JP3085273B2 - Liquid crystal optical element - Google Patents

Liquid crystal optical element

Info

Publication number
JP3085273B2
JP3085273B2 JP09355071A JP35507197A JP3085273B2 JP 3085273 B2 JP3085273 B2 JP 3085273B2 JP 09355071 A JP09355071 A JP 09355071A JP 35507197 A JP35507197 A JP 35507197A JP 3085273 B2 JP3085273 B2 JP 3085273B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal material
refractive index
polymer resin
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09355071A
Other languages
Japanese (ja)
Other versions
JPH11183883A (en
Inventor
悟郎 齋藤
大作 中田
康晴 大西
仁 松嶋
正春 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP09355071A priority Critical patent/JP3085273B2/en
Publication of JPH11183883A publication Critical patent/JPH11183883A/en
Application granted granted Critical
Publication of JP3085273B2 publication Critical patent/JP3085273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶光学素子に関
し、特に文字、図形等を表示する表示装置に利用される
液晶光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal optical element, and more particularly to a liquid crystal optical element used for a display device for displaying characters, figures and the like.

【0002】[0002]

【従来の技術】従来の高分子樹脂と液晶材料から成る調
光層を有する液晶光学素子には、高分子樹脂中に液晶材
料を分散した素子、すなわち高分子分散液晶素子(PD
LC素子(polymer dispersion l
iquid crystal素子):特開昭62−22
31号公報等に開示)、カイラルネマチック液晶材料中
に微量の高分子樹脂を分散し電圧無印加時のプレーナー
テクスチャーと電圧印加時のフォーカルコニックテクス
チャーの間で光を制御する素子、すなち高分子安定化
コレステリックテクスチャー(PSCT素子(poly
mer stabilization cholest
eric texture 素子):国際出願92/1
9695号公報等に開示)、液晶材料をマイクロカプセ
ル化し高分子樹脂中に分散した素子(特公平3−528
43号公報等に開示)、さらに液晶中に二色性色素を溶
解した素子(特昭62−502780号公報等に開
示)等が報告されている。
2. Description of the Related Art A conventional liquid crystal optical element having a dimming layer composed of a polymer resin and a liquid crystal material includes an element in which a liquid crystal material is dispersed in a polymer resin, that is, a polymer dispersed liquid crystal element (PD
LC element (polymer dispersion l)
liquid crystal element): JP-A-62-22
31 No. etc. disclosed), elements for controlling the light between the planar texture and the focal conic texture when a voltage is applied chiral nematic liquid crystal material when dispersed no voltage is applied a small amount of polymeric resin in, Chi I sand Polymer stabilized cholesteric texture (PSCT element (poly
mer stabilization chest
eric texture element): International Application No. 92/1
No. 9695), an element in which a liquid crystal material is microencapsulated and dispersed in a polymer resin (Japanese Patent Publication No. 3-528)
Disclosed in 43 JP etc.) are further disclosed in the liquid crystal dichromatic dye dissolved elements (JP Table Sho 62-502780 Patent Publication), and the like reports.

【0003】これらのうちPDLC素子や液晶材料をマ
イクロカプセル化した素子は、いずれも図9,図10に
示すように、素子への印加電圧の増加あるいは減少に対
して透過光強度あるいは反射光強度が上昇あるいは低下
し飽和すると、その後さらに印加電圧を増加あるいは減
少させても透過光強度あるいは反射光強度の変化を生じ
ることはない。PSCT素子は、印加電圧の増加に伴い
プレーナーテクスチャーからフォーカルコニックテクス
チャーさらにホメオトロピック配向へと変化し、U字状
の印加電圧−透過率曲線を有するが、印加電圧減少時に
は増加時とは異なる変化を起こし、非常に大きなヒステ
リシスを示す(例えば、J.L.West等、Appl. Phys. Let
t. 63(11),1471(1993)に記載)。
As shown in FIGS. 9 and 10, the PDLC element and the element in which a liquid crystal material is microencapsulated, as shown in FIGS. Rises or falls and becomes saturated, the transmitted light intensity or reflected light intensity does not change even if the applied voltage is further increased or decreased thereafter. The PSCT element changes from a planar texture to a focal conic texture and further to a homeotropic alignment with an increase in applied voltage, and has a U-shaped applied voltage-transmittance curve. Cause very large hysteresis (eg, JLWest et al., Appl. Phys. Let
t. 63 (11), 1471 (1993)).

【0004】上記のPDLC素子の高分子樹脂として高
分子液晶材料を使用し、これに低分子液晶材料を分散し
たPDLC素子(特表平2−503963号公報に開
示)が知られているが、この素子は透明表示時の視野角
を改善するものであって、図9,図10の通常のPDL
Cと同様な電圧−透過率曲線を示す。
[0004] A PDLC device using a polymer liquid crystal material as a polymer resin of the above-mentioned PDLC device and dispersing a low-molecular liquid crystal material therein (disclosed in Japanese Patent Publication No. 2-503963) is known. This device improves the viewing angle at the time of transparent display, and is provided by the ordinary PDL shown in FIGS.
A voltage-transmittance curve similar to that of C is shown.

【0005】また、高分子液晶材料と低分子液晶材料の
均一混合膜から成る液晶表示素子(特開平2−1931
15号公報、特開平5−216014号公報等に開示)
やマイクロカプセル化した液晶材料を高分子樹脂中に分
散した調光層を電極および紫外線保護膜を介して積層し
た素子(特開平9−80401号公報に開示)等がある
が、これらの素子も通常のPDLC素子と同様に印加電
圧の増加あるいは減少に対して透過光強度あるいは反射
光強度が上昇あるいは低下し飽和すると、その後さらに
印加電圧を増加あるいは減少させても透過光強度あるい
は反射光強度の変化を生じることはない。
Further, a liquid crystal display device comprising a homogeneously mixed film of a high-molecular liquid crystal material and a low-molecular liquid crystal material (JP-A-2-1931)
No. 15, JP-A-5-216014, etc.)
And a device in which a light control layer in which a microencapsulated liquid crystal material is dispersed in a polymer resin is laminated via an electrode and an ultraviolet protective film (disclosed in JP-A-9-80401). As in the case of a normal PDLC element, the transmitted light intensity or the reflected light intensity increases or decreases with an increase or decrease of the applied voltage and saturates. Then, even if the applied voltage is further increased or decreased, the transmitted light intensity or the reflected light intensity is reduced. No change occurs.

【0006】[0006]

【発明が解決しようとする課題】上記のように、従来の
高分子樹脂と液晶材料から成る調光層を有する液晶光学
素子は、素子への印加電圧の増加あるいは減少に対して
透過光強度あるいは反射光強度が上昇あるいは低下し飽
和すると、その後さらに印加電圧を増加あるいは減少さ
せても透過光強度あるいは反射光強度の変化を生じるこ
とはないか、あるいはU字状の印加電圧−透過率曲線を
有する場合には非常に大きなヒステリシスを示してしま
う。
As described above, the conventional liquid crystal optical element having a dimming layer composed of a polymer resin and a liquid crystal material has an advantage that the intensity of the transmitted light or the intensity of the transmitted light or the light applied to the element increases or decreases. When the reflected light intensity rises or falls and saturates, if the applied voltage is further increased or decreased thereafter, the transmitted light intensity or the reflected light intensity will not change, or the U-shaped applied voltage-transmittance curve will be changed. If they do, they exhibit very large hysteresis.

【0007】図8は、従来の高分子樹脂と液晶材料から
成る調光層を積層して使用する場合の液晶光学素子の断
面概略図であり、図中符号1は基板、2は電極、3は調
光層を示す。図8の如く従来の調光層3を積層して使用
する場合には、個々の調光層3の透過光強度あるいは反
射光強度が印加電圧の増加あるいは減少に対して飽和す
るため、個々の調光層3ごとに独立して各1組の電圧を
印加する電極2を設ける必要があった。この場合、高分
子樹脂や液晶材料は熱等に対する耐性が低く、電極作成
時の熱でダメージを受けるために、電極の作成に困難を
伴い、また、個々の素子ごとに電圧を印加するため、素
子に印加する電圧波形が非常に複雑となり、複雑な電圧
波形を発生させるための駆動回路も複雑、高価となって
しまう問題があった。
FIG. 8 is a schematic cross-sectional view of a conventional liquid crystal optical element in the case where a dimming layer composed of a conventional polymer resin and a liquid crystal material is used in a laminated state. Indicates a light control layer. As shown in FIG. 8, when the conventional light control layers 3 are stacked and used, the transmitted light intensity or the reflected light intensity of each light control layer 3 is saturated with an increase or decrease of the applied voltage. It is necessary to provide the electrode 2 for applying a set of voltages independently for each light control layer 3. In this case, the polymer resin and the liquid crystal material have low resistance to heat and the like, and are damaged by heat at the time of forming the electrodes, so that it is difficult to form the electrodes, and since a voltage is applied to each element, There is a problem that the voltage waveform applied to the element becomes very complicated, and a driving circuit for generating a complicated voltage waveform becomes complicated and expensive.

【0008】本発明の目的は、上記従来技術の問題点を
解決した高分子樹脂と液晶材料から成る調光層を有する
液晶光学素子を提供することにある。
An object of the present invention is to provide a liquid crystal optical element having a dimming layer made of a polymer resin and a liquid crystal material, which solves the above-mentioned problems of the prior art.

【0009】[0009]

【課題を解決するための手段】本発明は、電極を有する
基板で調光層を挟持して構成された液晶光学素子におい
て、前記調光層が高分子樹脂に液晶材料を分散させて形
成され、前記高分子樹脂の屈折率npolyと前記液晶
材料の屈折率nlcが、素子に印加される電圧の2つの
領域で一致するあるいは異なることを特徴とする。
According to the present invention, there is provided a liquid crystal optical element comprising a light control layer sandwiched between substrates having electrodes, wherein the light control layer is formed by dispersing a liquid crystal material in a polymer resin. The refractive index npoly of the polymer resin and the refractive index nlc of the liquid crystal material are the same or different in two regions of the voltage applied to the element.

【0010】本発明における前記高分子樹脂としては、
高分子液晶材料あるいは液晶性高分子樹脂を用いること
ができる。さらに、高分子液晶材料あるいは液晶性高分
子樹脂としては、応答時間の点から側鎖型高分子液晶材
料あるいは側鎖型液晶性高分子樹脂を用いることが望ま
しい。
In the present invention, the polymer resin includes:
A polymer liquid crystal material or a liquid crystalline polymer resin can be used. Further, as the polymer liquid crystal material or the liquid crystal polymer resin, it is desirable to use a side chain type liquid crystal polymer material or a side chain type liquid crystal polymer resin from the viewpoint of response time.

【0011】本発明における上記調光層を使用すること
によって、透過光強度あるいは反射光強度が上昇あるい
は低下し一旦飽和しても、更なる印加電圧の増加あるい
は減少によって透過光強度あるいは反射光強度が上昇あ
るいは低下する液晶光学素子をうることができ、また前
記高分子樹脂と前記液晶材料から成る調光層を積層した
場合においても、1組の電圧を印加する電極のみを配置
することで液晶光学素子の駆動が可能となる。
By using the dimming layer in the present invention, even if the transmitted light intensity or the reflected light intensity increases or decreases and is once saturated, the transmitted light intensity or the reflected light intensity is further increased or decreased by the applied voltage. The liquid crystal optical element in which the liquid crystal material rises or falls can be obtained. Even when the dimming layer made of the polymer resin and the liquid crystal material is laminated, the liquid crystal can be arranged by disposing only one set of electrodes to which a voltage is applied. The optical element can be driven.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態について図面
を参照して説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0013】図1は本発明の第1の実施の形態の液晶光
学素子の断面概略図である。図中符号1は基板、2は電
極、4は高分子樹脂に液晶材料を分散させて形成した調
光層で、高分子樹脂と液晶材料の屈折率が素子に印加さ
れる電圧の2つまたは2つ以上の領域で一致するあるい
は異なるような高分子樹脂と液晶材料から構成されてい
る。また図中符号10は液晶光学素子を表す。
FIG. 1 is a schematic sectional view of a liquid crystal optical element according to a first embodiment of the present invention. In the figure, reference numeral 1 denotes a substrate, 2 denotes an electrode, and 4 denotes a dimming layer formed by dispersing a liquid crystal material in a polymer resin. It is composed of a polymer resin and a liquid crystal material which are the same or different in two or more regions. Reference numeral 10 in the figure denotes a liquid crystal optical element.

【0014】本発明の実施の形態の前記高分子樹脂とし
ては、高分子液晶材料あるいは液晶性高分子樹脂を使用
してもよい。前記調光層4の高分子樹脂と液晶材料の比
率は液晶材料が10〜90重量%に調整されるが、好ま
しくは30〜70重量%である。
As the polymer resin in the embodiment of the present invention, a liquid crystal polymer material or a liquid crystal polymer resin may be used. The ratio of the polymer resin to the liquid crystal material in the light control layer 4 is adjusted to 10 to 90% by weight of the liquid crystal material, but is preferably 30 to 70% by weight.

【0015】調光層4中の液晶材料としては、ネマチッ
ク相あるいはコレステリック相を有する液晶材料や、強
誘電性液晶材料あるいは反強誘電性液晶材料を用いるこ
ともでき、強誘電性液晶材料あるいは反強誘電性液晶材
料は応答時間の短縮の面から有用である。
As the liquid crystal material in the light control layer 4, a liquid crystal material having a nematic phase or a cholesteric phase, a ferroelectric liquid crystal material or an antiferroelectric liquid crystal material can be used. Ferroelectric liquid crystal materials are useful in terms of shortening the response time.

【0016】また、調光層4中の高分子液晶材料あるい
は液晶性高分子樹脂としては、ネマチック相あるいはコ
レステリック相を有する高分子液晶材料あるいは液晶性
高分子樹脂や応答時間の短縮あるいは低駆動電圧化の面
から強誘電性液晶相を有する高分子樹脂あるいは液晶性
高分子樹脂を用いることもできる。なお、調光層4中の
高分子液晶材料に、反強誘電性液晶相を有する高分子液
晶材料あるいは液晶性高分子樹脂を用いることも可能で
ある。
The liquid crystal polymer material or the liquid crystal polymer resin in the light control layer 4 may be a polymer liquid crystal material or a liquid crystal polymer resin having a nematic phase or a cholesteric phase, a short response time or a low driving voltage. From the viewpoint of chemical conversion, a polymer resin having a ferroelectric liquid crystal phase or a liquid crystal polymer resin can also be used. It is also possible to use a polymer liquid crystal material having an antiferroelectric liquid crystal phase or a liquid crystal polymer resin as the polymer liquid crystal material in the light control layer 4.

【0017】本発明の実施の形態における調光層4は、
少なくとも高分子樹脂の前駆体化合物、液晶材料および
重合開始剤を含む溶液に光を照射し、高分子樹脂の前駆
体化合物を高分子樹脂に硬化して作製される。調光層4
の作成時に照射される光は、紫外線光や各種波長のレー
ザー光あるいはこれらの偏光光等が挙げられるが、高分
子樹脂の前駆体化合物を硬化できる光であれば特に限定
されない。
The light control layer 4 according to the embodiment of the present invention comprises:
A solution containing at least a precursor compound of a polymer resin, a liquid crystal material, and a polymerization initiator is irradiated with light to cure the precursor compound of the polymer resin into the polymer resin. Light control layer 4
The light applied at the time of preparing the light-sensitive material includes ultraviolet light, laser light of various wavelengths, or polarized light thereof, but is not particularly limited as long as the light can cure the precursor compound of the polymer resin.

【0018】前記高分子樹脂の前駆体化合物としては、
光照射により重合(硬化)するモノマーまたはオリゴマ
ーあるいはモノマーとオリゴマーの混合物等を用いるこ
とができる。例えば、高分子樹脂の前駆体化合物はアク
リロイル基、ビニル基等の通常の光重合性基を有してい
れば良い。また、光重合性基は高分子樹脂の前駆体化合
物一分子中に複数あっても構わない。
As the precursor compound of the polymer resin,
Monomers or oligomers which are polymerized (cured) by light irradiation, or a mixture of monomers and oligomers can be used. For example, the precursor compound of the polymer resin may have a usual photopolymerizable group such as an acryloyl group and a vinyl group. Further, a plurality of photopolymerizable groups may be present in one molecule of the precursor compound of the polymer resin.

【0019】前記高分子樹脂の前駆体化合物には、光照
射により重合反応を開始させるために光重合開始剤、光
開始剤に水素を供与する水素供与体、光を吸収し励起エ
ネルギーを光重合開始剤に移動させる色素増感剤等を添
加することができる。該光開始剤としては、ベンゾフェ
ノン系、アセトフェノン系等の通常の光開始剤を用いる
ことができるが、特にこれらに限定されない。これらの
光開始剤は、素子の作成あるいは均一性の点から液晶へ
の溶解度が高いことが好ましい。また、色素増感剤はク
マリン系、スチリル系、アクリジン系等の色素化合物が
挙げられるが、励起エネルギーを光重合開始剤に移動さ
せる化合物であれば、これらに限定されるものではな
い。さらに、水素供与体としては、メチルジエタノール
アミン、4−ジメチルアミノ安息香酸等の化合物が挙げ
られるが、これらに限定されるものではない。
The precursor compound of the polymer resin includes a photopolymerization initiator for initiating a polymerization reaction by light irradiation, a hydrogen donor for donating hydrogen to the photoinitiator, and a photopolymerization agent for absorbing light and exciting energy. Dye sensitizers and the like that are transferred to the initiator can be added. As the photoinitiator, a general photoinitiator such as a benzophenone-based or acetophenone-based photoinitiator can be used, but is not particularly limited thereto. It is preferable that these photoinitiators have high solubility in liquid crystal from the viewpoint of device preparation or uniformity. Examples of the dye sensitizer include coumarin-based, styryl-based, and acridine-based dye compounds, but are not limited thereto as long as they are compounds that transfer excitation energy to the photopolymerization initiator. Further, examples of the hydrogen donor include, but are not limited to, compounds such as methyldiethanolamine and 4-dimethylaminobenzoic acid.

【0020】また、調光層4は、微粒子を高分子樹脂中
に分散させた後、微粒子を高分子樹脂の貧溶媒であり、
かつ微粒子の構成物質の溶媒である液体で微粒子を溶解
し得られる多孔質高分子樹脂の空孔に液晶材料を充填す
る方法や液晶材料をカプセル化した後高分子樹脂に分散
する方法ことによっても得ることができる。前記微粒子
の構成物質としては、ポリスチレン、ポリメタクリル酸
メチル等を用いることができ、溶媒としてクロロホル
ム、テトラヒドロフラン等を用いることができるが、微
粒子が溶解し高分子樹脂が溶解しない高分子樹脂、微粒
子、溶媒の組み合わせであれば構わない。
The light modulating layer 4 is a poor solvent for the polymer resin after the fine particles are dispersed in the polymer resin,
In addition, a method of filling a liquid crystal material into pores of a porous polymer resin obtained by dissolving the fine particles with a liquid which is a solvent of the constituent material of the fine particles, or a method of dispersing the liquid crystal material in the polymer resin after encapsulating the liquid crystal material. Obtainable. As a constituent material of the fine particles, polystyrene, polymethyl methacrylate, or the like can be used.Chloroform, tetrahydrofuran, or the like can be used as a solvent. Any combination of solvents may be used.

【0021】本発明の実施の形態の基板1は透明な基板
であり、ガラス、プラスチック等が使用できる。電極2
はITO(インジウム−ティン−オキサイド)等を基板
1の調光層3との接触面側に蒸着等で形成される。基板
1上の電極2は、対向基板間で電極が直交するように配
置された単純マトリックス形式や各画素に例えばTFT
(薄膜トランジスタ)等の能動素子を設けた形式等を用
いることができる。また、調光層4の上または下あるい
は上下に配向膜を設けることもできる。配向膜として
は、ポリイミド、ポリアミド、ポリビニルアルコール等
をラビングしたものや酸化シリコンの斜方蒸着膜等を用
いることができる。
The substrate 1 according to the embodiment of the present invention is a transparent substrate, and glass, plastic or the like can be used. Electrode 2
Is formed by depositing ITO (indium-tin-oxide) or the like on the contact surface side of the substrate 1 with the light control layer 3. The electrodes 2 on the substrate 1 are formed in a simple matrix format in which the electrodes are arranged orthogonally between the opposing substrates,
For example, a form in which an active element such as a (thin film transistor) is provided can be used. Further, an alignment film can be provided above, below, or above and below the light control layer 4. As the alignment film, a film obtained by rubbing polyimide, polyamide, polyvinyl alcohol, or the like, an oblique evaporation film of silicon oxide, or the like can be used.

【0022】本発明の実施の形態の液晶光学素子10
は、調光層4を調光層4との接触面側に電極を有する透
明な基板1で挟持すること等よって作製される。
Liquid crystal optical element 10 according to an embodiment of the present invention
Is manufactured by sandwiching the light control layer 4 between the transparent substrate 1 having electrodes on the contact surface side with the light control layer 4.

【0023】さらに、本発明の実施の形態の液晶光学素
子10は、素子の内外に光反射板あるいは光吸収板を設
けることもできる。
Further, in the liquid crystal optical element 10 according to the embodiment of the present invention, a light reflecting plate or a light absorbing plate can be provided inside and outside the element.

【0024】高分子樹脂として高分子液晶材料あるいは
液晶性高分子樹脂を用いた場合の図1の液晶光学素子の
印加電圧と光透過率の関係について図2及び図3を参照
して説明する。高分子液晶材料あるいは液晶性高分子樹
脂の屈折率npolyが変化し始める電圧(高分子液晶材料
あるいは液晶性高分子樹脂のしきい値電圧)Vpoly,th
と液晶材料の屈折率nlc変化が飽和する電圧(液晶材料
の飽和電圧)Vlc,satがVpoly,th≧Vlc,sat であって
も、液晶材料の屈折率nlcが変化し始める電圧(液晶材
料のしきい値電圧)Vlc,th と高分子液晶材料あるいは
液晶性高分子樹脂の屈折率npoly変化が飽和する電圧
(高分子液晶材料あるいは液晶性高分子樹脂の飽和電
圧)Vpoly,satがVlc,th≧Vpoly,satであっても構わ
ない。
The relationship between the applied voltage and the light transmittance of the liquid crystal optical element shown in FIG. 1 when a polymer liquid crystal material or a liquid crystalline polymer resin is used as the polymer resin will be described with reference to FIGS. Voltage at which the refractive index npoly of the polymer liquid crystal material or liquid crystalline polymer resin starts to change (threshold voltage of the polymer liquid crystal material or liquid crystalline polymer resin) Vpoly, th
And the voltage at which the change in the refractive index nlc of the liquid crystal material saturates (saturation voltage of the liquid crystal material) Vlc, sat is Vpoly, th ≧ Vlc, sat. The threshold voltage) Vlc, th and the voltage at which the change in the refractive index npoly of the polymer liquid crystal material or the liquid crystalline polymer resin is saturated (the saturation voltage of the polymer liquid crystal material or the liquid crystalline polymer resin) Vpoly, sat is Vlc, th ≧ Vpoly, sat.

【0025】図2及び図3はVpoly,th≧Vlc,sat の場
合の例である。電圧無印加時(印加電圧V=0)の液晶
材料の屈折率nlcと高分子液晶材料あるいは液晶性高分
子樹脂の屈折率npolyが一致しており、印加電圧Vが0
≦V≦Vlc,satの領域で透過光強度が低下あるいは反射
光強度が上昇し、Vpoly,th≦V≦Vpoly,sat の領域で
透過光強度が上昇あるいは反射光強度が低下し、Vpol
y,sat≦Vの領域で液晶材料の屈折率nlcと高分子液晶
材料あるいは液晶性高分子樹脂の屈折率npolyが一致す
る場合、図2,図3のような電気光学特性を有する液晶
光学素子を得ることができる。次に、本発明の第2の実
施の形態について図4,図5を参照して説明する。本実
施の形態の液晶光学素子の構造は図1の上記第1の実施
の形態の液晶光学素子と同じであるが、液晶材料の屈折
率と高分子液晶材料あるいは液晶性高分子樹脂の屈折率
特性を第1の実施の形態と変えた。Vpoly,th≧Vlc,sa
t であるが、電圧無印加時の液晶材料の屈折率nlcと高
分子液晶材料あるいは液晶性高分子樹脂の屈折率npoly
が異なり、印加電圧Vが0≦V≦Vlc,satの領域で透過
光強度が上昇あるいは反射光強度が低下し、Vlc,sat=
V=Vpoly,th の領域付近でnlcとnpolyが一致しても
よく、Vpoly,th≦V≦Vpoly,sat の領域で透過光強度
が低下あるいは反射光強度が上昇し、Vpoly,sat≦Vの
領域で液晶材料の屈折率nlcと高分子液晶材料の屈折率
npolyが異なる場合には、図4,図5のような電気光学
特性を有する液晶光学素子を得ることができる。
FIGS. 2 and 3 show an example in the case of Vpoly, th ≧ Vlc, sat. When no voltage is applied (applied voltage V = 0), the refractive index nlc of the liquid crystal material matches the refractive index npoly of the polymer liquid crystal material or the liquid crystalline polymer resin.
In the region of ≤V≤Vlc, sat, the transmitted light intensity decreases or the reflected light intensity increases, and in the region of Vpoly, th≤V≤Vpoly, sat, the transmitted light intensity increases or the reflected light intensity decreases, and Vpol,
When the refractive index nlc of the liquid crystal material and the refractive index npoly of the polymer liquid crystal material or the liquid crystalline polymer resin coincide with each other in the region of y, sat ≦ V, the liquid crystal optical element having the electro-optical characteristics as shown in FIGS. Can be obtained. Next, a second embodiment of the present invention will be described with reference to FIGS. The structure of the liquid crystal optical element of the present embodiment is the same as that of the liquid crystal optical element of the first embodiment shown in FIG. 1, but the refractive index of the liquid crystal material and the refractive index of the polymer liquid crystal material or the liquid crystalline polymer resin are changed. The characteristics are changed from those of the first embodiment. Vpoly, th ≧ Vlc, sa
t, the refractive index nlc of the liquid crystal material when no voltage is applied and the refractive index npoly of the polymer liquid crystal material or liquid crystalline polymer resin
Is different, the transmitted light intensity increases or the reflected light intensity decreases in the region where the applied voltage V is 0 ≦ V ≦ Vlc, sat, and Vlc, sat =
In the region of V = Vpoly, th, nlc and npoly may coincide. In the region of Vpoly, th ≦ V ≦ Vpoly, sat, the intensity of transmitted light decreases or the intensity of reflected light increases. When the refractive index nlc of the liquid crystal material and the refractive index npoly of the polymer liquid crystal material are different in the region, a liquid crystal optical element having electro-optical characteristics as shown in FIGS. 4 and 5 can be obtained.

【0026】また、Vlc,th≧Vpoly,sat
であり、電圧無印加時の液晶材料の屈折率nlcと高分
子液晶材料あるいは液晶性高分子樹脂の屈折率npol
yが一致しており、印加電圧Vが0≦V≦Vpoly,
satの領域で透過光強度が低下あるいは反射光強度が
上昇し、Vlc,th≦V≦Vlc,satの領域で透
過光強度が上昇あるいは反射光強度が低下し、Vlc,
sat≦Vの領域で液晶材料の屈折率nlcと高分子液
晶材料あるいは液晶性高分子樹脂の屈折率npolyが
一致する場合には図と同等の電気光学特性を有す
る液晶光学素子を得ることができる。
Vlc, th ≧ Vpoly, sat
And the refractive index nlc of the liquid crystal material when no voltage is applied and the refractive index npol of the polymer liquid crystal material or the liquid crystalline polymer resin.
y match, and the applied voltage V is 0 ≦ V ≦ Vpoly,
In the region of sat, the transmitted light intensity decreases or the reflected light intensity increases, and in the region of Vlc, th ≦ V ≦ Vlc, sat, the transmitted light intensity increases or the reflected light intensity decreases, and Vlc,
obtain a liquid crystal optical element having the same electro-optical properties and 2, 3 in the case where the region of sat ≦ V refractive index npoly refractive index nlc the liquid crystalline polymer or a liquid crystal polymer resin of the liquid crystal material matches be able to.

【0027】電圧無印加時の液晶材料の屈折率nlcと高
分子液晶材料あるいは液晶性高分子樹脂の屈折率npoly
が異なり、印加電圧Vが0≦V≦Vpoly,satの領域で透
過光強度が上昇あるいは反射光強度が低下し、Vpoly,s
at=V=Vlc,th の領域付近でnlcとnpoly が一致し
てもよく、Vlc,th≦V≦Vlc,satの領域で透過光強度
が低下あるいは反射光強度が上昇し、Vlc,sat≦Vの領
域で液晶材料の屈折率nlcと高分子液晶材料の屈折率n
polyが異なる場合には、図4,5と同等の電気光学特性
を有する液晶光学素子を得ることができる。図6は、本
発明の第3の実施の形態の液晶光学素子の断面概略図で
ある。上記第1の実施の形態では同じ構成材料の電気光
学特性が同一の調光層4を3層積層したが、本実施の形
態では、電気光学特性の異なる3つの調光層5,6,7
を積層し、液晶光学素子10を作製した。調光層の形成
方法、電極材料2及び基板1の構成材料は、上記の第1
の実施の形態と同様とした。
The refractive index nlc of the liquid crystal material when no voltage is applied and the refractive index npoly of the polymer liquid crystal material or the liquid crystalline polymer resin
The transmitted light intensity increases or the reflected light intensity decreases in the region where the applied voltage V is 0 ≦ V ≦ Vpoly, sat, and Vpoly, s
nlc may be equal to npoly near the region of at = V = Vlc, th. In the region of Vlc, th ≦ V ≦ Vlc, sat, the transmitted light intensity decreases or the reflected light intensity increases, and Vlc, sat ≦ In the region of V, the refractive index nlc of the liquid crystal material and the refractive index n of the polymer liquid crystal material
When poly is different, a liquid crystal optical element having the same electro-optical characteristics as in FIGS. 4 and 5 can be obtained. FIG. 6 is a schematic sectional view of a liquid crystal optical element according to the third embodiment of the present invention. In the first embodiment, three light modulating layers 4 having the same electro-optical characteristics of the same constituent material are laminated, but in the present embodiment, three light modulating layers 5, 6, 7 having different electro-optical characteristics are stacked.
Were laminated to produce a liquid crystal optical element 10. The method of forming the light control layer, the electrode material 2 and the constituent material of the substrate 1 are the same as those of the first embodiment.
This is the same as the embodiment.

【0028】[0028]

【実施例】以下、本発明を実施例を用いて説明するが、
本発明は実施例に限定されるものではない。 (実施例1)飽和電圧時の屈折率を一致させたしきい値
電圧Vlc,th =2.6V、飽和電圧Vlc,sat =4.0
Vのネマチック液晶材料と、しきい値電圧Vpoly,th=
11.6Vの高分子液晶から成る厚さ4μmの調光層を
ITO電極を有するガラス基板上に形成した後、ITO
を電極としたガラス基板で挟持し液晶光学素子を作製し
た。この素子の電気光学特性をHe−Neレーザーで測
定した。その結果、最大透過率を100%、最小透過率
を0%とし透過率が90%時の電圧V90,1、V90,2(V
90,1<V90,2)および透過率が10%時の電圧V10,1、
V10,2(V10,1<V10,2)は、それぞれ3.9V,1
2.4V,2.8V,30.2Vであった(図7)。 (実施例2)電圧無印加時の屈折率を一致させたしきい
値電圧Vlc,th =2.1V、飽和電圧Vlc,sat =3.
8Vのネマチック液晶材料と、しきい値電圧Vpoly,th
=11.9Vの高分子液晶から成る厚さ4μmの調光層
をITO電極を有するガラス基板上に形成した後、IT
Oを電極としたガラス基板で挟持し液晶光学素子を作成
した。この素子の電気光学特性をHe−Neレーザーで
測定した。その結果、最大透過率を100%、最小透過
率を0%とし透過率が90%時の電圧V90,1,V90,2
(V90,1<V90,2)および透過率が10%時の電圧V1
0,1,V10,2(V10,1<V10,2 )は、それぞれ2.4
V,4.4V,12.3V,27.5Vであった。 (実施例3)飽和電圧時の屈折率を一致させたしきい値
電圧Vlc,th =2.6V、飽和電圧Vlc,sat =4.0
Vのネマチック液晶材料と、しきい値電圧Vpoly,th=
11.6Vの高分子液晶から成る厚さ4μmの調光層を
ITO電極/反射板/ガラスの構造を有する基板上に形
成した後、ITOを電極としたガラス基板で挟持し液晶
光学素子を作成した。この素子の電気光学特性をHe−
Neレーザーで測定した。その結果、最大反射率を10
0%、最小反射率を0%とし反射率が90%時の電圧V
90,1,V90,2(V90,1<V90,2)および透過率が10%
時の電圧V10,1,V10,2(V10,1<V10,2)は、それぞ
れ2.8V,4.3V,12.1,30.7Vであっ
た。
Hereinafter, the present invention will be described with reference to examples.
The present invention is not limited to the embodiments. (Embodiment 1) The threshold voltage Vlc, th = 2.6 V and the saturation voltage Vlc, sat = 4.0 in which the refractive indices at the saturation voltage are matched.
V nematic liquid crystal material and threshold voltage Vpoly, th =
After forming a 4 μm-thick dimming layer made of a 11.6 V polymer liquid crystal on a glass substrate having an ITO electrode,
Was sandwiched between glass substrates each having an electrode, to produce a liquid crystal optical element. The electro-optical characteristics of this device were measured with a He-Ne laser. As a result, when the maximum transmittance is 100%, the minimum transmittance is 0%, and the transmittance is 90%, the voltages V90,1 and V90,2 (V
90,1 <V90,2) and the voltage V10,1 when the transmittance is 10%,
V10,2 (V10,1 <V10,2) are 3.9V, 1
It was 2.4 V, 2.8 V, and 30.2 V (FIG. 7). (Second Embodiment) A threshold voltage Vlc, th = 2.1 V and a saturation voltage Vlc, sat = 3 with the same refractive index when no voltage is applied.
8V nematic liquid crystal material and threshold voltage Vpoly, th
After forming a 4 μm-thick dimming layer made of a polymer liquid crystal of = 11.9 V on a glass substrate having an ITO electrode,
A liquid crystal optical element was formed by sandwiching the glass substrate with O as an electrode. The electro-optical characteristics of this device were measured with a He-Ne laser. As a result, when the maximum transmittance is 100% and the minimum transmittance is 0%, the voltages V90,1, V90,2 when the transmittance is 90%.
(V90,1 <V90,2) and the voltage V1 when the transmittance is 10%
0,1, V10,2 (V10,1 <V10,2) are respectively 2.4.
V, 4.4V, 12.3V and 27.5V. (Embodiment 3) The threshold voltage Vlc, th = 2.6 V and the saturation voltage Vlc, sat = 4.0 in which the refractive indices at the saturation voltage are matched.
V nematic liquid crystal material and threshold voltage Vpoly, th =
After forming a dimming layer having a thickness of 4 μm made of 11.6 V polymer liquid crystal on a substrate having a structure of ITO electrode / reflector / glass, it is sandwiched between glass substrates using ITO as an electrode to form a liquid crystal optical element. did. The electro-optical characteristics of this element were changed to He-
It was measured with a Ne laser. As a result, the maximum reflectance is 10
0%, the minimum reflectance is 0%, and the voltage V when the reflectance is 90%
90,1, V90,2 (V90,1 <V90,2) and 10% transmittance
At this time, the voltages V10,1, V10,2 (V10,1 <V10,2) were 2.8 V, 4.3 V, 12.1, 30.7 V, respectively.

【0029】[0029]

【発明の効果】以上説明したように、本発明の液晶光学
素子は、素子に印加される電圧の2つまたは2つ以上の
領域で一致する高分子樹脂と液晶材料から成り、該液晶
材料を該高分子樹脂に分散させた構成の調光層を使用す
ることで、次のような効果を得ることができる。 (1)透過光強度あるいは反射光強度が上昇あるいは低
下し一旦飽和しても、更なる印加電圧の増加あるいは減
少によって透過光強度あるいは反射光強度が上昇あるい
は低下することができる。 (2)調光層を積層した場合においても、1組の電圧を
印加する電極のみを配置することで液晶光学素子の駆動
が可能となり、液晶光学素子の低コスト化ができる。
As described above, the liquid crystal optical element of the present invention comprises a polymer resin and a liquid crystal material which match in two or more regions of the voltage applied to the element. The following effects can be obtained by using the light control layer having a configuration dispersed in the polymer resin. (1) Even if the transmitted light intensity or the reflected light intensity is increased or decreased and once saturated, the transmitted light intensity or the reflected light intensity can be increased or decreased by further increasing or decreasing the applied voltage. (2) Even when the dimming layers are stacked, the liquid crystal optical element can be driven by disposing only one set of electrodes to which a voltage is applied, and the cost of the liquid crystal optical element can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の液晶光学素子の断
面概略図である。
FIG. 1 is a schematic sectional view of a liquid crystal optical element according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態の液晶光学素子の電
気光学特性図である。
FIG. 2 is an electro-optical characteristic diagram of the liquid crystal optical element according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態の液晶光学素子の電
気光学特性図である。
FIG. 3 is an electro-optical characteristic diagram of the liquid crystal optical element according to the first embodiment of the present invention.

【図4】本発明の第2の実施の形態の液晶光学素子の電
気光学特性図である。
FIG. 4 is an electro-optical characteristic diagram of a liquid crystal optical element according to a second embodiment of the present invention.

【図5】本発明の第2の実施の形態の液晶光学素子の電
気光学特性図である。
FIG. 5 is an electro-optical characteristic diagram of the liquid crystal optical element according to the second embodiment of the present invention.

【図6】本発明の第3の実施の形態の液晶光学素子の断
面概略図である。
FIG. 6 is a schematic sectional view of a liquid crystal optical element according to a third embodiment of the present invention.

【図7】本発明の実施例1における液晶光学素子の電気
光学特性図である。
FIG. 7 is an electro-optical characteristic diagram of the liquid crystal optical element according to the first embodiment of the present invention.

【図8】従来の高分子樹脂と液晶材料から成る調光層を
積層して使用する場合の液晶光学素子の断面概略図であ
る。
FIG. 8 is a schematic cross-sectional view of a conventional liquid crystal optical element when a dimming layer made of a polymer resin and a liquid crystal material is used by lamination.

【図9】従来の技術(PDLC等)における電気光学特
性図である。
FIG. 9 is an electro-optical characteristic diagram in a conventional technique (PDLC or the like).

【図10】従来の技術(PDLC等)における電気光学
特性図である。
FIG. 10 is an electro-optical characteristic diagram in a conventional technique (PDLC or the like).

【符号の説明】[Explanation of symbols]

1 基板 2 電極 3〜7 調光層 10 液晶光学素子 DESCRIPTION OF SYMBOLS 1 Substrate 2 Electrode 3-7 Light control layer 10 Liquid crystal optical element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松嶋 仁 東京都港区芝五丁目7番1号 日本電気 株式会社内 (72)発明者 佐藤 正春 東京都港区芝五丁目7番1号 日本電気 株式会社内 (56)参考文献 特表 昭62−502780(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1334 G02F 1/133 505 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hitoshi Matsushima 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation (72) Inventor Masaharu Sato 5-7-1 Shiba, Minato-ku, Tokyo NEC Incorporated (56) References Special Table 62-502780 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/1334 G02F 1/133 505

Claims (16)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極を有する基板で調光層を挟持して構
成された液晶光学素子において、前記調光層が高分子樹
脂に液晶材料を分散させて形成され、前記高分子樹脂の
屈折率npolyと前記液晶材料の屈折率nlcが、素
子に印加される電圧の2つの領域で一致することを特徴
とする液晶光学素子。
1. A liquid crystal optical element comprising a light control layer sandwiched between substrates having electrodes, wherein the light control layer is formed by dispersing a liquid crystal material in a polymer resin, and a refractive index of the polymer resin is provided. A liquid crystal optical element, wherein npoly and a refractive index nlc of the liquid crystal material coincide in two regions of a voltage applied to the element.
【請求項2】 電極を有する基板で調光層を挟持して構
成された液晶光学素子において、前記調光層が高分子樹
脂に液晶材料を分散させて形成され、前記高分子樹脂の
屈折率npolyと前記液晶材料の屈折率nlcが、素
子に印加される電圧の2つの領域で異なることを特徴と
する液晶光学素子。
2. A liquid crystal optical element comprising a light control layer sandwiched between substrates having electrodes, wherein the light control layer is formed by dispersing a liquid crystal material in a polymer resin, and the refractive index of the polymer resin is A liquid crystal optical element, wherein npoly and a refractive index nlc of the liquid crystal material are different in two regions of a voltage applied to the element.
【請求項3】 前記調光層中の高分子樹脂が高分子液晶
材料あるいは液晶性高分子樹脂である請求項1または2
記載の液晶光学素子。
3. The polymer resin in the light modulating layer is a polymer liquid crystal material or a liquid crystalline polymer resin.
The liquid crystal optical element according to the above.
【請求項4】 前記調光層中の高分子液晶材料あるいは
液晶性高分子樹脂が側鎖型高分子液晶材料あるいは側鎖
型液晶性高分子樹脂である請求項3記載の液晶光学素
子。
4. The liquid crystal optical element according to claim 3, wherein the liquid crystal polymer material or the liquid crystal polymer resin in the light control layer is a side chain type liquid crystal polymer material or a side chain type liquid crystal polymer resin.
【請求項5】 前記高分子液晶材料あるいは前記液晶性
高分子樹脂の屈折率npolyの異方性が変化し始める
電圧(高分子液晶材料あるいは液晶性高分子樹脂のしき
い値電圧)Vpoly,thと前記液晶材料の屈折率n
lcの異方性変化が飽和する電圧(液晶材料の飽和電
圧)Vlc,satが、Vpoly,th≧Vlc,s
atであることを特徴とする請求項3または4記載の液
晶光学素子。
5. A voltage at which the anisotropy of the refractive index npoly of the polymer liquid crystal material or the liquid crystalline polymer resin starts to change (threshold voltage of the polymer liquid crystal material or the liquid crystalline polymer resin) Vpoly, th And the refractive index n of the liquid crystal material
The voltage (saturation voltage of the liquid crystal material) Vlc, sat at which the anisotropic change of lc is saturated is Vpoly, th ≧ Vlc, s
The liquid crystal optical element according to claim 3, wherein the liquid crystal optical element is at.
【請求項6】 前記液晶材料の屈折率nlcの異方性が
変化し始める電圧(液晶材料のしきい値電圧)Vlc,
thと前記高分子液晶材料あるいは前記液晶性高分子樹
脂の屈折率npoly異方性変化が飽和する電圧(高分
子液晶材料あるいは液晶性高分子樹脂の飽和電圧)Vp
oly,satが、Vlc,th≧Vpoly,sat
であることを特徴とする請求項3または4記載の液晶光
学素子。
6. A voltage (the threshold voltage of the liquid crystal material) Vlc, at which the anisotropy of the refractive index nlc of the liquid crystal material starts to change.
th and the voltage at which the change in the refractive index npoly anisotropy of the polymer liquid crystal material or the liquid crystalline polymer resin is saturated (saturation voltage of the polymer liquid crystal material or the liquid crystalline polymer resin) Vp
poly, sat is Vlc, th ≧ Vpoly, sat
The liquid crystal optical element according to claim 3, wherein
【請求項7】 電圧無印加時(印加電圧V=0)の前記
液晶材料の屈折率nlcと前記高分子液晶材料あるいは
前記液晶性高分子樹脂の屈折率npolyが一致してお
り、印加電圧Vが0≦V≦Vlc,satの領域で透過
光強度が低下あるいは反射光強度が上昇し、Vpol
y,th≦V≦Vpoly,satの領域で透過光強度
が上昇あるいは反射光強度が低下し、Vpoly,sa
t≦Vの領域で液晶材料の屈折率nlcと高分子液晶材
料あるいは液晶性高分子樹脂の屈折率npolyが一致
することを特徴とする請求項5記載の液晶光学素子。
7. When no voltage is applied (applied voltage V = 0), the refractive index nlc of the liquid crystal material and the refractive index npoly of the polymer liquid crystal material or the liquid crystalline polymer resin match, and the applied voltage V In the range of 0 ≦ V ≦ Vlc, sat, the transmitted light intensity decreases or the reflected light intensity increases, and Vpol
In the region of y, th ≦ V ≦ Vpoly, sat, the transmitted light intensity increases or the reflected light intensity decreases, and Vpoly, sa
6. The liquid crystal optical element according to claim 5, wherein the refractive index nlc of the liquid crystal material and the refractive index npoly of the polymer liquid crystal material or the liquid crystalline polymer resin coincide in a range of t ≦ V.
【請求項8】 電圧無印加時の前記液晶材料の屈折率n
lcと前記高分子液晶材料あるいは前記液晶性高分子樹
脂の屈折率npolyが異なり、印加電圧Vが0≦V≦
Vlc,satの領域で透過光強度が上昇あるいは反射
光強度が低下し、Vlc,sat=V=Vpoly,t
hの領域付近でnlcとnpolyが一致してもよく、
Vpoly,th≦V≦Vpoly,satの領域で透
過光強度が低下あるいは反射光強度が上昇し、Vpol
y,sat≦Vの領域で前記液晶材料の屈折率nlcと
前記高分子液晶材料あるいは前記液晶性高分子樹脂の屈
折率npolyが異なることを特徴とする請求項5記載
の液晶光学素子
8. A refractive index n of the liquid crystal material when no voltage is applied.
lc and the refractive index npoly of the polymer liquid crystal material or the liquid crystalline polymer resin are different, and the applied voltage V is 0 ≦ V ≦
In the region of Vlc, sat, the transmitted light intensity increases or the reflected light intensity decreases, and Vlc, sat = V = Vpoly, t
In the vicinity of the region h, nlc may be equal to npoly,
In the region of Vpoly, th ≦ V ≦ Vpoly, sat, the transmitted light intensity decreases or the reflected light intensity increases, and Vpol,
y, the liquid crystal optical element according to claim 5, wherein the refractive index npoly refractive index nlc and the polymer liquid crystal material or the liquid crystalline polymer resin in the liquid crystal material in the region of sat ≦ V are different from each other.
【請求項9】 電圧無印加時の前記液晶材料の屈折率n
lcと前記高分子液晶材料あるいは前記液晶性高分子樹
脂の屈折率npolyが一致しており、印加電圧Vが0
≦V≦Vpoly,satの領域で透過光強度が低下あ
るいは反射光強度が上昇し、Vlc,th≦V≦Vl
c,satの領域で透過光強度が上昇あるいは反射光強
度が低下し、Vlc,sat≦Vの領域で前記液晶材料
の屈折率nlcと前記高分子液晶材料あるいは前記液晶
性高分子樹脂の屈折率npolyが一致することを特徴
とする請求項6記載の液晶光学素子。
9. The refractive index n of the liquid crystal material when no voltage is applied
lc is equal to the refractive index npoly of the polymer liquid crystal material or the liquid crystalline polymer resin, and the applied voltage V is 0.
In the region of ≦ V ≦ Vpoly, sat, the transmitted light intensity decreases or the reflected light intensity increases, and Vlc, th ≦ V ≦ Vl
The transmitted light intensity increases or the reflected light intensity decreases in the region of c and sat, and the refractive index nlc of the liquid crystal material and the refractive index of the liquid crystal polymer material or the liquid crystalline polymer resin in the region of Vlc and sat ≦ V. 7. The liquid crystal optical element according to claim 6, wherein npoly is the same.
【請求項10】 電圧無印加時の前記液晶材料の屈折率
nlcと前記高分子液晶材料あるいは前記液晶性高分子
樹脂の屈折率npolyが異なり、印加電圧Vが0≦V
≦Vpoly,satの領域で透過光強度が上昇あるい
は反射光強度が低下し、Vpoly,sat=V=Vl
c,thの領域付近でnlcとnpolyが一致しても
よく、Vlc,th≦V≦Vlc,satの領域で透過
光強度が低下あるいは反射光強度が上昇し、Vlc,s
at≦Vの領域で前記液晶材料の屈折率nlcと前記高
分子液晶材料あるいは前記液晶性高分子樹脂の屈折率n
polyが異なることを特徴とする請求項6記載の液晶
光学素子
10. The refractive index nlc of the liquid crystal material when no voltage is applied is different from the refractive index npoly of the polymer liquid crystal material or the liquid crystalline polymer resin, and the applied voltage V is 0 ≦ V.
In the region of ≦ Vpoly, sat, the transmitted light intensity increases or the reflected light intensity decreases, and Vpoly, sat = V = Vl
nlc may be equal to npoly near the region c, th, and the transmitted light intensity decreases or the reflected light intensity increases in the region Vlc, th ≦ V ≦ Vlc, sat, and Vlc, s
In the region of at ≦ V, the refractive index nlc of the liquid crystal material and the refractive index n of the polymer liquid crystal material or the liquid crystalline polymer resin
7. The liquid crystal optical element according to claim 6, wherein poly is different .
【請求項11】 前記調光層中の前記液晶材料がネマチ
ック相あるいはコレステリック相を有することを特徴と
する請求項1乃至請求項10のいずれかに記載の液晶光
学素子。
11. The liquid crystal optical element according to claim 1, wherein the liquid crystal material in the light control layer has a nematic phase or a cholesteric phase.
【請求項12】 前記調光層中の前記液晶材料が強誘電
性液晶相あるいは反強誘電性液晶相を有することを特徴
とする請求項1乃至請求項10のいずれかに記載の液晶
光学素子。
12. The liquid crystal optical element according to claim 1, wherein the liquid crystal material in the light modulating layer has a ferroelectric liquid crystal phase or an antiferroelectric liquid crystal phase. .
【請求項13】 前記調光層中の前記高分子液晶材料あ
るいは前記液晶性高分子樹脂がネマチック相あるいはコ
レステリック相を有することを特徴とする請求項3乃至
請求項12のいずれかに記載の液晶光学素子。
13. The liquid crystal according to claim 3, wherein the polymer liquid crystal material or the liquid crystalline polymer resin in the light modulating layer has a nematic phase or a cholesteric phase. Optical element.
【請求項14】 前記調光層中の前記高分子液晶材料あ
るいは前記液晶性高分子樹脂が強誘電性液晶相を有する
ことを特徴とする請求項3乃至請求項12のいずれかに
記載の液晶光学素子。
14. The liquid crystal according to claim 3, wherein the polymer liquid crystal material or the liquid crystalline polymer resin in the light modulating layer has a ferroelectric liquid crystal phase. Optical element.
【請求項15】 前記調光層中の前記高分子液晶材料あ
るいは前記液晶性高分子樹脂が反強誘電性液晶相を有す
ることを特徴とする請求項3乃至請求項12のいずれか
に記載の液晶光学素子。
15. The liquid crystal display device according to claim 3, wherein the liquid crystal polymer material or the liquid crystal polymer resin in the light modulating layer has an antiferroelectric liquid crystal phase. Liquid crystal optical element.
【請求項16】 前記調光層に電圧を印加する電極に、
薄膜トランジスタ(TFT)等の能動素子を有すること
を特徴とする請求項1乃至請求項12のいずれかに記載
の液晶光学素子。
16. An electrode for applying a voltage to the light control layer,
13. The liquid crystal optical element according to claim 1, comprising an active element such as a thin film transistor (TFT).
JP09355071A 1997-12-24 1997-12-24 Liquid crystal optical element Expired - Fee Related JP3085273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09355071A JP3085273B2 (en) 1997-12-24 1997-12-24 Liquid crystal optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09355071A JP3085273B2 (en) 1997-12-24 1997-12-24 Liquid crystal optical element

Publications (2)

Publication Number Publication Date
JPH11183883A JPH11183883A (en) 1999-07-09
JP3085273B2 true JP3085273B2 (en) 2000-09-04

Family

ID=18441772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09355071A Expired - Fee Related JP3085273B2 (en) 1997-12-24 1997-12-24 Liquid crystal optical element

Country Status (1)

Country Link
JP (1) JP3085273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558559U (en) * 1992-01-23 1993-08-03 自動車機器株式会社 Fluid pressure controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558559U (en) * 1992-01-23 1993-08-03 自動車機器株式会社 Fluid pressure controller

Also Published As

Publication number Publication date
JPH11183883A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
JP3086718B2 (en) Liquid crystal display device
CN1886691B (en) Optical element using liquid crystal having optical isotropy
JP3504159B2 (en) Liquid crystal optical switch element
US5949508A (en) Phase separated composite organic film and methods for the manufacture thereof
US5437811A (en) Liquid crystalline light modulating device and material
JP3078623B2 (en) Liquid crystal electro-optical device and manufacturing method thereof
US5929953A (en) Light control element and method of manufacturing the same
JP2885116B2 (en) Liquid crystal optical element and manufacturing method thereof
JP2002277862A (en) Liquid crystal light modulator and display device using the same
US5766509A (en) Liquid crystal display element
JP2006234885A (en) Manufacturing method of liquid crystal optical modulator, liquid crystal optical modulator and liquid crystal display
JP3085273B2 (en) Liquid crystal optical element
US5539548A (en) Electro-optical device with laminated layers of liquid crystal an light scattering support layers
JP2827720B2 (en) Liquid crystal optical element and manufacturing method thereof
JP4220810B2 (en) Method for manufacturing liquid crystal light modulation film, liquid crystal light modulation film, and liquid crystal light modulator
JP3090077B2 (en) Liquid crystal optical element and manufacturing method thereof
JP4223107B2 (en) Liquid crystal light modulator
JP2887051B2 (en) Light modulation element
JP2980064B2 (en) Liquid crystal optical element
JPH04281425A (en) Display element
JPH10161132A (en) Liquid crystal oriented film and its production
JP2783197B2 (en) Liquid crystal optical element
JP2006267562A (en) Method for manufacturing liquid crystal optical modulator, liquid crystal optical modulator and liquid crystal display device
JP2001209035A (en) Liquid crystal optical shutter
JP2783196B2 (en) Liquid crystal optical element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070707

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees