JP3083276B2 - Stir-cooled storage tank for uranium-plutonium mixed oxide powder - Google Patents

Stir-cooled storage tank for uranium-plutonium mixed oxide powder

Info

Publication number
JP3083276B2
JP3083276B2 JP09282568A JP28256897A JP3083276B2 JP 3083276 B2 JP3083276 B2 JP 3083276B2 JP 09282568 A JP09282568 A JP 09282568A JP 28256897 A JP28256897 A JP 28256897A JP 3083276 B2 JP3083276 B2 JP 3083276B2
Authority
JP
Japan
Prior art keywords
storage tank
cooling
uranium
hollow
mixed oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09282568A
Other languages
Japanese (ja)
Other versions
JPH11109089A (en
Inventor
義一 青木
満 鈴木
進 皆川
Original Assignee
核燃料サイクル開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 核燃料サイクル開発機構 filed Critical 核燃料サイクル開発機構
Priority to JP09282568A priority Critical patent/JP3083276B2/en
Publication of JPH11109089A publication Critical patent/JPH11109089A/en
Application granted granted Critical
Publication of JP3083276B2 publication Critical patent/JP3083276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/95Heating or cooling systems using heated or cooled stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/57Mixing radioactive materials, e.g. nuclear materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Accessories For Mixers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ウラン・プルトニ
ウム混合酸化物(MOX:Mixed Oxide )粉末を貯蔵す
るための貯槽に関し、更に詳しく述べると、円筒形状の
貯槽本体の内部に中空攪拌羽根構造体を設置して、貯蔵
されているウラン・プルトニウム混合酸化物粉末を攪拌
冷却するようにした攪拌冷却式ウラン・プルトニウム混
合酸化物粉末用貯槽に関するものである。この装置は、
特にウラン・プルトニウム混合酸化物粉末のうち、比較
的プルトニウムの割合が高い粉末、あるいはプルトニウ
ムの発熱量が高い粉末の大量貯蔵に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage tank for storing uranium-plutonium mixed oxide (MOX: Mixed Oxide) powder, and more particularly, to a hollow stirring blade structure inside a cylindrical storage tank body. And a stir-cooling type storage tank for uranium-plutonium mixed oxide powder in which stored uranium-plutonium mixed oxide powder is stirred and cooled. This device is
Particularly, it is suitable for mass storage of powder having a relatively high ratio of plutonium or powder having a high calorific value of plutonium among uranium-plutonium mixed oxide powders.

【0002】[0002]

【従来の技術】従来、ウラン・プルトニウム混合酸化物
粉末の貯蔵には、単純な円筒形状の貯槽が用いられてい
る。
2. Description of the Related Art Conventionally, a simple cylindrical storage tank has been used for storing uranium-plutonium mixed oxide powder.

【0003】[0003]

【発明が解決しようとする課題】しかし、ウラン・プル
トニウム混合酸化物粉末は、熱伝導度が低いために、大
量に貯蔵すると、プルトニウムの発熱密度またはプルト
ニウム添加割合によっては粉末中心部の最高温度は20
0℃をはるかに超える温度となる。この温度により、ウ
ラン・プルトニウム混合酸化物粉末が徐々に酸化した
り、添加した有機物が揮発し、ペレット製造の際に焼結
密度不足や外観不良等の悪影響を及ぼす。これを避けよ
うとすると、従来の単なる円筒形状の貯槽では径が小さ
くなりすぎ、大量のウラン・プルトニウム混合酸化物粉
末を貯蔵できなくなる。
However, since the uranium-plutonium mixed oxide powder has a low thermal conductivity, when stored in large quantities, the maximum temperature at the center of the powder depends on the heat generation density of the plutonium or the proportion of added plutonium. 20
Temperatures far above 0 ° C. Due to this temperature, the uranium-plutonium mixed oxide powder is gradually oxidized, and the added organic substance is volatilized, which has adverse effects such as insufficient sintering density and poor appearance during pellet production. To avoid this, the diameter of a conventional simple cylindrical storage tank becomes too small, and a large amount of uranium / plutonium mixed oxide powder cannot be stored.

【0004】冷却効率を高めるために、貯槽を中空構造
とすることが考えられる。確かに、中空構造の貯槽で
は、ある程度の冷却効果の向上は認められるが、プルト
ニウムの割合が高い粉末やプルトニウム発熱密度が高く
なると、必ずしも十分には冷却できなくなる。そこで、
より冷却効率が高く、小形化できる貯槽の開発が求めら
れている。
In order to enhance the cooling efficiency, it is conceivable that the storage tank has a hollow structure. Certainly, in the storage tank having the hollow structure, the cooling effect is improved to some extent. However, when the powder having a high plutonium ratio or the heat generation density of plutonium increases, the cooling cannot always be performed sufficiently. Therefore,
There is a demand for the development of a storage tank with higher cooling efficiency and smaller size.

【0005】本発明の目的は、ウラン・プルトニウム混
合酸化物粉末の温度上昇を抑制し、比較的プルトニウム
の割合が高い、あるいはプルトニウム発熱密度の高いウ
ラン・プルトニウム混合酸化物粉末でも大量に貯蔵で
き、小形化できる構造の貯槽を提供することである。
An object of the present invention is to suppress the temperature rise of the uranium-plutonium mixed oxide powder, and to store a large amount of uranium-plutonium mixed oxide powder having a relatively high ratio of plutonium or a high heat generation density of plutonium. An object of the present invention is to provide a storage tank having a structure that can be downsized.

【0006】[0006]

【課題を解決するための手段】本発明は、内面は滑らか
で外面に冷却管が巻き付けられた円筒形状であって下部
が窄まって排出口となっている貯槽本体と、該貯槽本体
の外側を覆う外側断熱ジャケットと、前記貯槽本体内部
に組み込まれて回転自在の中空攪拌羽根構造体と、その
各中空羽根の内部に冷却空気を送り込む冷風導入管と、
前記貯槽本体の上面を覆う蓋体と、前記中空攪拌羽根構
造体の回転駆動機構とを具備している攪拌冷却式ウラン
・プルトニウム混合酸化物粉末用貯槽である。ここで前
記中空攪拌羽根構造体は、有底円管状の軸部と、その外
周面から横方向に突出する中空羽根を有し、該中空羽根
の接続部分でも連通していて全体が一つの連続した空洞
となっている構造体である。前記冷風導入管は、軸部の
中心軸に沿って挿入され断熱材で覆われており、枝管に
よって枝別れして中空羽根内の先端近傍に達する構造で
あり、冷風導入管の上部はフリージョイントに接続され
ている。これによって冷風導入管を通って枝管から噴出
した冷風は、中空羽根の内部先端に達して該中空羽根の
内面に沿って戻り、冷風導入管と軸部との間を通って排
出される冷風流路が形成され、中空攪拌羽根構造体の外
表面全体を内部から冷却するように構成されている。
記貯槽本体内にウラン・プルトニウム混合酸化物粉末を
貯蔵する。そして、冷却管に冷却空気を供給して冷却
し、中空攪拌羽根構造体を前記ウラン・プルトニウム混
合酸化物粉末中で回転させつつ該中空攪拌羽根構造体内
に冷却空気を供給して攪拌冷却する。
SUMMARY OF THE INVENTION The present invention relates to a storage tank body having a cylindrical shape with a smooth inner surface and a cooling pipe wound around the outer surface, a lower portion being narrowed to form a discharge port, and an outer portion of the storage tank body. An outer heat insulating jacket that covers, a rotatable hollow stirring blade structure that is incorporated inside the storage tank body, and a cool air introduction pipe that feeds cooling air into each hollow blade.
An agitated and cooled uranium-plutonium mixed oxide powder storage tank comprising a lid for covering an upper surface of the storage tank main body and a rotary drive mechanism for the hollow stirring blade structure. Here before
The hollow stirring blade structure has a bottomed circular tubular shaft portion and an outer portion.
A hollow blade protruding laterally from a peripheral surface;
Is connected to the connecting part and the whole is one continuous cavity
The structure is as follows. The cold air inlet tube is
Inserted along the central axis and covered with thermal insulation,
Therefore, with a structure that branches off and reaches near the tip inside the hollow blade
Yes, the upper part of the cold air introduction pipe is connected to the free joint
ing. This gushes from the branch pipe through the cold air inlet pipe
The cold air reaches the inner tip of the hollow blade and
Return along the inner surface and pass through between the cool air inlet pipe and the shaft.
A cold air flow path is formed outside the hollow stirring blade structure.
It is configured to cool the entire surface from inside. Uranium-plutonium mixed oxide powder is stored in the storage tank body. Then, cooling air is supplied to the cooling pipe to cool it, and while rotating the hollow stirring blade structure in the uranium-plutonium mixed oxide powder, cooling air is supplied into the hollow stirring blade structure to stir and cool.

【0007】[0007]

【発明の実施の形態】本発明では、冷却管に代えて貯槽
本体の外面にフィンを取り付け、貯槽本体と外側断熱ジ
ャケットとの隙間に下方から冷却空気を供給して冷却す
ることもできる。冷却空気を供給するために、外側断熱
ジャケットの外部及び冷風導入管の上部に、圧縮空気の
断熱膨張を利用して冷却空気を発生させる冷風発生機を
設置するのが望ましい。また貯槽本体若しくは外側断熱
ジャケットに、振動により内部に付着滞留している粉末
を脱粉させるエアノッカーを取り付けることも有効であ
る。
In the present invention, fins may be attached to the outer surface of the storage tank body instead of the cooling pipe, and cooling air may be supplied from below to the gap between the storage tank body and the outer heat insulation jacket for cooling. In order to supply the cooling air, it is desirable to install a cool air generator that generates cooling air by utilizing the adiabatic expansion of the compressed air outside the outer heat insulating jacket and above the cold air introducing pipe. It is also effective to attach an air knocker to the storage tank main body or the outer heat insulation jacket to remove powder adhering and staying inside by vibration.

【0008】[0008]

【実施例】図1は本発明に係る攪拌冷却式ウラン・プル
トニウム混合酸化物粉末用貯槽の一実施例を示す全体構
成図であり、図2はその分解説明図である。本装置は、
基本的には円筒形状の貯槽本体10と、その内部に組み
込まれる中空攪拌羽根構造体12との組み合わせからな
る。
FIG. 1 is an overall constitutional view showing an embodiment of a stirred and cooled uranium / plutonium mixed oxide powder storage tank according to the present invention, and FIG. 2 is an exploded explanatory view thereof. This device is
Basically, it is a combination of a cylindrical storage tank main body 10 and a hollow stirring blade structure 12 incorporated therein.

【0009】貯槽本体10は、円筒形状をなし、下部が
逆円錐状に窄められていて、その先端に排出口14が形
成されている。貯槽本体10の内面は滑らかであり、外
面には冷却管16が螺旋状に巻き付けられている。な
お、冷却管16は、複数系統に分割して設けている。こ
の貯槽本体10の外側に、間隔をおいて外側断熱ジャケ
ット18を設ける。該外側断熱ジャケット18は、塩化
ビニル製の縦割り2分割構造であって、両側から組み合
わせることで前記貯槽本体10を覆うようになってい
る。貯槽本体10及び外側断熱ジャケット18の上端に
は、それらの上面を覆うような円環板状の蓋体20を設
ける。該蓋体20には粉末供給管22が設けられてい
る。
The storage tank body 10 has a cylindrical shape, and its lower portion is narrowed in an inverted conical shape, and a discharge port 14 is formed at the tip. The inner surface of the storage tank body 10 is smooth, and a cooling pipe 16 is spirally wound around the outer surface. The cooling pipe 16 is divided into a plurality of systems. Outside the storage tank body 10, an outer heat insulating jacket 18 is provided at intervals. The outer heat-insulating jacket 18 has a vertically split two-piece structure made of vinyl chloride, and covers the storage tank body 10 by being combined from both sides. At the upper ends of the storage tank main body 10 and the outer heat insulating jacket 18, a ring-shaped lid 20 is provided so as to cover the upper surfaces thereof. The lid 20 is provided with a powder supply pipe 22.

【0010】中空攪拌羽根構造体12は、下部が窄まっ
て閉じられている有底円管状の軸部24と、その外周面
から横方向に突出する複数のプロペラ状の中空羽根26
を有し、各中空羽根26の接続部分でも連通していて全
体が一つの連続した空洞となっている構造体である。該
中空攪拌羽根構造体12の内部には冷風導入管28が組
み込まれる。該冷風導入管28は、前記軸部24の中心
軸に沿って挿入され断熱材30で覆われており、そこか
ら枝管32によって枝別れして各中空羽根26内の先端
近傍に達するような構造である。冷風導入管28の上部
にはフリージョイント34を設ける。これによって、冷
風導入管28を通って枝管32から噴出した冷風は、中
空羽根26の内部先端に達して該中空羽根26の内面に
沿って戻り、冷風導入管28と軸部24との間を通って
排出されるような冷風流路が形成され、中空攪拌羽根構
造体12(軸部24及び各中空羽根26)の外表面全体
を内部から冷却する。なお、プロペラ状の中空羽根に代
えて、螺旋状の中空羽根を用いてもよい。
The hollow agitating blade structure 12 includes a closed-bottomed cylindrical shaft portion 24 having a narrowed lower portion, and a plurality of propeller-like hollow blades 26 projecting laterally from the outer peripheral surface thereof.
This is a structure in which the connecting portions of the respective hollow blades 26 communicate with each other to form a single continuous cavity. A cold air introduction pipe 28 is incorporated inside the hollow stirring blade structure 12. The cold air introduction pipe 28 is inserted along the central axis of the shaft portion 24 and covered with a heat insulating material 30, and is branched therefrom by a branch pipe 32 so as to reach the vicinity of the tip in each hollow blade 26. Structure. A free joint 34 is provided above the cold air introducing pipe 28. As a result, the cool air blown from the branch pipe 32 through the cool air introducing pipe 28 reaches the inner tip of the hollow blade 26 and returns along the inner surface of the hollow blade 26, and the space between the cool air introducing pipe 28 and the shaft 24 is formed. A cool air flow path is formed so as to be discharged through the air passage, and cools the entire outer surface of the hollow stirring blade structure 12 (the shaft portion 24 and each hollow blade 26) from the inside. Note that a spiral hollow blade may be used instead of the propeller-shaped hollow blade.

【0011】中空攪拌羽根構造体12は、蓋体20に固
定されている軸受36によって回転自在に支持され、駆
動モータ40と、ギア機構(中空攪拌羽根構造体側のギ
ア42及び駆動モータ側のギア44の組み合わせ)によ
って、所定の速度(毎分数回転程度)で回転するように
構成されている。
The hollow stirring blade structure 12 is rotatably supported by a bearing 36 fixed to the lid 20, and includes a drive motor 40 and a gear mechanism (a gear 42 on the hollow stirring blade structure side and a gear on the drive motor side). 44 combinations) so as to rotate at a predetermined speed (about several revolutions per minute).

【0012】ウラン・プルトニウム混合酸化物粉末50
は、貯槽本体10内に貯蔵する。そして、貯槽本体10
の各冷却管16に冷却空気を供給して、該貯槽本体10
を外側から冷却する。また中空攪拌羽根構造体12をゆ
っくりと(毎分数回程度の回転速度で)回転してウラン
・プルトニウム混合酸化物粉末50を攪拌しつつ、冷風
導入管12にも冷却空気を供給して、該中空攪拌羽根構
造体12を内部から全体的に冷却する。
Uranium-plutonium mixed oxide powder 50
Is stored in the storage tank body 10. And the storage tank body 10
The cooling air is supplied to each cooling pipe 16 of the storage tank main body 10.
Is cooled from the outside. In addition, while the hollow stirring blade structure 12 is rotated slowly (at a rotational speed of about several times per minute) to stir the uranium-plutonium mixed oxide powder 50, cooling air is supplied to the cold air introduction pipe 12 as well. The hollow stirring blade structure 12 is entirely cooled from the inside.

【0013】ここでは、各冷却管16にそれぞれ冷風発
生機52を設置し、また冷風導入管28の上部にも冷風
発生機54を設置する。これらの冷風発生機52,54
は、圧縮空気の断熱膨張を利用して冷却空気を発生させ
る方式の装置である。例えば4気圧まで加圧した20℃
の圧縮空気を瞬時に大気圧まで減圧させると、理論的に
は−70℃の冷却空気が得られる。実際には効率などが
関係するためそこまで低温にはならないが、−20℃〜
−30℃程度の冷却空気を得ることは可能である。冷却
空気に代えて通常温度の空気を流すのみでも、ある程度
の冷却は可能であるが、空気の温度が低いほど冷却の効
率(熱の除去)が高いことは言うまでもない。その点
で、上記のような冷風発生機の使用は好ましい。冷却空
気による熱の除去は、冷却空気の温度が低いほど、流量
が多いほど有効であるが、更に冷却空気の流速が高いこ
とも重要である。そのため、冷却空気の流れる空間(冷
却管内径)は狭い方が望ましい。
Here, a cool air generator 52 is installed in each cooling pipe 16, and a cool air generator 54 is also installed above the cool air introducing pipe 28. These cold air generators 52, 54
Is an apparatus of a system that generates cooling air by utilizing adiabatic expansion of compressed air. For example, 20 ° C pressurized to 4 atm
When the compressed air is instantaneously reduced to the atmospheric pressure, -70 ° C. of cooling air is theoretically obtained. Actually, the temperature is not so low because of the efficiency etc.
It is possible to obtain cooling air of about −30 ° C. Although a certain degree of cooling is possible only by flowing air of normal temperature instead of cooling air, it goes without saying that the lower the temperature of air, the higher the cooling efficiency (removal of heat). In that regard, the use of a cold air generator as described above is preferred. The removal of heat by the cooling air is more effective as the temperature of the cooling air is lower and the flow rate is higher, but it is also important that the flow rate of the cooling air is higher. Therefore, it is desirable that the space (the inner diameter of the cooling pipe) through which the cooling air flows is narrow.

【0014】本発明では、冷却管28に下方から冷却空
気を供給する。冷却空気を下方から流す理由は、途中で
冷却空気が加熱されて膨張することにより、更に流速が
高くなることによる。なお、外側断熱ジャケット18及
び冷風導入管28の断熱材30は、外部からの入熱によ
る冷却空気の温度上昇を少なくする機能を果たす。
In the present invention, cooling air is supplied to the cooling pipe 28 from below. The reason for flowing the cooling air from below is that the cooling air is heated and expanded on the way, thereby further increasing the flow velocity. In addition, the heat insulating material 30 of the outer heat insulating jacket 18 and the cold air introducing pipe 28 has a function of reducing a temperature rise of the cooling air due to heat input from the outside.

【0015】貯槽本体10の内面及び中空攪拌羽根構造
体12の外面は、パフ仕上げを施した滑らかな面とす
る。本来ならば、これらの面に凹凸があった方が熱を除
去する効率は向上するが、凹凸を付けない理由は、粉末
の付着による貯槽内の滞留を減らし、滞留による被曝の
低減を図るためである。外側断熱ジャケット18にエア
ーノッカー56を設置して貯槽本体10に振動を付与す
ると、その振動により内部に付着滞留している粉末を脱
粉できる。なお、貯槽内の清掃は、中空攪拌構造体12
を引き抜き、貯槽本体10の上部の蓋体20を開けるこ
とにより容易に行うことができる。
The inner surface of the storage tank body 10 and the outer surface of the hollow stirring blade structure 12 are smooth surfaces subjected to puff finishing. Originally, if these surfaces had irregularities, the efficiency of removing heat would be improved, but the reason for not providing irregularities was to reduce the retention in the storage tank due to powder adhesion and reduce the exposure due to the accumulation. It is. When vibration is applied to the storage tank body 10 by installing the air knocker 56 on the outer heat insulation jacket 18, the vibration can remove the powder adhering and staying inside. The inside of the storage tank is cleaned by the hollow stirring structure 12.
, And the lid 20 on the upper part of the storage tank main body 10 is opened to easily perform the operation.

【0016】本実施例では、貯槽本体10の外面に冷却
管16を巻き付けているが、それに代えて貯槽本体の外
面にフィンを螺旋状に設けて、該フィンを冷却空気のガ
イドとして貯槽本体と外側断熱ジャケットとの隙間に、
下方から冷却空気を供給して冷却する方式としてもよ
い。
In this embodiment, the cooling pipe 16 is wound around the outer surface of the storage tank main body 10. Instead, fins are spirally provided on the outer surface of the storage tank main body, and the fins are used as guides for cooling air and are connected to the storage main body. In the gap with the outer insulation jacket,
A method of cooling by supplying cooling air from below may be used.

【0017】本発明に係る貯槽の貯蔵対象粉末は、任意
のプルトニウムの発熱密度、プルトニウム添加率の粉体
に適用できるが、特にプルトニウムの発熱密度が大き
い、あるいはプルトニウム添加率が高い粉末の貯蔵に適
している。
The powder to be stored in the storage tank according to the present invention can be applied to powder having an arbitrary heat generation density of plutonium and a plutonium addition rate, but is particularly suitable for storing powder having a high heat generation density of plutonium or a high plutonium addition rate. Are suitable.

【0018】プルトニウムの発熱は、Pu238,Pu
240等が主体であり、これらの同位体の組成でプルト
ニウムの発熱密度は大きく異なる。因みに、発熱密度が
20w/kgPuの発熱密度のプルトニウムは50000 MWD/T の
使用済燃料を処理して得られたプルトニウムに若干の核
分裂生成物が混入したものが相当する。プルトニウムの
同位体比は軽水炉の使用済燃料の燃焼度により変わる
が、通常は、7〜13w/kgPu程度である。
The heat generated by plutonium is Pu238, Pu
The heat density of plutonium differs greatly depending on the composition of these isotopes. By the way, plutonium having a heating density of 20 w / kg Pu corresponds to a plutonium obtained by processing 50,000 MWD / T of spent fuel and mixed with some fission products. The isotope ratio of plutonium varies depending on the burnup of spent fuel in a light water reactor, but is usually about 7 to 13 w / kg Pu.

【0019】ウラン・プルトニウム混合酸化物粉末の発
熱密度は、プルトニウムの発熱密度とプルトニウムの添
加率で決まる。ウラン・プルトニウム混合酸化物粉末の
発熱密度が同じで、粉末の密度が同じであれば、同一温
度となる。例えば、20w/kgPuのプルトニウムが10%
添加されたウラン・プルトニウム混合酸化物粉末と10
w/kgPuのプルトニウムが20%添加されたウラン・プル
トニウム混合酸化物粉末を同一形状にすると同じ温度と
なる。
The heat generation density of the uranium-plutonium mixed oxide powder is determined by the heat generation density of plutonium and the addition ratio of plutonium. If the heat density of the uranium-plutonium mixed oxide powder is the same and the density of the powder is the same, the temperature will be the same. For example, 10% plutonium at 20 w / kg Pu
Added uranium-plutonium mixed oxide powder and 10
If the uranium-plutonium mixed oxide powder to which 20% of w / kg Pu of plutonium is added has the same shape, the same temperature is obtained.

【0020】本発明では冷却媒体として空気を使用して
いる。水が使用できれば、より冷却効率が高くなり望ま
しい。しかし、水の存在は臨界安全上、臨界が起き易い
方向に働く。更に、貯槽の寸法、貯蔵量に制限を受け、
設計が難しくなる。また、水が貯槽内に漏洩しないため
の構造上の担保が難しく、ウラン・プルトニウム混合酸
化物粉末用貯槽の冷却に水を使用することは現実的でな
い。またフレオン等の冷媒をリサイクルさせても冷却効
果は冷却空気をワンスルーで流すよりは大きくなる。し
かし、冷媒のリサイクルにはコンプレッサ等の装置が必
要であり、そのコストと設置スペースを冷却効果と比べ
てもコスト及びスペースほどの冷却効果は期待できな
い。
In the present invention, air is used as a cooling medium. If water can be used, the cooling efficiency will be higher, which is desirable. However, the presence of water works in a direction in which criticality is likely to occur in terms of criticality safety. Furthermore, the size and storage volume of the storage tank are limited,
Design becomes difficult. Further, it is difficult to secure the structure to prevent water from leaking into the storage tank, and it is not practical to use water for cooling the storage tank for uranium / plutonium mixed oxide powder. Also, even if a refrigerant such as freon is recycled, the cooling effect is greater than flowing the cooling air through one through. However, recycling of the refrigerant requires a device such as a compressor, and even if the cost and the installation space are compared with the cooling effect, the cooling effect as much as the cost and space cannot be expected.

【0021】本発明による中空攪拌羽根構造体を組み込
んだ貯槽を用いた場合のウラン・プルトニウム混合酸化
物粉末の貯蔵性を、プルトニウム発熱密度10w/kgPu、
プルトニウム添加量30%、嵩密度3g/ccの粉末40kg
を貯蔵すると仮定し、各種形状の貯槽の例と比較して、
その大きさ、最高温度、40kgの粉末を入れた場合の高
さの計算値、冷却条件を表1に示す。なお、貯蔵時の粉
末最高温度は100℃以下となることを評価の基準とす
る。表1の計算は、実験で求めた物性値を基に行ってい
る。
The storage property of the uranium-plutonium mixed oxide powder in the case of using a storage tank incorporating the hollow stirring blade structure according to the present invention was determined by using a plutonium heat density of 10 w / kg Pu,
40 kg of powder with an added amount of plutonium of 30% and bulk density of 3 g / cc
As compared to the example of storage tanks of various shapes,
Table 1 shows the size, maximum temperature, calculated height when 40 kg of powder is put, and cooling conditions. It should be noted that the maximum temperature of the powder during storage is 100 ° C. or less, which is used as a criterion for evaluation. The calculations in Table 1 are based on physical property values obtained in experiments.

【0022】[0022]

【表1】 [Table 1]

【0023】ここで貯槽は厚さ0.3mmのステンレス鋼
製、中空羽根は厚さ0.5mmのステンレス鋼製であり、
冷却空気入口温度は−10℃、流量は貯槽本体外で50
リットル/分、中空攪拌羽根内で25リットル/分であ
る。
Here, the storage tank is made of stainless steel having a thickness of 0.3 mm, and the hollow blades are made of stainless steel having a thickness of 0.5 mm.
The cooling air inlet temperature is -10 ° C and the flow rate is 50
Liter / minute, 25 liter / minute in the hollow stirring blade.

【0024】100℃という温度は、ウラン・プルトニ
ウム混合酸化物粉末の酸化を防止するため、及び粉末に
添加する有機物添加剤の揮発による消失を防止するため
に設定した温度である。この温度は低ければ低いほど望
ましい。
The temperature of 100 ° C. is a temperature set to prevent oxidation of the uranium-plutonium mixed oxide powder and to prevent the organic additive added to the powder from disappearing due to volatilization. The lower the temperature, the better.

【0025】表1の結果は、ある限定された条件下で評
価したものであり、冷却空気導入温度、あるいは流量を
変えれば最高温度はあと20℃程度は下げられる余地は
ある。しかし、流量を増やしたりしても熱を除去する効
率には限界があり、著しく低温、大流量が得られる冷却
機構を付けても、装置の大きさ、価格の割には冷却効率
は上がらない。表1の結果から、のような中実型の貯
槽であれば内径13cmという細い径の貯槽となり、40
kgの粉末を入れると1mもの高さとなる。このような貯
槽には上下に粉末の供給・排出機構を付けるために、現
実には高さ2m近いものになってしまう。このように長
いものをグローブボックス内に設置することは、他の機
器の設置を大きく制約するし、また貯槽内の清掃が著し
く困難となる。
The results in Table 1 were evaluated under certain limited conditions, and there is room for reducing the maximum temperature by about 20 ° C. by changing the cooling air introduction temperature or the flow rate. However, there is a limit to the efficiency of removing heat even if the flow rate is increased, and even if a cooling mechanism that can obtain a remarkably low temperature and a large flow rate is installed, the cooling efficiency does not increase for the size and price of the device. . From the results shown in Table 1, if the storage tank is a solid storage tank as shown in FIG.
If you put kg of powder, it will be as high as 1m. Such a storage tank is actually close to 2 m in height because a powder supply / discharge mechanism is provided above and below. The installation of such a long object in the glove box greatly restricts the installation of other devices, and makes it extremely difficult to clean the inside of the storage tank.

【0026】のような中空羽根付き貯槽(本発明と同
様の構成であるが中空羽根を回転させないもの)では、
中空羽根が回転しなくても放熱フィンとして機能するた
め、ある程度の冷却効果は生じる。しかし、に示すよ
うに中空攪拌羽根付き貯槽(本発明品であって中空羽根
を回転させるもの)では、攪拌を行うことで著しく温度
を下げることができる。表1の結果は、羽根形状が完全
に粉末を対流攪拌できるものではなかったが、羽根先端
と貯槽内面の間隙を狭くしたり、羽根形状を改善するこ
とで、更に温度を下げることが可能である。理論的には
50℃程度までさげることは可能である。
In such a storage tank with hollow blades (same configuration as the present invention, but without rotating the hollow blades),
Even if the hollow blade does not rotate, it functions as a radiation fin, so that a certain degree of cooling effect is produced. However, in a storage tank with hollow stirring blades (a product of the present invention in which the hollow blades are rotated) as shown in (1), the temperature can be significantly reduced by stirring. The results in Table 1 indicate that the blade shape was not one that could completely agitate the powder by convection, but it was possible to further reduce the temperature by narrowing the gap between the blade tip and the inner surface of the storage tank or improving the blade shape. is there. It is theoretically possible to lower the temperature to about 50 ° C.

【0027】[0027]

【発明の効果】本発明は上記のように、内部が中空形状
の攪拌羽根を貯槽内に設けて回転攪拌させ、貯槽外部に
冷却管などを設けて外側から冷却すると共に、前記攪拌
羽根内にも冷却空気を供給して冷却するように構成して
いるため、大量のウラン・プルトニウム混合酸化物粉末
を、温度上昇を抑制しつつ貯蔵できる。本発明に係る貯
槽は、小形化できるためにグローブボックス内に容易に
収容できる。
As described above, according to the present invention, a stirring blade having a hollow inside is provided in a storage tank to perform rotational stirring, and a cooling pipe or the like is provided outside the storage tank to cool the storage tank from the outside. Is also configured to cool by supplying cooling air, so that a large amount of uranium-plutonium mixed oxide powder can be stored while suppressing a rise in temperature. The storage tank according to the present invention can be easily housed in a glove box because it can be downsized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す全体構成図。FIG. 1 is an overall configuration diagram showing one embodiment of the present invention.

【図2】その分解説明図。FIG. 2 is an exploded view of the same.

【符号の説明】[Explanation of symbols]

10 貯槽本体 12 中空攪拌羽根構造体 14 排出口 16 冷却管 18 外側断熱ジャケット 20 蓋体 24 軸部 26 中空羽根 28 冷風導入管 30 断熱材 32 枝管 40 駆動モータ 42,44 ギア DESCRIPTION OF SYMBOLS 10 Storage tank body 12 Hollow stirring blade structure 14 Discharge port 16 Cooling pipe 18 Outer heat insulation jacket 20 Lid 24 Shaft part 26 Hollow blade 28 Cold air introduction pipe 30 Insulation material 32 Branch pipe 40 Drive motor 42,44 Gear

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−192923(JP,A) 特開 平9−239252(JP,A) 特開 平2−153718(JP,A) 実開 平3−66631(JP,U) 実開 平4−74536(JP,U) 実開 平2−25025(JP,U) 実開 平2−20926(JP,U) 特公 昭26−995(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G21C 21/02 B01F 15/06 G21C 3/62 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-192923 (JP, A) JP-A-9-239252 (JP, A) JP-A-2-153718 (JP, A) 66631 (JP, U) Japanese Utility Model 4-74536 (JP, U) Japanese Utility Model 2-25025 (JP, U) Japanese Utility Model Utility Model 2-20926 (JP, U) Japanese Patent Publication No. 26-995 (JP, B1) (58) Field surveyed (Int. Cl. 7 , DB name) G21C 21/02 B01F 15/06 G21C 3/62

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内面は滑らかで外面に冷却管が巻き付ら
れた円筒形状であって下部が窄まって排出口となってい
る貯槽本体と、該貯槽本体の外側を覆う外側断熱ジャケ
ットと、前記貯槽本体内部に組み込まれて回転自在の中
空攪拌羽根構造体と、その各中空羽根の内部に冷却空気
を送り込む冷風導入管と、前記貯槽本体の上面を覆う蓋
体と、前記中空攪拌羽根構造体の回転駆動機構とを具備
し、前記中空攪拌羽根構造体は、有底円管状の軸部と、その
外周面から横方向に突出する中空羽根を有し、該中空羽
根の接続部分でも連通していて全体が一つの連続した空
洞となっている構造体であり、 前記冷風導入管は、軸部の中心軸に沿って挿入され断熱
材で覆われており、枝管によって枝別れして中空羽根内
の先端近傍に達する構造であり、冷風導入管の上部はフ
リージョイントに接続されており、 冷風導入管を通って枝管から噴出した冷風は、中空羽根
の内部先端に達して該中空羽根の内面に沿って戻り、冷
風導入管と軸部との間を通って排出される冷風流路が形
成され、中空攪拌羽根構造体の外表面全体を内部から冷
却するように構成されており、 前記貯槽本体内にウラン・プルトニウム混合酸化物粉末
を貯蔵し、冷却管に冷却空気を供給して冷却し、中空攪
拌羽根構造体を前記ウラン・プルトニウム混合酸化物粉
末中で回転させつつ該中空攪拌羽根構造体内に冷却空気
を供給して攪拌冷却することを特徴とする攪拌冷却式ウ
ラン・プルトニウム混合酸化物粉末用貯槽。
1. A storage tank body having a smooth inner surface and a cooling pipe wound around an outer surface thereof, a lower portion of which is a constricted portion serving as a discharge port, an outer heat insulating jacket covering an outer surface of the storage tank body, A rotatable hollow stirring blade structure incorporated in the storage tank body, a cool air introduction pipe for feeding cooling air into each of the hollow blades, a lid covering an upper surface of the storage tank body, and the hollow stirring blade structure Body rotation drive mechanism, the hollow stirring blade structure, a bottomed circular tubular shaft,
A hollow blade protruding laterally from an outer peripheral surface;
One continuous sky, communicating even at the root connection
It is a structure that is a cave, and the cold air introduction pipe is inserted along the central axis of
Inside the hollow blades
The top of the cold air introduction pipe is
The cold air blown from the branch pipe through the cold air inlet pipe is connected to the
To reach the inner tip and return along the inner surface of the hollow blade,
The cold air flow path that is discharged between the wind introduction pipe and the shaft is shaped
The entire outer surface of the hollow stirring blade structure is cooled from the inside.
The uranium-plutonium mixed oxide powder is stored in the storage tank body, cooled by supplying cooling air to a cooling pipe, and the hollow stirring blade structure is cooled by the uranium-plutonium mixed oxide. A stirring / cooling type uranium / plutonium mixed oxide powder storage tank, characterized in that cooling air is supplied into the hollow stirring blade structure while being rotated in the powder to stir and cool.
【請求項2】 冷却管に代えて貯槽本体の外面にフィン
を取り付け、貯槽本体と外側断熱ジャケットとの隙間に
下方から冷却空気を供給する請求項1記載の攪拌冷却式
ウラン・プルトニウム混合酸化物粉末用貯槽。
2. A stirred and cooled uranium-plutonium mixed oxide according to claim 1, wherein fins are attached to the outer surface of the storage tank body instead of the cooling pipe, and cooling air is supplied from below to the gap between the storage tank body and the outer heat insulation jacket. Storage tank for powder.
【請求項3】 外側断熱ジャケットの外部及び冷風導入
管の上部に、圧縮空気の断熱膨張を利用して冷却空気を
発生させる冷風発生機を設置する請求項1又は2記載の
攪拌冷却式ウラン・プルトニウム混合酸化物粉末用貯
槽。
3. A stirred cooling uranium generator according to claim 1, wherein a cold air generator for generating cooling air by utilizing adiabatic expansion of the compressed air is installed outside the outer heat insulating jacket and above the cold air introducing pipe. Storage tank for plutonium mixed oxide powder.
【請求項4】 貯槽本体若しくは外側断熱ジャケット
に、振動により内部に付着滞留している粉末を脱粉させ
るエアノッカーを取り付けた請求項1又は2記載の攪拌
冷却式ウラン・プルトニウム混合酸化物粉末用貯槽。
4. An agitated cooling type uranium / plutonium mixed oxide powder storage tank according to claim 1, wherein an air knocker for removing powder adhering and staying therein by vibration is attached to the storage tank main body or the outer heat insulation jacket. .
JP09282568A 1997-09-30 1997-09-30 Stir-cooled storage tank for uranium-plutonium mixed oxide powder Expired - Fee Related JP3083276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09282568A JP3083276B2 (en) 1997-09-30 1997-09-30 Stir-cooled storage tank for uranium-plutonium mixed oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09282568A JP3083276B2 (en) 1997-09-30 1997-09-30 Stir-cooled storage tank for uranium-plutonium mixed oxide powder

Publications (2)

Publication Number Publication Date
JPH11109089A JPH11109089A (en) 1999-04-23
JP3083276B2 true JP3083276B2 (en) 2000-09-04

Family

ID=17654188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09282568A Expired - Fee Related JP3083276B2 (en) 1997-09-30 1997-09-30 Stir-cooled storage tank for uranium-plutonium mixed oxide powder

Country Status (1)

Country Link
JP (1) JP3083276B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827524B1 (en) * 2001-07-20 2003-09-19 Cogema POWDER HOMOGENEIZATION DEVICE, ITS USE AND A HOMOGENEIZATION METHOD USING SUCH A DEVICE
JP2003076070A (en) * 2001-09-04 2003-03-14 Ricoh Co Ltd Coated carrier for electrophotographic developer, method for manufacturing the same and manufacturing device
US6928860B1 (en) * 2002-02-08 2005-08-16 King Refrigeration, Inc. Heat-transfer-inhibiting motor and rotor
CN103341334A (en) * 2013-06-28 2013-10-09 广西防城港美好涂料有限公司 Cooling device used for coating production
CN103623733A (en) * 2013-11-28 2014-03-12 苏州蓝王机床工具科技有限公司 Novel stirrer
CN105617967A (en) * 2015-12-29 2016-06-01 周跃 Liquid phase reaction vessel with uniform reaction function
CN105617968B (en) * 2015-12-30 2017-12-05 汪振朴 A kind of device for collecting temperature control and stirring as one
JP6835489B2 (en) * 2016-06-10 2021-02-24 デンカ株式会社 Stirrer
CN106732050B (en) * 2016-11-30 2019-07-02 无锡甜丰食品有限公司 Malt syrup preparation mixing method based on revolving speed and temperature linkage control
CN106390829B (en) * 2016-11-30 2019-10-15 无锡甜丰食品有限公司 Mixing method is used in malt syrup preparation
CN107281985A (en) * 2017-07-31 2017-10-24 浙江越千树数码科技有限公司 The glue-making tank-reactor of coating machine glue flow directing device
CN107890810A (en) * 2017-12-19 2018-04-10 无锡市飞天油脂有限公司 A kind of efficient production equipment of lubricating oil
CN110152341A (en) * 2018-04-08 2019-08-23 淮安智品企业管理有限公司 A kind of chemical industry solutions crystallization and purification device
CN108745070A (en) * 2018-06-12 2018-11-06 合肥丰洁生物科技有限公司 A kind of Cosmetic Manufacture mixing plant
CN110918032A (en) * 2019-12-02 2020-03-27 江西艾迪尔新能源有限公司 A high-efficient reation kettle for fatty acid methyl ester esterify
CN110953918B (en) * 2019-12-04 2021-07-06 青岛绿谷知识产权有限公司 Material cooling machine for producing antioxidant graphite electrode
CN112295522A (en) * 2020-11-03 2021-02-02 山西合益德科技有限公司 Top temperature control device for polyester resin production and temperature control method thereof
CN112657418B (en) * 2020-12-18 2023-01-13 重庆九橡化大橡胶科技有限责任公司 Rubber asphalt modified stirring equipment
CN115212777A (en) * 2021-11-18 2022-10-21 博罗县新达新化工有限公司 Novel self-vibration coating constant-temperature stirring equipment
CN114259062B (en) * 2021-12-28 2023-12-22 浙江省农业科学院 Preparation method, equipment and application of prebiotic composition for efficiently regulating intestinal flora
CN114272826A (en) * 2021-12-29 2022-04-05 黑龙江仁合堂药业有限责任公司 Production method and production device of five-dimensional amino acid oral liquid
CN114288908B (en) * 2022-01-14 2023-09-05 广州白云山维一实业股份有限公司 Probiotics solid beverage production equipment and process for adjusting intestinal flora
CN115025679B (en) * 2022-05-09 2023-06-02 中国人民解放军总医院第二医学中心 Electronic intelligent brewing equipment based on gastrointestinal ultrasound auxiliary developer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422819Y2 (en) * 1988-07-29 1992-05-26
JPH062743Y2 (en) * 1988-08-08 1994-01-26 株式会社井上製作所 Medium disperser
JPH0651338B2 (en) * 1988-12-05 1994-07-06 株式会社栗本鐵工所 Twin-screw kneading extruder with high heat transfer capacity
JPH0366631U (en) * 1989-10-28 1991-06-28
JPH0474536U (en) * 1990-11-13 1992-06-30
JPH05192923A (en) * 1992-01-20 1993-08-03 Mitsubishi Heavy Ind Ltd High speed blender for mixing powder rubber
JP3707628B2 (en) * 1996-03-08 2005-10-19 富士写真フイルム株式会社 Disperser

Also Published As

Publication number Publication date
JPH11109089A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
JP3083276B2 (en) Stir-cooled storage tank for uranium-plutonium mixed oxide powder
JPH0240094A (en) Pump
CN106663476A (en) A source of electricity derived from a spent fuel cask
TW483007B (en) Manufacturing method for spent fuel storage member and mixed powder
CN105814314B (en) The motor-driven centrifugal of major loop for small-sized or medium-sized modularization nuclear reactor pumps
JP2017067771A (en) Systems and methods for providing a molten salt reactor
US20240120117A1 (en) Molten salt fission reactor with integrated primary exchanger and electrogenerator comprising such a reactor
Clifford et al. An experimental study of local and mean heat transfer in a triangular-sectioned duct rotating in the orthogonal mode
JP3053600B2 (en) Hollow-cooled storage tank for uranium-plutonium mixed oxide powder
Conrad et al. LIBRETTO-3: performance of tritium permeation barriers under irradiation at the HFR Petten
CN112530610A (en) Method for improving critical heat flux density outside pressure vessel
CN112276103A (en) Gas atomization metal powder collection device
US3494829A (en) Homogeneous,thermal nuclear fission reactor
CN213148005U (en) Adjustable radar level meter of intelligence heat dissipation
JP2009115571A (en) Renewed abwr adapted to combined power generation
JPS59173686A (en) Heat exchanger for hot water storage tank
CN110147153B (en) Novel notebook computer heat dissipation device
JP2003117376A (en) Mechanical alloying apparatus and method of manufacturing aluminum composite powder
CN211651314U (en) Auxiliary agent adding device of setting machine
CN106256006A (en) The slewing of atomic energy facility
US3150055A (en) Reactor
CN218831147U (en) Automatic driving planning control system protection device
CN213700134U (en) Welding powder ball milling device
CN216490049U (en) Large-scale motor with water-cooling heat radiation structure
US2991980A (en) Heat transfer means

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080630

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees