JP3085796B2 - High temperature steam electrolysis method - Google Patents

High temperature steam electrolysis method

Info

Publication number
JP3085796B2
JP3085796B2 JP04243174A JP24317492A JP3085796B2 JP 3085796 B2 JP3085796 B2 JP 3085796B2 JP 04243174 A JP04243174 A JP 04243174A JP 24317492 A JP24317492 A JP 24317492A JP 3085796 B2 JP3085796 B2 JP 3085796B2
Authority
JP
Japan
Prior art keywords
steam
electrolysis
temperature
hydrogen
temperature steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04243174A
Other languages
Japanese (ja)
Other versions
JPH0693481A (en
Inventor
康弘 山内
雄次 時田
信明 村上
聡 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP04243174A priority Critical patent/JP3085796B2/en
Publication of JPH0693481A publication Critical patent/JPH0693481A/en
Application granted granted Critical
Publication of JP3085796B2 publication Critical patent/JP3085796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水蒸気を電気分解して高
効率で水素を製造する方法に関する。
The present invention relates to a method for producing hydrogen with high efficiency by electrolyzing water vapor.

【0002】[0002]

【従来の技術】従来は炭素電極などを使用した水の電気
分解によって水素を製造するのが一般的であった。
2. Description of the Related Art Conventionally, hydrogen has been generally produced by electrolysis of water using a carbon electrode or the like.

【0003】[0003]

【発明が解決しようとする課題】水の電気分解の場合、
電極の分極が大きいことや電解温度が低いため、電解電
圧が高く電解電力効率が40〜60%と低い。電解電圧
は水の電解反応 H2 O → H2 + 1/2O2 (1) が生じるときのエンタルピー変化ΔHのうち下式で表わ
される。 ΔH = ΔG + TΔS (2) ギブスの自由エネルギ変化ΔGに相当する電圧ΔG/2
Fを与えることによって水蒸気の電気分解が生じる。Δ
Gは図3のように温度によって変化するため、温度が低
いほど電解電圧は高く効率が悪い。ΔSはエントロピー
変化を表わす。また、電解に使用される電力は火力プラ
ントで作られたものを利用するため、入熱を基準とした
水素製造効率は火力プラントの発電効率を35%として
も、0.35×0.4〜0.6で14〜21%と低い。
In the case of electrolysis of water,
Since the polarization of the electrode is large and the electrolysis temperature is low, the electrolysis voltage is high and the electrolysis power efficiency is as low as 40 to 60%. The electrolysis voltage is represented by the following equation of the enthalpy change ΔH when the water electrolysis reaction H 2 O → H 2 + 1 / 2O 2 (1) occurs. ΔH = ΔG + TΔS (2) Voltage ΔG / 2 corresponding to Gibbs free energy change ΔG
By providing F, electrolysis of water vapor occurs. Δ
Since G changes with temperature as shown in FIG. 3, the lower the temperature, the higher the electrolysis voltage and the lower the efficiency. ΔS represents the entropy change. In addition, since the power used for electrolysis uses that produced by the thermal power plant, the hydrogen production efficiency based on the heat input is 0.35 × 0.4 to 0.35 × even if the power generation efficiency of the thermal power plant is 35%. It is as low as 14 to 21% at 0.6.

【0004】本発明は上記技術水準に鑑み、高効率で水
素を製造することができる高温水蒸気電解方法を提供し
ようとするものである。
The present invention has been made in view of the above-mentioned state of the art, and aims to provide a high-temperature steam electrolysis method capable of producing hydrogen with high efficiency.

【0005】[0005]

【課題を解決するための手段】本発明は加熱源で加熱し
た空気と水蒸気を固体電解質を用いた高温水蒸気電解セ
ルに供給して高温下で電解し、該高温水蒸気電解セルか
ら取出される水素富化水蒸気及び酸素富化空気の有する
熱と、加熱源の熱によって加熱した水蒸気によって蒸気
タービンを作動させて発電し、該発電された電気によっ
て前記高温水蒸気電解セルの電解を行うと共に、水蒸気
に熱を与えた後の水素富化水蒸気より水素を取得するこ
とを特徴とする高温水蒸気電解方法である。
According to the present invention, air and steam heated by a heating source are supplied to a high-temperature steam electrolysis cell using a solid electrolyte to perform electrolysis at a high temperature, and hydrogen extracted from the high-temperature steam electrolysis cell is provided. The heat of the enriched steam and oxygen-enriched air and the steam heated by the heat of the heating source operate the steam turbine to generate power, and the generated electricity performs electrolysis of the high-temperature steam electrolysis cell. A high-temperature steam electrolysis method characterized in that hydrogen is obtained from hydrogen-enriched steam after applying heat.

【0006】本発明をより具体的に述べると、本発明は
電解質としてYSZ(イットリア安定ジルコニア)
などの固体電解質を用いた高温水蒸気電解セルを用い、
高温ガス炉、太陽熱、燃焼炉などの600〜1800
℃の高温熱源によって空気と水蒸気を加熱して、これら
によって高温水蒸気電解セルを約1000℃まで加熱
し、 高温水蒸気電解セルから取出される水素富化水
蒸気及び酸素富化空気の有する熱と、加熱源の熱によっ
て加熱した水蒸気によって蒸気発電プラントなどを駆動
して発電を行ない、 発電した電気を用いて高温水蒸
気電解セルで水蒸気を電気分解して水素を製造する方法
である。
More specifically, the present invention relates to an electrolyte comprising YSZ (yttria-stable zirconia) as an electrolyte.
Using a high-temperature steam electrolysis cell using a solid electrolyte such as
600-1800 for high temperature gas furnace, solar heat, combustion furnace, etc.
The air and the steam are heated by a high-temperature heat source of about 100 ° C., thereby heating the high-temperature steam electrolysis cell to about 1000 ° C., and the heat of the hydrogen-enriched steam and oxygen-enriched air extracted from the high-temperature steam electrolysis cell, In this method, a steam power plant is driven by steam heated by the heat of the source to generate power, and the generated electricity is used to electrolyze steam in a high-temperature steam electrolysis cell to produce hydrogen.

【0007】[0007]

【作用】本発明によれば、約1000℃で電気分解する
ため、電解電圧が低下し、水蒸気のもつ熱エネルギの一
部が水蒸気の分解に用いられるため、加熱源温度が95
0℃のとき電解電力効率が97%と高い。排熱を利用し
た発電プラント効率が35%のとき水素製造効率は3
3.9%と高くなる。
According to the present invention, the electrolysis is carried out at about 1000 ° C., so that the electrolysis voltage is lowered and a part of the heat energy of the steam is used for the steam decomposition.
At 0 ° C., the electrolysis power efficiency is as high as 97%. When the power plant efficiency using waste heat is 35%, the hydrogen production efficiency is 3
It is as high as 3.9%.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1によって説明
する。空気供給ブロア4により供給される空気5と、蒸
気タービン発電プラント15の蒸気タービンから抽気さ
れ蒸気減圧弁6で大気圧まで減圧された原料水蒸気7
は、加熱源1により熱交換器2で700〜1100℃に
加熱され、YSZのような固体電解質を用いた高温水蒸
気電解装置3に供給される。ここで電解電力19で水蒸
気が酸素と水素に電気分解され、水素は水蒸気側に水素
富化水蒸気8となり、酸素は空気側に酸素富化空気9と
なって排出される。高温水蒸気電解装置3の作動温度9
00〜1100℃で排出された水素富化水蒸気(水素+
未反応水蒸気)8と酸素富化空気(酸素+空気)9は蒸
気タービン発電プラント15の給水加熱器10及び/又
は給水加熱器11で給水ポンプ12で送られる給水13
と熱交換を行ない、水素富化水蒸気8は水素14を採取
するために回収され、酸素富化空気9は大気へ放出され
る。蒸気タービン発電プラント15は給水13(原料水
蒸気の抽気分を補充)と循環水16を給水ポンプ12で
加圧し、給水加熱器10,11で加熱されたあと、蒸気
発生器17で加熱源1からの熱で加熱されて水蒸気とな
る。この水蒸気で蒸気タービン発電プラント15の蒸気
タービンを駆動して発電を行った後、一部はコンデンサ
18で凝縮させて循環水16となし、一部は水蒸気のま
ゝ抽気して高温水蒸気電解装置3に送られる。蒸気ター
ビン発電プラント15で発電された電力で高温水蒸気電
解装置3の電解電力19をまかなう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG. The air 5 supplied by the air supply blower 4 and the raw material steam 7 extracted from the steam turbine of the steam turbine power plant 15 and reduced to the atmospheric pressure by the steam pressure reducing valve 6
Is heated to 700 to 1100 ° C. in a heat exchanger 2 by a heating source 1 and supplied to a high-temperature steam electrolysis apparatus 3 using a solid electrolyte such as YSZ. Here, the steam is electrolyzed into oxygen and hydrogen by the electrolysis power 19, and the hydrogen is discharged as hydrogen-enriched steam 8 on the steam side, and the oxygen is discharged as oxygen-enriched air 9 on the air side. Operating temperature 9 of high temperature steam electrolysis device 3
Hydrogen-enriched steam (hydrogen +
The unreacted steam 8 and the oxygen-enriched air (oxygen + air) 9 are supplied to a feed water heater 13 and / or a feed water heater 11 of a steam turbine power plant 15 by a feed water pump 13 supplied by a feed water pump 12.
The hydrogen-enriched steam 8 is recovered to collect hydrogen 14 and the oxygen-enriched air 9 is released to the atmosphere. The steam turbine power plant 15 pressurizes the feed water 13 (replenishing the extracted steam of the raw material steam) and the circulating water 16 with the feed water pump 12, and is heated by the feed water heaters 10 and 11, and then from the heating source 1 by the steam generator 17. Is heated by the heat of the water to form steam. After the steam drives the steam turbine of the steam turbine power plant 15 to generate electric power, a part of the steam is condensed by the condenser 18 to form circulating water 16, and a part of the steam is extracted as steam to extract a high-temperature steam electrolyzer. Sent to 3. The electric power generated by the steam turbine power plant 15 covers the electrolysis power 19 of the high-temperature steam electrolysis device 3.

【0009】上記実施例の方法により、水素製造効率は
図2に示すように、加熱源温度により変化し、発電プラ
ント効率35%、酸素富化空気の酸素濃度30%、高温
水蒸気電解装置の電解セル作動温度1000℃で、加熱
源温度950℃のとき水素製造効率は33.9%であ
る。この値は従来の水電解の水素製造効率14〜21%
と比較して極めて高い値である。
According to the method of the above embodiment, as shown in FIG. 2, the hydrogen production efficiency varies depending on the heating source temperature, the power plant efficiency is 35%, the oxygen concentration of the oxygen-enriched air is 30%, and the electrolysis of the high-temperature steam electrolyzer is performed. At a cell operating temperature of 1000 ° C. and a heating source temperature of 950 ° C., the hydrogen production efficiency is 33.9%. This value is the hydrogen production efficiency of conventional water electrolysis of 14 to 21%.
This is an extremely high value as compared with.

【0010】[0010]

【発明の効果】本発明により、高効率で水素を製造する
方法が提供され、その工業的効果は極めて顕著である。
According to the present invention, a method for producing hydrogen with high efficiency is provided, and its industrial effect is extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高温水蒸気電解方法の一実施例の説明
図。
FIG. 1 is an explanatory view of one embodiment of a high-temperature steam electrolysis method of the present invention.

【図2】水素製造効率と水蒸気電解装置の加熱温度との
関係を示す図表。
FIG. 2 is a table showing a relationship between hydrogen production efficiency and a heating temperature of a steam electrolyzer.

【図3】水の分解反応の熱力学関数の温度変化を示す図
表。
FIG. 3 is a chart showing a temperature change of a thermodynamic function of a water decomposition reaction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 聡 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 昭58−34183(JP,A) 特開 平5−41236(JP,A) 特開 平5−284728(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 F01K 17/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Satoshi Uchida 1-1, Akunouramachi, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (56) References JP-A-58-34183 (JP, A) JP-A-58-34183 JP-A-5-41236 (JP, A) JP-A-5-284728 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25B 1/00-15/08 F01K 17/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱源で加熱した空気と水蒸気を固体電
解質を用いた高温水蒸気電解セルに供給して高温下で電
解し、該高温水蒸気電解セルから取出される水素富化水
蒸気及び酸素富化空気の有する熱と、加熱源の熱によっ
て加熱した水蒸気によって蒸気タービンを作動させて発
電し、該発電された電気によって前記高温水蒸気電解セ
ルの電解を行うと共に、水蒸気に熱を与えた後の水素富
化水蒸気より水素を取得することを特徴とする高温水蒸
気電解方法。
1. An air and a steam heated by a heating source are supplied to a high-temperature steam electrolysis cell using a solid electrolyte to perform electrolysis at a high temperature, and hydrogen-enriched steam and oxygen-enrichment are taken out from the high-temperature steam electrolysis cell. A steam turbine is operated by the heat of the air and the steam heated by the heat of the heating source to generate power, and the generated electricity is used to perform electrolysis of the high-temperature steam electrolysis cell, and to apply hydrogen to the steam after applying heat to the steam. A high-temperature steam electrolysis method characterized by obtaining hydrogen from enriched steam.
JP04243174A 1992-09-11 1992-09-11 High temperature steam electrolysis method Expired - Fee Related JP3085796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04243174A JP3085796B2 (en) 1992-09-11 1992-09-11 High temperature steam electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04243174A JP3085796B2 (en) 1992-09-11 1992-09-11 High temperature steam electrolysis method

Publications (2)

Publication Number Publication Date
JPH0693481A JPH0693481A (en) 1994-04-05
JP3085796B2 true JP3085796B2 (en) 2000-09-11

Family

ID=17099922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04243174A Expired - Fee Related JP3085796B2 (en) 1992-09-11 1992-09-11 High temperature steam electrolysis method

Country Status (1)

Country Link
JP (1) JP3085796B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6412292B2 (en) 2000-05-09 2002-07-02 Toc Technology, Llc Computer rack heat extraction device
US6494050B2 (en) 2000-02-18 2002-12-17 Toc Technology, Llc Computer rack heat extraction device
US6557357B2 (en) 2000-02-18 2003-05-06 Toc Technology, Llc Computer rack heat extraction device
US6574970B2 (en) 2000-02-18 2003-06-10 Toc Technology, Llc Computer room air flow method and apparatus
CN102560523A (en) * 2012-03-02 2012-07-11 广州华秦机械设备有限公司 Low-reactance water electrolysis energy-saving device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034219B2 (en) 2005-12-21 2011-10-11 General Electric Company System and method for the production of hydrogen
FR2969179B1 (en) * 2010-12-20 2013-02-08 Commissariat Energie Atomique HYDROGEN PRODUCTION CELL COMPRISING A HIGH TEMPERATURE WATER VAPOR ELECTROLYSER CELL
JP6130135B2 (en) * 2012-12-25 2017-05-17 高砂熱学工業株式会社 Charge / discharge system
JP5347080B1 (en) * 2013-05-07 2013-11-20 株式会社センリョウ Temperature difference power ship
JP7374150B2 (en) * 2021-06-30 2023-11-06 三菱重工業株式会社 Hydrogen production system and hydrogen production method
JP7374152B2 (en) * 2021-08-27 2023-11-06 三菱重工業株式会社 Hydrogen production system and hydrogen production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6494050B2 (en) 2000-02-18 2002-12-17 Toc Technology, Llc Computer rack heat extraction device
US6557357B2 (en) 2000-02-18 2003-05-06 Toc Technology, Llc Computer rack heat extraction device
US6574970B2 (en) 2000-02-18 2003-06-10 Toc Technology, Llc Computer room air flow method and apparatus
US6722151B2 (en) 2000-02-18 2004-04-20 Toc Technology, Llc Computer rack heat extraction device
US6745579B2 (en) 2000-02-18 2004-06-08 Toc Technology, Llc Computer room air flow method and apparatus
US6412292B2 (en) 2000-05-09 2002-07-02 Toc Technology, Llc Computer rack heat extraction device
CN102560523A (en) * 2012-03-02 2012-07-11 广州华秦机械设备有限公司 Low-reactance water electrolysis energy-saving device
CN102560523B (en) * 2012-03-02 2015-12-09 广州华秦机械设备有限公司 A kind of low reactance water electrolysis energy-saving device

Also Published As

Publication number Publication date
JPH0693481A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
JP3085796B2 (en) High temperature steam electrolysis method
JP2780879B2 (en) Oxygen recovery from gas turbine exhaust streams.
EP0497226B1 (en) Method for producing methanol by use of nuclear heat and power generating plant
US4902586A (en) Once through molten carbonate fuel cell system
US20080314741A1 (en) Electrolysis apparatus
DE60036327D1 (en) Process for air separation with an internal combustion engine for the production of air gases and electrical energy
CA2042853A1 (en) Oxygen extraction from externally fired gas turbines
TW432741B (en) Fuel cell system and method for generating electrical energy by means of a fuel cell system
EP3657095A1 (en) Method for generating heat from water electrolysis
Houaijia et al. Solar power tower as heat and electricity source for a solid oxide electrolyzer: a case study
CN114040893A (en) Method for operating a combustion furnace and arrangement comprising such a furnace
WO2011014056A4 (en) Solid oxide fuel cell system with integral gas turbine and thermophotovoltaic thermal energy converters
JP3085798B2 (en) Pressurized high temperature steam electrolysis method
JPH02214502A (en) Method and device for cooling and degumidifying air of high temperature and humidity
JPS6257072B2 (en)
US4107557A (en) Sulfur-fueled magnetohydrodynamic power generation
JP2934517B2 (en) Direct reduction method of metal ore
JPS62278770A (en) Recovering method of co2 and h2 from converter gas
JP2005306624A (en) Apparatus for producing hydrogen
US3471723A (en) Method and apparatus utilizing an mhd electric power generator for thermal fixation of atmospheric nitrogen
JP3072630B2 (en) Fuel cell combined cycle generator
JPH04244035A (en) Production of methanol using nuclear heat
JP5688777B2 (en) Combined power generation facility
JP3073377B2 (en) Methanol synthesizer
JPH04261130A (en) Production of methanol utilizing nuclear heat

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000530

LAPS Cancellation because of no payment of annual fees