main circuit power supply voltage can be the lowest and the highest can be described. First, when the lowest voltage V L is considered, dI / dt is equal to V L / L. At this time, assuming that the pulse train of the pulse width modulator 4 is in a state immediately before being turned on 100%, the signal of the voltage detector 10 is the smallest, v L , the time constant of the variable filter is also the smallest, T L, and the filter is has the transfer characteristic of 1 / (1 + T L S ),
In the high frequency range, the characteristic is approximately equal to 1 / T L S. Next, when the highest voltage V H is considered, d
I / dt becomes VH / L, and the current change rate of the main circuit portion is ( VH / L) / ( VL / L) = VH / VL times larger. The voltage detector 10 that has detected V H outputs a corresponding signal v H
Is given to the variable filter 9, so that the transfer characteristic of the filter is 1
/ Becomes (1 + T H S), in the high frequency range of approximately 1 / T H
It becomes the characteristic of S. The high-frequency characteristics of the filter are (1 / TH
S) / (1 / T L S) = T L / T H = v L / v H = V L
/ V H times, so (V H / V L ) ×
(V L / V H ) = 1, which is constant. That is, even if the main circuit power supply voltage changes, the variable filter compensates, and thus has the function of keeping the characteristics in the high frequency range constant.

【0007】[0007]

【発明の効果】以上のように、スイッチング素子を用い
てパルス幅変調し、電流制御をする系において、主回路
電源変動が生じても可変フィルタの働きで高周波域の動
特性が変化することなく一定に保たれるので、上位の制
御ループに影響を与えることなく安定した系を保持する
ことができる。従ってスイッチング形の安定化電源を用
いることなく整流形のシンプルで安価な、故障の少ない
電源を用いることができ、系全体の信頼性も向上する効
果がある。
As described above, in a system in which pulse width modulation is performed by using a switching element and current is controlled, even if a main circuit power supply fluctuates, the dynamic characteristics of a high frequency region do not change due to the function of a variable filter. Since it is kept constant, a stable system can be maintained without affecting the upper control loop. Therefore, it is possible to use a simple, inexpensive, and inexpensive power supply of a rectifying type without using a switching-type stabilized power supply, which has the effect of improving the reliability of the entire system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】従来例を示す図である。FIG. 2 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 電磁石 2 偏差演算器 3 位相補償器 4 パルス幅変調器 5 比較器 6 発振器 7 スイッチング主回路 8 電流検出器 9 可変フィルタ 10 電圧検出器 DESCRIPTION OF SYMBOLS 1 Electromagnet 2 Deviation calculator 3 Phase compensator 4 Pulse width modulator 5 Comparator 6 Oscillator 7 Switching main circuit 8 Current detector 9 Variable filter 10 Voltage detector

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭48−12443(JP,A) 特開 昭63−199506(JP,A) 特開 昭55−146505(JP,A) (58)調査した分野(Int.Cl.7,DB名) F16C 32/04 G05F 1/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-48-12443 (JP, A) JP-A-63-199506 (JP, A) JP-A-55-146505 (JP, A) (58) Field (Int.Cl. 7 , DB name) F16C 32/04 G05F 1/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電磁石への供給電流を制御する電流制御
装置において、前記電磁石に電流を供給するスイッチン
グ主回路と、電流指令値と前記電磁石電流検出値とを比
較してその偏差を出力する偏差演算器と、前記偏差を入
力し、前記スイッチング主回路のパワー電源電圧に応じ
て時定数の変化する可変フィルタと、この可変フィルタ
の出力を入力する位相制御器と、この位相制御器の出力
を入力するパルス幅変調器と、このパルス幅変調器の出
力に応じて前記スイッチング主回路から電磁石に与える
印加電圧を切り換えるようにしたことを特徴とする電流
制御装置。
1. A current control device for controlling a current supplied to an electromagnet, comprising: a switching main circuit for supplying a current to the electromagnet; and a deviation for comparing a current command value with the detected electromagnet current and outputting a deviation thereof. An arithmetic unit, a variable filter that receives the deviation, and changes a time constant according to the power supply voltage of the switching main circuit, a phase controller that receives an output of the variable filter, and an output of the phase controller. A current control device wherein a pulse width modulator to be inputted and a voltage applied from the switching main circuit to an electromagnet are switched according to an output of the pulse width modulator.
JP03116711A 1991-04-19 1991-04-19 Current control device Expired - Fee Related JP3087771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03116711A JP3087771B2 (en) 1991-04-19 1991-04-19 Current control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03116711A JP3087771B2 (en) 1991-04-19 1991-04-19 Current control device

Publications (2)

Publication Number Publication Date
JPH04321812A JPH04321812A (en) 1992-11-11
JP3087771B2 true JP3087771B2 (en) 2000-09-11

Family

ID=14693925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03116711A Expired - Fee Related JP3087771B2 (en) 1991-04-19 1991-04-19 Current control device

Country Status (1)

Country Link
JP (1) JP3087771B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104516379A (en) * 2013-09-30 2015-04-15 珠海格力节能环保制冷技术研究中心有限公司 Bias voltage adjustment method and device of magnetic levitation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4036567B2 (en) * 1999-01-27 2008-01-23 株式会社荏原製作所 Control type magnetic bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104516379A (en) * 2013-09-30 2015-04-15 珠海格力节能环保制冷技术研究中心有限公司 Bias voltage adjustment method and device of magnetic levitation system

Also Published As

Publication number Publication date
JPH04321812A (en) 1992-11-11

Similar Documents

Publication Publication Date Title
JP2596314B2 (en) Switching power supply circuit
JP3574394B2 (en) Switching power supply
EP2299575B1 (en) Improved feedback control of a dc/dc power converter
US5959443A (en) Controller circuit for controlling a step down switching regulator operating in discontinuous conduction mode
US6828766B2 (en) Voltage regulator
US6518738B1 (en) Switching regulator control circuit with proactive transient response
EP0519471B1 (en) Amplification circuit
US4988942A (en) Switched resistor regulator control when transfer function includes discontinuity
US20040046683A1 (en) DC stabilized power supply
KR19990030033A (en) Switching Regulator Improves Efficiency at Small Loads
WO2002047244A1 (en) Frequency limitation and overload detection in a voltage regulator
EP1724908A1 (en) Circuit and method for reducing overshoot in a switching regulator
JPH11196566A (en) Step-up dc-dc converter
JP2790263B2 (en) Current mode control converter circuit
EP0608974B1 (en) Base current-control circuit of an output transistor
JP3087771B2 (en) Current control device
US5262692A (en) Variable voltage switched current control
JPH06188660A (en) Power amplifier circuit
JP2841085B2 (en) Switching voltage regulator with stabilized loop gain
JPH06335238A (en) Power supply device
JPH0783221B2 (en) Power amplifier for generating magnetic attraction
JP3065098B2 (en) Brushless DC motor drive circuit
JP7449802B2 (en) power supply
JPH04359675A (en) Control circuit for switching power supply
JP2679581B2 (en) Switching power supply circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees