JP3086504U - Optical film characteristic evaluation device and optical film characteristic evaluation system - Google Patents
Optical film characteristic evaluation device and optical film characteristic evaluation systemInfo
- Publication number
- JP3086504U JP3086504U JP2001007949U JP2001007949U JP3086504U JP 3086504 U JP3086504 U JP 3086504U JP 2001007949 U JP2001007949 U JP 2001007949U JP 2001007949 U JP2001007949 U JP 2001007949U JP 3086504 U JP3086504 U JP 3086504U
- Authority
- JP
- Japan
- Prior art keywords
- optical film
- light
- sample
- characteristic evaluation
- chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
(57)【要約】
【課題】 DWDMフィルタ等の薄膜の光透過特性等の
光学特性の迅速・高精度評価が可能で、かつ、廉価な光
学膜特性評価装置および光学膜特性評価システムを提供
する。
【解決手段】 受光手段により受光した信号光を解析し
て光学膜試料の特性評価を行う光学膜特性評価装置にお
いて、チップの載置面の平坦度が±0.1°以下となる
ように高精度に研磨した試料載置面上に光学膜試料を載
置し、これに光源からの光を集光して光学膜試料に光を
照射し、光学膜試料からの透過光を受光し、受光した透
過光を基に任意の光入射角度での光透過光量を算出する
構成とした。これにより、評価をする毎に光学系を駆動
させる必要が無くなり、迅速・高精度の評価が可能で、
かつ、廉価な光学膜特性評価装置および光学膜特性評価
システムが得られる。
PROBLEM TO BE SOLVED: To provide an inexpensive optical film characteristic evaluation apparatus and an optical film characteristic evaluation system capable of quickly and accurately evaluating optical characteristics such as light transmission characteristics of a thin film such as a DWDM filter. . SOLUTION: In the optical film characteristic evaluation apparatus for analyzing the signal light received by the light receiving means and evaluating the characteristics of the optical film sample, the flatness of the chip mounting surface is set to ± 0.1 ° or less. An optical film sample is mounted on a precisely polished sample mounting surface, light from a light source is condensed on the sample, and the optical film sample is irradiated with light, and transmitted light from the optical film sample is received and received. The configuration is such that the amount of transmitted light at an arbitrary incident angle of light is calculated based on the transmitted light. This eliminates the need to drive the optical system every time evaluation is performed, enabling quick and highly accurate evaluation.
In addition, an inexpensive optical film characteristic evaluation device and an optical film characteristic evaluation system can be obtained.
Description
【0001】[0001]
本考案は、光学膜特性評価装置および光学膜特性評価システムに関し、より詳 細には、例えばDWDMフィルタ等の多層膜の光透過特性等の光学特性の迅速で 高精度の評価が可能で、かつ、廉価な、光学膜特性評価装置および光学膜特性評 価システムに関する。 The present invention relates to an optical film characteristic evaluation apparatus and an optical film characteristic evaluation system, and more particularly, to a quick and highly accurate evaluation of optical characteristics such as light transmission characteristics of a multilayer film such as a DWDM filter, and The present invention relates to an inexpensive optical film characteristic evaluation device and an optical film characteristic evaluation system.
【0002】[0002]
光通信分野でのDWDM(Dense Wavelength Division Multiplexing:高 密度波長分割多重)通信方式用波長分割フィルタ(DWDMフィルタ)は、表面 を高精度に研磨したガラス基板上に屈折率の異なる誘電体薄膜を交互に数十〜数 百層形成した多層膜から構成され、その光透過特性等の光学特性を精度良く、か つ、迅速に評価する技術は、DWDMフィルタ製造における重要技術である。 In the field of optical communication, DWDM (Dense Wavelength Division Multiplexing) communication system wavelength division filters (DWDM filters) consist of alternating dielectric thin films with different refractive indices on a glass substrate whose surface is polished with high precision. A technology for accurately and quickly evaluating optical characteristics such as light transmission characteristics of a multilayer film formed of several tens to several hundreds of layers is an important technology in DWDM filter manufacturing.
【0003】 DWDMフィルタは、一般に、フィルタに光を0〜5°の角度(特に1.8° 又は2.0°)で入射させた場合の光透過特性が重要であり、この条件での光透 過特性を精度良く測定することが重要である。このため、従来の光学膜特性評価 装置では、自動光入射角度調整機能を備える試料ステージ上にフィルタを載置し 、先ず、フィルタの表面に光が垂直に入射するように調整を行ない、次に、所望 の角度だけ試料ステージを傾けることでフィルタ表面と入射光とのなす角度を設 定して、その光入射角度条件での透過光量を測定するという手順を取っていた。[0003] In general, a DWDM filter is important in light transmission characteristics when light is incident on the filter at an angle of 0 to 5 ° (especially 1.8 ° or 2.0 °). It is important to measure transmission characteristics accurately. For this reason, in the conventional optical film characteristic evaluation apparatus, a filter is mounted on a sample stage having an automatic light incident angle adjustment function, and firstly, adjustment is performed so that light is vertically incident on the surface of the filter, and then, By tilting the sample stage by a desired angle, the angle between the filter surface and the incident light is set, and the amount of transmitted light under the light incident angle condition is measured.
【0004】 図9は、従来の光学膜特性評価装置に備えられる光学系の構成を説明するため の図である。光源から射出された光は、光ファイバ91に導光されて光照射部9 2から射出され、レンズ93により集光されてDWDMフィルタのチップ94に 入射する。チップ94に入射した光は、チップ94の多層膜内部で多重に反射・ 屈折を繰り返し、入射面とは反対の面から透過してきた光が受光部95により受 光され、光ファイバ96により導光されて図示しない信号光解析装置へと導かれ る。FIG. 9 is a diagram for explaining a configuration of an optical system provided in a conventional optical film characteristic evaluation apparatus. The light emitted from the light source is guided to the optical fiber 91, emitted from the light irradiating section 92, collected by the lens 93, and made incident on the chip 94 of the DWDM filter. The light incident on the chip 94 is repeatedly reflected and refracted inside the multilayer film of the chip 94, and the light transmitted from the surface opposite to the incident surface is received by the light receiving unit 95 and guided by the optical fiber 96. Then, it is led to a signal light analyzer (not shown).
【0005】 チップ94は、先ず、チップ載置面が水平面に一致するように調整されたチッ プホルダに載置され、入射光がチップホルダに載置されたチップ94の表面に垂 直に入射するように調整を行なった後、レンズ93を含む光学系全体を傾斜させ て、入射光がチップ94の表面に所望の入射角度φとなるように設定して、その 状態での光透過特性を評価するという手順が取られる。[0005] First, the chip 94 is mounted on a chip holder whose chip mounting surface is adjusted to coincide with a horizontal plane, and incident light is vertically incident on the surface of the chip 94 mounted on the chip holder. After the adjustment as described above, the entire optical system including the lens 93 is tilted so that the incident light has a desired incident angle φ on the surface of the chip 94, and the light transmission characteristics in that state are evaluated. The procedure of doing is taken.
【0006】[0006]
しかし、このような光学系の評価装置では、レンズを含む光学系全体を、チッ プ面と水平面とがなす角度φだけ正確に傾斜させる自動入射角度調整機能を備え た精密な試料ステージが必要となり、その結果、光学膜特性評価装置および光学 膜特性評価システムが高価なものとなってしまうという問題があった。 However, such an evaluation system for an optical system requires a precise sample stage equipped with an automatic incident angle adjustment function that inclines the entire optical system including the lens exactly by the angle φ between the chip surface and the horizontal plane. As a result, there has been a problem that the optical film characteristic evaluation device and the optical film characteristic evaluation system are expensive.
【0007】 また、個々のチップの光学特性を評価するために要する時間のほとんどが上述 の光学系の調整に費やされることとなる結果、光学特性評価のスループットが大 幅に低下せざるを得ないという問題もあった。Further, most of the time required to evaluate the optical characteristics of each chip is spent on the adjustment of the above-described optical system, and as a result, the throughput of the optical characteristics evaluation has to be significantly reduced. There was also a problem.
【0008】 更に、DWDMフィルタの透過波長特性は必ずしも面内で均一な分布を有しな いため、光学特性の測定位置も±0.02mm以内の精度で決定する必要がある が、従来の光学膜特性評価装置では、かかる精度での試料位置決定が困難であっ た。Further, since the transmission wavelength characteristic of the DWDM filter does not always have a uniform distribution in the plane, the measurement position of the optical characteristic also needs to be determined with an accuracy within ± 0.02 mm. With the characteristic evaluation device, it was difficult to determine the sample position with such accuracy.
【0009】 本考案は、このような問題に鑑みてなされたものであって、その目的とすると ころは、例えばDWDMフィルタ等の薄膜や多層膜の光透過特性等の光学特性の 迅速・正確な評価が可能で、測定試料位置の決定が容易で、かつ、廉価な、光学 膜特性評価装置および光学膜特性評価システムを提供するところにある。The present invention has been made in view of such a problem, and a purpose thereof is to provide a quick and accurate optical characteristic such as a light transmission characteristic of a thin film or a multilayer film such as a DWDM filter. An object of the present invention is to provide an optical film characteristic evaluation apparatus and an optical film characteristic evaluation system that can be evaluated, can easily determine the position of a measurement sample, and are inexpensive.
【0010】[0010]
【課題を解決するための手段】 本考案は、このような目的を達成するために、請求項1に記載の考案は、光源 からの光を集光して試料に光を照射するための光照射手段と、光学膜試料を載置 するための試料載置手段と、前記光学膜試料からの反射光または透過光を受光す るための受光手段を備え、該受光手段により受光した信号光を解析して前記光学 膜試料の特性評価を行う光学膜特性評価装置であって、前記試料載置手段の試料 載置面の平坦度が±0.1°以下であることを特徴とする。Means for Solving the Problems According to the present invention, in order to achieve such an object, the invention according to claim 1 uses a light for condensing light from a light source and irradiating the sample with light. Irradiation means, sample mounting means for mounting the optical film sample, and light receiving means for receiving reflected light or transmitted light from the optical film sample, and the signal light received by the light receiving means is provided. An optical film characteristic evaluation apparatus for analyzing and evaluating characteristics of the optical film sample, wherein a flatness of a sample mounting surface of the sample mounting means is ± 0.1 ° or less.
【0011】 また、請求項2に記載の考案は、評価試料である光学膜試料を保管する試料保 管手段と、前記光学膜試料の光学特性評価を行う光学膜特性評価手段と、前記光 学膜試料を前記光学膜特性評価手段に搬送する試料搬送手段とを備える光学膜特 性評価システムであって、前記光学膜特性評価手段が請求項1に記載の光学膜特 性評価装置であることを特徴とする。The invention according to claim 2 is a sample storage means for storing an optical film sample as an evaluation sample, an optical film characteristic evaluation means for evaluating the optical characteristics of the optical film sample, and the optical device. An optical film property evaluation system comprising: a sample transport means for transferring a film sample to the optical film property evaluation means, wherein the optical film property evaluation means is the optical film property evaluation apparatus according to claim 1. It is characterized by.
【0012】 更に、請求項3に記載の考案は、請求項2に記載の光学膜特性評価システムに おいて、前記試料保管手段と前記光学膜特性評価手段との間に画像認識手段を備 え、前記試料搬送手段により搬送中の前記光学膜試料の基準位置からのずれ量を 前記画像認識手段により判断し、該判断結果を基に前記光学膜試料を試料載置手 段の基準位置に載置させることを特徴とする。Further, according to a third aspect of the present invention, in the optical film characteristic evaluation system according to the second aspect, an image recognition unit is provided between the sample storage unit and the optical film characteristic evaluation unit. The amount of deviation of the optical film sample from the reference position being transported by the sample transporting means is determined by the image recognition means, and based on the determination result, the optical film sample is mounted on the reference position of the sample mounting means. It is characterized by being placed.
【0013】[0013]
以下、図面を参照して本考案の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
【0014】 図1は、本考案の光学膜特性評価装置に備えられるチップホルダの構成を説明 するための図で、図1(a)はチップホルダの平面図であり、図1(b)はチッ プホルダの断面図である。FIG. 1 is a diagram for explaining the configuration of a chip holder provided in the optical film characteristic evaluation device of the present invention. FIG. 1A is a plan view of the chip holder, and FIG. It is sectional drawing of a chip holder.
【0015】 チップホルダ10は、1.4mm×1.4mmのチップ載置面13を有し、中 央部には直径1.0mmの光入射孔11が設けられ、チップ載置面13の四隅に は直径0.2〜0.3mmの真空チャック孔12a〜dが設けられている。The chip holder 10 has a chip mounting surface 13 having a size of 1.4 mm × 1.4 mm, and a light incident hole 11 having a diameter of 1.0 mm is provided in a central portion. Are provided with vacuum chuck holes 12a to 12d having a diameter of 0.2 to 0.3 mm.
【0016】 DWDMフィルタ用チップは、断面が概ね1.4mm×1.4mmの方形であ り、チップの四隅が真空チャック孔12a〜dを通して真空吸引されてチップ載 置面13にセットされ、チップホルダ10下面側から入射し光入射孔11を通過 してきた光の入射を受ける。The DWDM filter chip has a rectangular cross section of approximately 1.4 mm × 1.4 mm, and the four corners of the chip are vacuum-sucked through the vacuum chuck holes 12 a to 12 d and set on the chip mounting surface 13. Light incident from the lower surface side of the holder 10 and passing through the light entrance hole 11 is received.
【0017】 チップ載置面13は極めて平坦に加工されており、チップ載置面13が完全に 平坦であると仮定した場合の理想平面(幾何学的平面)と、チップ載置面13上 に実際にチップが載置された場合のチップ表面とのなす角度が±0.1°以下と なるように高精度の研磨が施されている。このチップ載置面13の平坦度は、T iO2とSiO2を交互に積層させたλ/4光学膜厚構成の狭帯域透過フィルタ のチップを仮定し、チップを透過してくる光量の光入射角度依存性をシミュレー ションした結果を基に決定した。The chip mounting surface 13 is processed to be extremely flat, and an ideal plane (geometric plane) when the chip mounting surface 13 is assumed to be completely flat, and a chip mounting surface 13 are formed on the chip mounting surface 13. High-precision polishing is performed so that the angle between the chip and the chip surface when the chip is actually mounted is ± 0.1 ° or less. The flatness of the chip mounting surface 13 is assumed to be a narrow band transmission filter chip having a λ / 4 optical film thickness in which TiO 2 and SiO 2 are alternately laminated. It was determined based on the result of simulating the incident angle dependence.
【0018】 図2は、DWDM用等として用いられる狭帯域透過フィルタの透過特性と入射 角度との関係を説明するための図で、図2(a)は、光入射角度が、0.0°、 1.8°、3.0°、および5.0°の場合の各波長での光透過率を示しており 、図2(b)は、チップ載置面を傾斜させてその傾斜角度に対応する光入射角度 αを0〜5°まで変化させた場合の中心波長の相対変化を示している。FIG. 2 is a diagram for explaining the relationship between the transmission characteristics of a narrow band transmission filter used for DWDM and the like and the incident angle. FIG. 2A shows a case where the light incident angle is 0.0 °. , 1.8 °, 3.0 °, and 5.0 °, the light transmittance at each wavelength is shown. FIG. 2B shows that the chip mounting surface is inclined and the inclination angle is changed. The relative change of the center wavelength when the corresponding light incident angle α is changed from 0 to 5 ° is shown.
【0019】 図2(a)に示すように、チップを透過してくる光量はチップ表面への光入射 角度により変化するが、これは、光の入射角度によって干渉薄膜の透過波長が変 化することに起因する現象である。As shown in FIG. 2A, the amount of light transmitted through the chip changes according to the incident angle of light on the chip surface. This is because the transmission wavelength of the interference thin film changes according to the incident angle of light. This is a phenomenon caused by:
【0020】 また、図2(b)に示すように、透過光の中心波長はチップの傾斜角度(即ち 光の入射角度)に依存して変化するが、この中心波長の相対変化と光の入射角度 との関係は、以下の単層膜の波長変化原理によって理解できる。As shown in FIG. 2B, the center wavelength of the transmitted light changes depending on the tilt angle of the chip (that is, the incident angle of light). The relationship with the angle can be understood from the following principle of wavelength change of the single-layer film.
【0021】 図3は、単層の干渉薄膜に光が入射する場合の透過波長の変化を理解するため の図で、屈折率n0の真空中から、屈折率nsの基板上に成膜された厚みdの屈 折率nの単層膜に、入射角θ0で光が入射する様子を示している。[0021] Figure 3 deposition is a diagram for light interference thin film of a single layer to understand the changes in the transmission wavelength in the case of incident, the vacuum of the refractive index n 0, on the substrate having a refractive index n s the single layer film of refractive Oriritsu n of thickness d that is, shows a state in which light is incident at an incident angle theta 0.
【0022】 図中、D点で反射する光と、薄膜中に入射角θで入射した後に薄膜裏面によっ て反射されてC点から出射される光の光路差をΔとすると、光路差Δは、単純な 幾何光学の演算を行なうことにより、 Δ=2nd(1/cosθ−tanθ・sinθ) =2nd・cosθ =2d(n2−no 2sinθ0)1/2 と求まり、入射角度θ0が変化すると、これに対応して光路差Δが変化すること が理解できる。そして、フィルタに入射する光の入射角度θ0が変化することに より光路差Δが変化すると、中心波長が変化することになる。In the figure, if the optical path difference between the light reflected at point D and the light that is incident on the thin film at an incident angle θ and then reflected by the back surface of the thin film and emitted from point C is Δ, the optical path difference Δ , by performing the calculation of simple geometrical optics, Δ = 2nd (1 / cosθ -tanθ · sinθ) = 2nd · cosθ = 2d (n 2 -n o 2 sinθ 0) 1/2 and Motomari, the incident angle θ It can be seen that when 0 changes, the optical path difference Δ changes correspondingly. The more the optical path difference Δ is changed to the incident angle theta 0 of the light incident on the filter is changed, so that the center wavelength changes.
【0023】 例えば、狭帯域フィルタの光学特性評価では、中心波長を1550nmとして 精度±0.010nmで決定することが必要であるが、従来の光学膜特性評価装 置のように、予め、入射光とチップ表面とを垂直になるように調整(0°合わせ )し、その後所望の角度だけチップを傾斜させて評価を行なう方法では、透過光 の中心波長を±0.010nmの精度で決定することは極めて困難である。For example, in the evaluation of the optical characteristics of a narrow band filter, it is necessary to determine the center wavelength at 1550 nm with an accuracy of ± 0.010 nm. In this method, the center wavelength of transmitted light is determined with an accuracy of ± 0.010 nm by adjusting the chip so that it is perpendicular to the chip surface (0 ° alignment), and then tilting the chip by a desired angle. Is extremely difficult.
【0024】 その理由は、光強度が最大値をとるチップ位置で判断される0°合わせの精度 は、光測定のノイズのためにせいぜい±0.01°程度であり、この0°合わせ の後にチップを更に2〜5°傾斜させると、傾斜精度が±0.003°程度ある ため、全体としての角度誤差が±0.013°程度となり、中心波長誤差Δλは Δλ/λ=sinθ・dθ=±1.2×10−5となって、Δλ=±0.019 nm程度となることに加え、透過光の中心波長は、図2(b)に示すように、チ ップの傾斜角度が大きいほど僅かな傾斜角度の誤差のよって大きく変化してしま うことによる。The reason is that the accuracy of 0 ° alignment determined at the chip position where the light intensity takes the maximum value is at most about ± 0.01 ° due to noise in optical measurement, and after this 0 ° alignment, When the tip is further tilted by 2 to 5 °, the tilt error is about ± 0.003 °, so that the overall angular error is about ± 0.013 °, and the center wavelength error Δλ is Δλ / λ = sin θ · dθ = In addition to ± 1.2 × 10 −5 and Δλ = ± 0.019 nm, the center wavelength of the transmitted light is, as shown in FIG. The larger the value, the greater the change due to slight inclination angle error.
【0025】 従って、従来の評価装置で採用されているようなチップ傾斜を行なわず、正確 な垂直光入射の条件で測定した透過光量を基に透過光強度の光入射角度依存性を 理論的に求め、これにより所望の光入射角度での透過光量を求めることによって より高い精度の評価が可能となる。すなわち、図2(b)において、傾斜角度が 0°を中心に±0.1°の範囲にあれば、中心波長の相対変化はせいぜいΔλ/ λ0≒5×10−6であり、Δλ≦0.01nmとすることが可能となる。すな わち、チップ載置面が完全に平坦であると仮定した場合の理想平面(幾何学的平 面)と、チップ載置面上に実際にチップが載置された場合のチップ表面とのなす 角度を±0.1°以下とし、垂直光入射の条件で測定した透過光量を基に透過光 強度の光入射角度依存性を理論的に求め、これにより所望の光入射角度での透過 光量を求めることによって従来の評価装置よりも高い精度の評価が可能となる。Therefore, the dependence of the transmitted light intensity on the light incident angle is theoretically determined based on the transmitted light amount measured under the condition of accurate vertical light incidence without performing the chip tilting as employed in the conventional evaluation apparatus. By obtaining the amount of transmitted light at a desired light incident angle, higher accuracy evaluation is possible. That is, in FIG. 2B, if the inclination angle is in a range of ± 0.1 ° centering on 0 °, the relative change of the center wavelength is at most Δλ / λ 0 ≒ 5 × 10 −6 and Δλ ≦ It can be set to 0.01 nm. That is, the ideal plane (geometric plane) when the chip mounting surface is assumed to be completely flat, and the chip surface when the chip is actually mounted on the chip mounting surface. The angle between the incident light and the incident light is determined to be ± 0.1 ° or less, and the dependence of the transmitted light intensity on the incident light angle is theoretically determined based on the amount of transmitted light measured under the condition of perpendicular incident light. By obtaining the light quantity, it is possible to evaluate with higher accuracy than the conventional evaluation device.
【0026】 図4は、チップ載置面の平坦度が±0.1度以下となるように高精度の研磨を 施したチップホルダを備える本考案の光学膜特性評価装置の構成を説明するため の図である。FIG. 4 is a view for explaining the configuration of the optical film characteristic evaluation apparatus of the present invention including a chip holder which is polished with high precision so that the flatness of the chip mounting surface is ± 0.1 degrees or less. FIG.
【0027】 光源から射出された光は、光ファイバ41に導光されて光照射部42から射出 され、レンズ43により集光されて、チップホルダ44上に載置されたDWDM フィルタのチップ45に入射する。チップ45に入射した光は、チップ45の多 層膜45aの内部で多重に反射・屈折を繰り返し、入射面とは反対の面から透過 してきた光が受光部46により受光され、光ファイバ47により導光されて図示 しない解析装置へと導かれる。The light emitted from the light source is guided to the optical fiber 41, emitted from the light irradiating section 42, condensed by the lens 43, and directed to the DWDM filter chip 45 mounted on the chip holder 44. Incident. The light incident on the chip 45 is repeatedly reflected and refracted inside the multilayer film 45a of the chip 45, and the light transmitted from the surface opposite to the incident surface is received by the light receiving unit 46, and is received by the optical fiber 47. The light is guided to an analyzer (not shown).
【0028】 図5は、図4に示した構成のチップホルダ上にDWDMフィルタを載置し、チ ップホルダのチップ載置面を水平面から僅かに傾けた場合のDWDMフィルタの 透過光量の光入射角度依存性を求めた結果である。なお、ここでは、完全な垂直 入射条件での透過光量をRmaxとし、高精度評価で求められる透過光量の最小 値をRminとしている。この図からわかるように、入射光とチップ面とのなす 角が±0.1度以下、換言すれば、チップ載置面上に実際にチップが載置された 場合のチップ表面と水平面とのなす角度が±0.1度以下となるようにチップ載 置面を高精度で研磨することにより、透過特性評価に必要な精度が確保可能であ ることが確認された。FIG. 5 shows the light incident angle of the amount of light transmitted through the DWDM filter when the DWDM filter is mounted on the chip holder having the configuration shown in FIG. 4 and the chip mounting surface of the chip holder is slightly inclined from the horizontal plane. This is the result of obtaining dependency. Here, the transmitted light amount under the perfect vertical incidence condition is R max, and the minimum value of the transmitted light amount obtained by the high precision evaluation is R min . As can be seen from this figure, the angle between the incident light and the chip surface is ± 0.1 degrees or less, in other words, the difference between the chip surface and the horizontal plane when the chip is actually mounted on the chip mounting surface. It was confirmed that by polishing the chip mounting surface with high accuracy so that the angle formed was ± 0.1 degrees or less, the accuracy required for transmission characteristic evaluation could be secured.
【0029】 このように、本考案の光学膜特性評価装置に備えるチップホルダは、そのチッ プ載置面の平坦度が±0.1度以下となるように高度に研磨されているため、従 来の光学膜特性評価装置のように、レンズを含む光学系全体を、チップ面と水平 面とがなす角度だけ正確に傾斜させる精密な駆動装置を備える構成としなくても 、許容精度内での透過率測定が可能となる。As described above, the chip holder provided in the optical film characteristic evaluation device of the present invention is highly polished so that the flatness of the chip mounting surface is ± 0.1 degrees or less. Unlike the conventional optical film characteristic evaluation device, even if the entire optical system including the lens is not provided with a precise driving device that inclines exactly by the angle formed between the chip surface and the horizontal surface, it is possible to maintain the accuracy within the allowable accuracy. The transmittance can be measured.
【0030】 上述の光学膜特性評価装置を備えて光学膜特性の自動評価システムを構成すれ ば、高精度で迅速な評価が可能となる。If an automatic evaluation system for optical film characteristics is provided with the above-described optical film characteristic evaluation device, high-precision and quick evaluation can be performed.
【0031】 図6は、本考案の光学膜特性評価システムの構成を説明するための図で、光学 膜特性評価システムは、チップトレイ61と、吸着ノズル63と、ノズルアーム 64と、搬送アーム65と、CCDカメラ66と、回転テーブル67と、回転テ ーブル67に設けられたチップホルダ68と、光学膜特性評価部69a、bとか ら構成されている。FIG. 6 is a diagram for explaining the configuration of the optical film characteristic evaluation system of the present invention. The optical film characteristic evaluation system includes a chip tray 61, a suction nozzle 63, a nozzle arm 64, and a transfer arm 65. , A CCD camera 66, a rotary table 67, a chip holder 68 provided on the rotary table 67, and optical film characteristic evaluation sections 69 a and 69 b.
【0032】 チップトレイ61上には、評価すべきDWDMフィルタのチップ62が載置さ れており、搬送アーム65上を移動可能に構成されたノズルアーム64がチップ トレイ61に対応する位置に移動し、ノズルアーム64の先端に設けられた吸着 ノズル63によりチップ62を真空吸着する。The chip 62 of the DWDM filter to be evaluated is placed on the chip tray 61, and the nozzle arm 64 movably on the transfer arm 65 moves to a position corresponding to the chip tray 61. Then, the chip 62 is vacuum-sucked by the suction nozzle 63 provided at the tip of the nozzle arm 64.
【0033】 次に、ノズルアーム64をCCDカメラ66の設置位置まで移動させ、CCD カメラ66の画像認識機能を用いてチップ表面の中心点を認識し、XY平面内の 回転操作により位置補正を行ってチップホルダ68まで搬送し、高精度に研磨さ れたチップ載置面を有するチップホルダ68に位置決めした後、真空チャックし て固定する。Next, the nozzle arm 64 is moved to the position where the CCD camera 66 is installed, the center point of the chip surface is recognized using the image recognition function of the CCD camera 66, and the position is corrected by a rotation operation in the XY plane. Then, the wafer is transported to the chip holder 68 and positioned in the chip holder 68 having a chip mounting surface polished with high precision, and then fixed by vacuum chucking.
【0034】 チップ62がチップホルダ68にセットされると、回転テーブル67の回転に より光学膜特性評価部69aまたは69bに移動されて、所望の光学特性が評価 される。When the chip 62 is set on the chip holder 68, the chip is moved to the optical film characteristic evaluation section 69 a or 69 b by rotation of the turntable 67, and desired optical characteristics are evaluated.
【0035】 ここで、チップの透過光の中心波長はチップ面内で均一ではなくその評価位置 によって異なるため、チップをチップホルダ68にセットする際の位置決めも極 めて重要である。Here, since the center wavelength of the transmitted light of the chip is not uniform in the chip surface but differs depending on the evaluation position, positioning when setting the chip on the chip holder 68 is also extremely important.
【0036】 図7は、1辺が1.4mmの矩形を有するDWDMチップの、透過光の中心波 長の面内分布を実測した例を説明するための図で、チップの測定位置(x位置) によって中心波長が異なる様子が読み取れる。FIG. 7 is a diagram for explaining an example of actually measuring the in-plane distribution of the center wavelength of transmitted light of a DWDM chip having a rectangle having a side of 1.4 mm, and illustrates a measurement position (x position) of the chip. It can be seen that the center wavelength differs depending on the parentheses.
【0037】 図8は、本考案の光学膜特性評価システムにおけるチップの位置決め工程を説 明するための図で、チップトレイ81上に載置されたチップ82がノズルアーム 84の先端に設けられた吸着ノズル83により真空吸着されてCCDカメラ86 の設置位置まで移動すると、CCDカメラ86は、吸着ノズル83の中心点とチ ップ82の中心点のずれΔを画像認識する。FIG. 8 is a view for explaining a chip positioning step in the optical film characteristic evaluation system of the present invention. A chip 82 placed on a chip tray 81 is provided at the tip of a nozzle arm 84. When the CCD camera 86 moves to the installation position of the CCD camera 86 after being vacuum-sucked by the suction nozzle 83, the CCD camera 86 recognizes an image of a shift Δ between the center point of the suction nozzle 83 and the center point of the chip 82.
【0038】 ノズルアーム84は搬送アーム85によりチップホルダ87位置まで移動し、 既に計測した吸着ノズル83の中心点とチップ82の中心点のずれΔ量を基に、 チップ82の中心とチップホルダ87の中心が一致するように位置補正を行って 、チップ82をチップホルダ87にセットする。The nozzle arm 84 is moved to the position of the tip holder 87 by the transfer arm 85, and the center of the tip 82 and the tip holder 87 are determined based on the deviation Δ between the center point of the suction nozzle 83 and the center point of the tip 82 already measured. The tip 82 is set in the tip holder 87 after the position is corrected so that the centers of the two coincide with each other.
【0039】[0039]
以上説明したように、本考案の光学膜特性評価装置においては、チップの載置 面の平坦度が±0.1°以下となるように高精度に研磨した試料載置面上に光学 膜試料を載置し、これに光源からの光を集光して光学膜試料に光を照射し、光学 膜試料からの透過光を受光し、受光した透過光を基に任意の光入射角度での光透 過光量を算出する構成としたことにより、評価をする毎に光学系を駆動させる必 要が無くなり、迅速・高精度の評価が可能で、かつ、廉価な光学膜特性評価装置 および光学膜特性評価システムが得られる。 As described above, in the optical film property evaluation apparatus of the present invention, the optical film sample is placed on the sample mounting surface polished with high precision so that the flatness of the chip mounting surface is ± 0.1 ° or less. The light from the light source is condensed on this, the light is irradiated to the optical film sample, the transmitted light from the optical film sample is received, and the transmitted light from the optical film sample is received. The configuration for calculating the amount of transmitted light eliminates the need to drive the optical system each time evaluation is performed, enabling quick and high-precision evaluation, and inexpensive optical film characteristic evaluation devices and optical films. A characterization system is obtained.
【図1】本考案の光学膜特性評価装置に備えられるチッ
プホルダの構成を説明するための図で、(a)はチップ
ホルダの平面図であり、(b)はチップホルダの断面図
である。FIGS. 1A and 1B are diagrams for explaining the configuration of a chip holder provided in the optical film characteristic evaluation device of the present invention, wherein FIG. 1A is a plan view of the chip holder, and FIG. .
【図2】DWDM用等として用いられる狭帯域透過フィ
ルタの透過特性と入射角度との関係を説明するための図
で、(a)は、光入射角度が、0.0°、1.8°、
3.0°、および5.0°の場合の各波長での光透過率
を示しており、(b)は、チップ載置面を傾斜させてそ
の傾斜角度に対応する光入射角度αを0〜5°まで変化
させた場合の中心波長の相対変化を示している。FIGS. 2A and 2B are diagrams for explaining a relationship between transmission characteristics and an incident angle of a narrow-band transmission filter used for DWDM or the like, and FIG. 2A illustrates a case where light incident angles are 0.0 ° and 1.8 °. ,
The light transmittance at each wavelength in the case of 3.0 ° and 5.0 ° is shown, and (b) shows that the chip mounting surface is inclined and the light incident angle α corresponding to the inclination angle is set to 0. The relative change of the center wavelength when the angle is changed up to 55 ° is shown.
【図3】単層の干渉薄膜に光が入射する場合の透過波長
の変化を理解するための図である。FIG. 3 is a diagram for understanding a change in transmission wavelength when light is incident on a single-layer interference thin film.
【図4】本考案の光学膜特性評価装置の構成と特性を説
明するための図である。FIG. 4 is a diagram for explaining the configuration and characteristics of the optical film characteristic evaluation device of the present invention.
【図5】チップホルダ上にDWDMフィルタを載置し、
チップホルダのチップ載置面を水平面から僅かに傾けた
場合のDWDMフィルタの反射光量の変化を計測した結
果である。FIG. 5 Places a DWDM filter on a tip holder,
It is the result of measuring the change in the amount of reflected light of the DWDM filter when the chip mounting surface of the chip holder is slightly inclined from the horizontal plane.
【図6】本考案の光学膜特性評価システムの構成を説明
するための図である。FIG. 6 is a diagram for explaining the configuration of the optical film characteristic evaluation system of the present invention.
【図7】1辺が1.4mmの矩形を有するDWDMチッ
プの、透過光の中心波長の面内分布を実測した例を説明
するための図である。FIG. 7 is a diagram for explaining an example of actually measuring the in-plane distribution of the center wavelength of transmitted light of a DWDM chip having a rectangle having a side of 1.4 mm.
【図8】本考案の光学膜特性評価システムにおけるチッ
プの位置決め工程を説明するための図である。FIG. 8 is a diagram for explaining a chip positioning step in the optical film characteristic evaluation system of the present invention.
【図9】従来の光学膜特性評価装置に備えられる光学系
の構成を説明するための図である。FIG. 9 is a diagram for explaining a configuration of an optical system provided in a conventional optical film characteristic evaluation apparatus.
10 チップホルダ 11 光入射孔 12、12a、12b、12c、12d 真空チャック
孔 13 チップ載置面 41 光ファイバ 42 光照射部 43 レンズ 44 チップホルダ 45 チップ 45a 多層膜 46 受光部 47 光ファイバ 61 チップトレイ 62 チップ 63 吸着ノズル 64 ノズルアーム 65 搬送アーム 66 CCDカメラ 67 回転テーブル 68 チップホルダ 69a、b 光学膜特性評価部 81 チップトレイ 82 チップ 83 吸着ノズル 84 ノズルアーム 85 搬送アーム 86 CCDカメラ 87 チップホルダ 91 光ファイバ 92 光照射部 93 レンズ 94 チップ 95 受光部 96 光ファイバDESCRIPTION OF SYMBOLS 10 Chip holder 11 Light incidence hole 12, 12a, 12b, 12c, 12d Vacuum chuck hole 13 Chip mounting surface 41 Optical fiber 42 Light irradiation part 43 Lens 44 Chip holder 45 Chip 45a Multilayer film 46 Light receiving part 47 Optical fiber 61 Chip tray 62 Chip 63 Suction Nozzle 64 Nozzle Arm 65 Transfer Arm 66 CCD Camera 67 Rotary Table 68 Chip Holder 69a, b Optical Film Characteristics Evaluation Unit 81 Chip Tray 82 Chip 83 Suction Nozzle 84 Nozzle Arm 85 Transfer Arm 86 CCD Camera 87 Chip Holder 91 Light Fiber 92 Light irradiation unit 93 Lens 94 Chip 95 Light receiving unit 96 Optical fiber
Claims (3)
するための光照射手段と、光学膜試料を載置するための
試料載置手段と、前記光学膜試料からの反射光または透
過光を受光するための受光手段を備え、該受光手段によ
り受光した信号光を解析して前記光学膜試料の特性評価
を行う光学膜特性評価装置であって、 前記試料載置手段の試料載置面の平坦度が±0.1°以
下であることを特徴とする光学膜特性評価装置。1. A light irradiating means for condensing light from a light source and irradiating the sample with light, a sample mounting means for mounting an optical film sample, and a reflected light from the optical film sample Or an optical film property evaluation apparatus comprising light receiving means for receiving transmitted light, analyzing signal light received by the light receiving means and evaluating characteristics of the optical film sample, wherein the sample of the sample mounting means An optical film characteristic evaluation device, wherein the flatness of the mounting surface is ± 0.1 ° or less.
料保管手段と、 前記光学膜試料の光学特性評価を行う光学膜特性評価手
段と、 前記光学膜試料を前記光学膜特性評価手段に搬送する試
料搬送手段とを備える光学膜特性評価システムであっ
て、 前記光学膜特性評価手段が請求項1に記載の光学膜特性
評価装置であることを特徴とする光学膜特性評価システ
ム。2. A sample storage unit for storing an optical film sample as an evaluation sample, an optical film characteristic evaluation unit for evaluating optical characteristics of the optical film sample, and a transporting the optical film sample to the optical film characteristics evaluation unit. An optical film characteristic evaluation system, comprising: a sample transporting unit that performs the optical film characteristic evaluation. The optical film characteristic evaluation system according to claim 1, wherein the optical film characteristic evaluation unit is the optical film characteristic evaluation device according to claim 1.
手段との間に画像認識手段を備え、 前記試料搬送手段により搬送中の前記光学膜試料の基準
位置からのずれ量を前記画像認識手段により判断し、 該判断結果を基に前記光学膜試料を試料載置手段の基準
位置に載置させることを特徴とする請求項2に記載の光
学膜特性評価システム。3. An image recognizing means is provided between the sample storage means and the optical film characteristic evaluation means, and the amount of deviation of the optical film sample being transported by the sample transport means from a reference position is obtained by the image recognizing means. The optical film characteristic evaluation system according to claim 2, wherein the optical film sample is mounted on a reference position of a sample mounting means based on the determination result.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001007949U JP3086504U (en) | 2001-12-06 | 2001-12-06 | Optical film characteristic evaluation device and optical film characteristic evaluation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001007949U JP3086504U (en) | 2001-12-06 | 2001-12-06 | Optical film characteristic evaluation device and optical film characteristic evaluation system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3086504U true JP3086504U (en) | 2002-06-28 |
Family
ID=43237893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001007949U Expired - Lifetime JP3086504U (en) | 2001-12-06 | 2001-12-06 | Optical film characteristic evaluation device and optical film characteristic evaluation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3086504U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111999247A (en) * | 2019-05-27 | 2020-11-27 | 住友化学株式会社 | Method and apparatus for measuring warpage of optical film |
CN116465826A (en) * | 2023-03-15 | 2023-07-21 | 东阳市诰源闪光材料有限公司 | Device and method for testing polarization rate of optical film |
-
2001
- 2001-12-06 JP JP2001007949U patent/JP3086504U/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111999247A (en) * | 2019-05-27 | 2020-11-27 | 住友化学株式会社 | Method and apparatus for measuring warpage of optical film |
CN111999247B (en) * | 2019-05-27 | 2024-06-07 | 住友化学株式会社 | Method and device for measuring warpage of optical film |
CN116465826A (en) * | 2023-03-15 | 2023-07-21 | 东阳市诰源闪光材料有限公司 | Device and method for testing polarization rate of optical film |
CN116465826B (en) * | 2023-03-15 | 2023-10-24 | 东阳市诰源闪光材料有限公司 | Device and method for testing polarization rate of optical film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5924267B2 (en) | Inspection method, inspection apparatus, exposure management method, exposure system, and semiconductor device manufacturing method | |
US10352875B2 (en) | Inspection apparatus, inspection method, exposure method, and method for manufacturing semiconductor device | |
TWI686845B (en) | Monitoring system for deposition and method of operation thereof | |
US8462331B2 (en) | Laser processing method and laser processing apparatus | |
CN101663588B (en) | Distortion measurement imaging system | |
JP5790644B2 (en) | Inspection apparatus and inspection method | |
WO1997037376A1 (en) | A method and apparatus for determining the center and orientation of a wafer-like object | |
US20100204820A1 (en) | Apparatus and method for substrate handling | |
CN107275253A (en) | Substrate board treatment, liquid processing method and storage medium | |
KR20200136841A (en) | Bonding apparatus and bonding method | |
JP6502504B2 (en) | Pre-alignment measurement apparatus and method | |
KR101127776B1 (en) | System and method for integrated multi-use optical alignment | |
TWI500900B (en) | Electronic component thickness measurement method, method for manufacturing a series of electronic components using the measurement method, a series of electronic components manufactured by the manufacturing method, and electronic component inspection ap | |
US6521889B1 (en) | Dust particle inspection apparatus, and device manufacturing method using the same | |
JP3086504U (en) | Optical film characteristic evaluation device and optical film characteristic evaluation system | |
US9595094B2 (en) | Measuring form changes of a substrate | |
JPH08240413A (en) | Film thickness measuring device and polishing device | |
CN108614392A (en) | The manufacturing method and measuring device of flat plate printing apparatus, article | |
KR20150141934A (en) | Characterizing tsv microfabrication process and products | |
KR102521324B1 (en) | Method for aligning off-axis reflection optical system with angle of incidence | |
JP2018204957A (en) | Optical characteristic measuring apparatus of optical member | |
JPH11162954A (en) | Method and equipment for measuring thin film by optical means and film formation equipment | |
JP2006253387A (en) | Periphery grinding apparatus and grinding method of bonded substrate | |
US6094275A (en) | Apparatus and method for measuring optical properties of a coating layer | |
US20230223290A1 (en) | Device and method for wafer bonding alignment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080327 Year of fee payment: 6 |