JP3082796B2 - Steam reforming reactor - Google Patents

Steam reforming reactor

Info

Publication number
JP3082796B2
JP3082796B2 JP04008158A JP815892A JP3082796B2 JP 3082796 B2 JP3082796 B2 JP 3082796B2 JP 04008158 A JP04008158 A JP 04008158A JP 815892 A JP815892 A JP 815892A JP 3082796 B2 JP3082796 B2 JP 3082796B2
Authority
JP
Japan
Prior art keywords
hydrogen
steam reforming
catalyst layer
reaction
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04008158A
Other languages
Japanese (ja)
Other versions
JPH05193903A (en
Inventor
一登 小林
洋 牧原
芳正 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP04008158A priority Critical patent/JP3082796B2/en
Publication of JPH05193903A publication Critical patent/JPH05193903A/en
Application granted granted Critical
Publication of JP3082796B2 publication Critical patent/JP3082796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水素分離型水蒸気改質反
応器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen separation type steam reforming reactor.

【0002】[0002]

【従来の技術】水蒸気改質反応器では触媒を用いてメタ
ンやメタノール等の炭化水素や含酸素炭化水素からなる
原料ガスを、水蒸気改質反応とCOシフト反応によって
水素、一酸化炭素及び二酸化炭素に分解する。例えば、
メタン等の炭化水素からなる原料ガスはスチームと混合
後、触媒層に導入され下記反応で水素、一酸化炭素及び
二酸化炭素に分解される。 CnHm+ nH2 O= nCO +( n+m/2)H2 (1) CnHm+2nH2 O= nCO2 +(2n+m/2)H2 (2) CnHm+ nCO2 =2nCO + m/2 H2 (3)
2. Description of the Related Art In a steam reforming reactor, a raw material gas composed of hydrocarbons such as methane and methanol or oxygen-containing hydrocarbons is converted into hydrogen, carbon monoxide and carbon dioxide by a steam reforming reaction and a CO shift reaction using a catalyst. Decompose into For example,
A raw material gas composed of a hydrocarbon such as methane is mixed with steam, introduced into a catalyst layer, and decomposed into hydrogen, carbon monoxide and carbon dioxide by the following reaction. CnHm + nH 2 O = nCO + (n + m / 2) H 2 (1) CnHm + 2nH 2 O = nCO 2 + (2n + m / 2) H 2 (2) CnHm + nCO 2 = 2nCO + m / 2 H 2 (3)

【0003】これら原料ガスの水蒸気改質反応は吸熱を
伴う平衡反応であり高温ほど反応が進む。また、その反
応量や反応速度は原料ガス濃度、反応生成物である水素
や一酸化炭素の濃度及び反応温度、圧力に影響される。
例えば、原料ガスの反応量を向上させるためには、原料
ガス濃度を上げ反応生成物濃度を下げ、低圧かつ高温で
反応させる必要がある。そこで、従来の水蒸気改質反応
器では主に反応温度を高く設定することによって原料ガ
スの反応量を確保していた。例えば、メタンの水蒸気改
質反応器では出口温度が約800℃に設定される。この
ため、このような反応器では反応器材料として高温に耐
えられるものが必要であり高価になる問題があった。
[0003] The steam reforming reaction of these source gases is an equilibrium reaction involving endotherm, and the reaction proceeds as the temperature increases. Further, the reaction amount and reaction rate are affected by the concentration of the raw material gas, the concentrations of hydrogen and carbon monoxide as reaction products, the reaction temperature and the pressure.
For example, in order to improve the reaction amount of the source gas, it is necessary to increase the concentration of the source gas, decrease the concentration of the reaction product, and perform the reaction at low pressure and high temperature. Therefore, in the conventional steam reforming reactor, the reaction amount of the raw material gas was secured mainly by setting the reaction temperature high. For example, in a methane steam reforming reactor, the outlet temperature is set at about 800 ° C. For this reason, such a reactor requires a material capable of withstanding high temperatures as a reactor material, and has a problem that it is expensive.

【0004】そこで、従来の反応器に比べ低温で反応さ
せるために、反応平衡を崩しながら原料ガスの分解を進
めるタイプの反応器、すなわち水素分離型水蒸気改質反
応器が提案されている。この反応器は反応器の触媒層内
に水素を選択的に分離する膜を内蔵したものであり、前
記水蒸気改質反応(1)〜(3)が進行した結果発生す
る水素を、内蔵した水素分離膜を通して選択的に反応系
外へ分離する機能を有する。このため、低温であっても
水素が分離される限り反応が平衡に達することなく進行
することになる。
[0004] In order to react at a lower temperature than conventional reactors, there has been proposed a reactor of a type that promotes decomposition of a raw material gas while breaking the reaction equilibrium, that is, a hydrogen separation type steam reforming reactor. This reactor has a built-in membrane for selectively separating hydrogen in the catalyst layer of the reactor. The hydrogen generated as a result of the progress of the steam reforming reactions (1) to (3) is converted into the built-in hydrogen. It has the function of selectively separating out of the reaction system through the separation membrane. Therefore, the reaction proceeds without reaching equilibrium as long as hydrogen is separated even at a low temperature.

【0005】水素分離膜はパラジウム単独、パラジウム
銀合金など、あるいはこれら金属をセラミックスのよう
な多孔質無機材料へコーティングしたもの、または焼結
金属のような金属材料からなる多孔質体へコーティング
したものが用いられる。これらの水素分離膜では、透過
側と非透過側との水素分圧差によって水素が膜内を移動
する現象を利用して水素を分離しているもので反応側と
透過側とに圧力差をつける必要がある。
[0005] Hydrogen separation membranes include palladium alone, palladium-silver alloy, or the like, or a metal coated with a porous inorganic material such as ceramics, or a porous material formed of a metal material such as a sintered metal. Is used. In these hydrogen separation membranes, hydrogen is separated by utilizing the phenomenon that hydrogen moves in the membrane due to the hydrogen partial pressure difference between the permeate side and the non-permeate side, and a pressure difference is created between the reaction side and the permeate side. There is a need.

【0006】水素分離型水蒸気反応器の従来例を図6〜
図8によって説明する。図6は従来の水素分離型水蒸気
改質反応器の一態様の説明図、図7は図6に設定される
水素分離膜の一態様の説明図、図8は他の水素分離型水
蒸気改質反応器の一態様の説明図である。
A conventional example of a hydrogen separation type steam reactor is shown in FIGS.
This will be described with reference to FIG. 6 is an explanatory view of one embodiment of a conventional hydrogen separation type steam reforming reactor, FIG. 7 is an explanatory view of one embodiment of a hydrogen separation membrane set in FIG. 6, and FIG. 8 is another hydrogen separation type steam reforming reactor. It is explanatory drawing of one aspect of a reactor.

【0007】以下では、メタンの水蒸気改質反応を例
に、該反応器の構造と機能を説明する。1はシェル&チ
ューブ型の水素分離型水蒸気改質反応器であり複数本の
触媒管2(図7参照)と胴部22から構成される。該触
媒管2は改質触媒層4とほぼ中央に水素分離膜3を有
し、胴部22へ管板20、20′によって固定されてい
る。水素分離膜3は管状であり触媒層4から外の領域は
素管3′で構成され管板21によって胴部22へ固定さ
れている。メタンとスチームとの混合ガス5は反応ガス
入口ノズル6から該反応器1の上部空間19へ供給さ
れ、分散後、分散混合ガス5′として改質触媒層4へ導
入される。該触媒層4では前記改質反応(1)〜(3)
が進行し主に水素と二酸化炭素が生成する。このうちの
水素だけが水素分離膜3を介して該分離膜3の透過側7
へ分離される。反応後の未反応ガス9は触媒層4から流
出し、空間23に集まり、反応ガス出口ノズル10より
未反応ガス9′として反応器1外へ排出される。
[0007] The structure and function of the reactor will be described below by taking a steam reforming reaction of methane as an example. Reference numeral 1 denotes a shell-and-tube type hydrogen separation type steam reforming reactor, which comprises a plurality of catalyst tubes 2 (see FIG. 7) and a body 22. The catalyst tube 2 has a hydrogen separation membrane 3 substantially at the center of the reforming catalyst layer 4 and is fixed to the body 22 by tube sheets 20 and 20 ′. The hydrogen separation membrane 3 is tubular, and a region outside the catalyst layer 4 is constituted by a raw tube 3 ′, and is fixed to a body 22 by a tube sheet 21. The mixed gas 5 of methane and steam is supplied from the reaction gas inlet nozzle 6 to the upper space 19 of the reactor 1, and after dispersion, is introduced into the reforming catalyst layer 4 as a dispersed mixed gas 5 '. In the catalyst layer 4, the reforming reactions (1) to (3)
Progresses to produce mainly hydrogen and carbon dioxide. Of these, only hydrogen is passed through the hydrogen separation membrane 3 to the permeation side 7 of the separation membrane 3.
Separated into The unreacted gas 9 after the reaction flows out of the catalyst layer 4, collects in the space 23, and is discharged from the reaction gas outlet nozzle 10 to the outside of the reactor 1 as an unreacted gas 9 ′.

【0008】一方、分離された水素は透過側7から流出
し、分離水素8として該反応器1の管板21で区切られ
た下部空間18を経て水素出口ノズル17より分離水素
8′として排出される。この際、透過側7は触媒層4よ
り圧力を低く保たれ、触媒層4側より水素分圧が低くな
るように運転される。
On the other hand, the separated hydrogen flows out from the permeation side 7 and is discharged as separated hydrogen 8 through a lower space 18 separated by a tube plate 21 of the reactor 1 from a hydrogen outlet nozzle 17 as separated hydrogen 8 ′. You. At this time, the pressure on the permeation side 7 is kept lower than that of the catalyst layer 4, and the operation is performed so that the hydrogen partial pressure is lower than that of the catalyst layer 4.

【0009】水蒸気改質反応は前記のごとく多量の反応
熱を伴う吸熱反応であり触媒管2を管外から加熱するこ
とによって反応熱を供給する必要がある。このため、こ
こでは高温の燃焼排ガス11を加熱ガス入口ノズル12
より反応器1の胴側13へ導入することで反応熱を供給
している。胴側13へ供給された燃焼ガス11′は該胴
内に配設されたバッフル14によってその流路が触媒管
2にほぼ垂直となるように制御され流れる。これによっ
て、該燃焼排ガス11′と触媒管2との伝熱が促進し効
率よく触媒管2を加熱することができる。燃焼ガス1
1′は触媒管2を加熱後、燃焼ガス出口ノズル15より
排ガス16として排出される。
The steam reforming reaction is an endothermic reaction involving a large amount of reaction heat as described above, and it is necessary to supply reaction heat by heating the catalyst tube 2 from outside the tube. For this reason, in this case, the high temperature combustion exhaust gas 11 is supplied to the heating gas inlet nozzle 12.
The reaction heat is supplied by being introduced into the body side 13 of the reactor 1. The combustion gas 11 ′ supplied to the barrel 13 is controlled by a baffle 14 disposed in the barrel so that its flow path is substantially perpendicular to the catalyst tube 2 and flows. Thereby, heat transfer between the combustion exhaust gas 11 'and the catalyst tube 2 is promoted, and the catalyst tube 2 can be efficiently heated. Combustion gas 1
After heating the catalyst tube 2, the exhaust gas 1 ′ is discharged from the combustion gas outlet nozzle 15 as exhaust gas 16.

【0010】図8の態様例では、水素分離膜3で透過側
7へ分離した水素を払出すのに不活性ガス24を用いる
場合を示す。ここでは、不活性ガス24を供給するため
に胴部22に不活性ガス入口ノズル25を設け、不活性
ガス供給管26を管状の水素分離膜3内に設けている。
他の構造及び機能は前記図7、図8の態様に同じであ
る。
The embodiment shown in FIG. 8 shows a case where an inert gas 24 is used to discharge hydrogen separated by the hydrogen separation membrane 3 to the permeation side 7. Here, an inert gas inlet nozzle 25 is provided in the body 22 to supply the inert gas 24, and an inert gas supply pipe 26 is provided in the tubular hydrogen separation membrane 3.
Other structures and functions are the same as those in the above-described embodiments of FIGS.

【0011】[0011]

【発明が解決しようとする課題】図9、図10に触媒層
内と水素分離膜の透過側における水素分圧を示す。図9
は図7、図8における水素分圧の変化、また、図10は
図8における変化である。両ケースともに触媒層側は次
第に水素分圧が増加するが、水素分離膜からの水素透過
速度と触媒層における水素の生成速度とが釣りあった位
置で水素分圧は頭打ちとなる。これ以降は原料ガスの多
くが分解し、反応平衡に近くなるため水素が透過する量
だけ反応が進行することになり水素分圧は徐々に低下す
るもののほぼ一定値となる。一方、透過側は触媒層入口
部が水素分圧が高く、出口側が低く、入口側では触媒層
側の方が透過側よりも水素分圧が低くなっている。この
ことから次の問題点が生じる。
FIGS. 9 and 10 show hydrogen partial pressures in the catalyst layer and on the permeation side of the hydrogen separation membrane. FIG.
7 shows a change in hydrogen partial pressure in FIGS. 7 and 8, and FIG. 10 shows a change in FIG. In both cases, the hydrogen partial pressure gradually increases on the catalyst layer side, but the hydrogen partial pressure peaks at a position where the hydrogen permeation rate from the hydrogen separation membrane and the hydrogen generation rate in the catalyst layer are balanced. After that, most of the raw material gas is decomposed and approaches the reaction equilibrium, so that the reaction proceeds by an amount that allows hydrogen to permeate, and the hydrogen partial pressure gradually decreases, but becomes almost constant. On the other hand, on the permeate side, the hydrogen partial pressure at the catalyst layer inlet is high and the outlet side is low, and at the inlet side, the hydrogen partial pressure on the catalyst layer side is lower than that on the permeate side. This leads to the following problems.

【0012】(1)触媒層の入口側では水素分圧が透過
側より小さくなり、透過側から触媒層側への水素の逆流
が生ずるため、触媒層での反応速度が小さくなる。 (2)また、逆流した量だけ回収水素量が少なくなり水
素分離膜の効率を下げている。
(1) At the inlet side of the catalyst layer, the hydrogen partial pressure is lower than that at the permeation side, and backflow of hydrogen from the permeation side to the catalyst layer side occurs, so that the reaction speed in the catalyst layer decreases. (2) Also, the amount of recovered hydrogen is reduced by the amount of the backflow, and the efficiency of the hydrogen separation membrane is reduced.

【0013】[0013]

【課題を解決するための手段】本発明は炭化水素や含酸
素炭化水素が原料として供給され、水蒸気改質反応によ
って水素を製造する反応器であって、水素分離膜を水蒸
気改質反応触媒層内に内蔵し、圧力差によって水素を選
択的に分離しながら反応を進行させる水素分離型の水蒸
気改質反応器において、該触媒層の上流側に該水素分離
膜を内蔵しない領域を設け、該領域より下流側の領域に
前記水素分離膜を内蔵させてなることを特徴とする水蒸
気改質反応器である。
SUMMARY OF THE INVENTION The present invention is a reactor for producing hydrogen by a steam reforming reaction in which a hydrocarbon or an oxygen-containing hydrocarbon is supplied as a raw material. In a hydrogen separation type steam reforming reactor in which a reaction proceeds while selectively separating hydrogen by a pressure difference, a region not containing the hydrogen separation membrane is provided on the upstream side of the catalyst layer. A steam reforming reactor, wherein the hydrogen separation membrane is built in a region downstream of the region.

【0014】すなわち、本発明の水蒸気改質反応器は触
媒層入口部に水素分離膜のない伝熱部を設け、水素分離
膜は伝熱部以降に設定するようにしたものである。
That is, in the steam reforming reactor of the present invention, a heat transfer section without a hydrogen separation membrane is provided at the inlet of the catalyst layer, and the hydrogen separation membrane is set after the heat transfer section.

【0015】[0015]

【作用】このように水素分離膜を配置することによっ
て、前記触媒層入口部での水素分圧逆転部がなくなり、
水素の逆流を妨げるため触媒層での反応速度の低下、膜
の分離効率低下も防ぐことができる。
By arranging the hydrogen separation membrane in this manner, the hydrogen partial pressure reversing portion at the catalyst layer inlet is eliminated.
Since the backflow of hydrogen is prevented, a reduction in the reaction rate in the catalyst layer and a reduction in the separation efficiency of the membrane can be prevented.

【0016】[0016]

【実施例】【Example】

(実施例1)本発明の一実施例を図1、図2により説明
する。図1は本発明の一実施例の装置の説明図、図2は
図1に設置される水素分離膜の一実施例の説明図であ
り、基本的には従来技術として説明した図6、図7の構
造と同じであるので、以下では本発明に係る構造の相違
とその作用を主に説明する。
(Embodiment 1) An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an explanatory view of an apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory view of an embodiment of the hydrogen separation membrane installed in FIG. 1, and FIG. 6 and FIG. 7, the differences between the structures according to the present invention and the operation thereof will be mainly described below.

【0017】原料ガスとなるメタンとスチームとの混合
ガス5は原料ガス入口ノズル6より反応器1へ導入され
触媒層4へ供給される。触媒層4の入口部には水素分離
膜3が設置されていない領域、すなわち伝熱部4aが設
けられ、原料ガスとスチームが前記水蒸気改質反応
(1)〜(3)によって主に水素と二酸化炭素に分解さ
れる。この領域には水素分離膜3がないため、水素が水
素分離膜3の透過側7より逆流し触媒層4の水素分圧を
上げ反応速度を低下させることはない。
A mixed gas 5 of methane and steam as a raw material gas is introduced into the reactor 1 through a raw material gas inlet nozzle 6 and supplied to the catalyst layer 4. At the inlet of the catalyst layer 4, a region where the hydrogen separation membrane 3 is not provided, that is, a heat transfer portion 4a is provided, and the raw material gas and steam are mainly converted into hydrogen by the steam reforming reactions (1) to (3). Decomposed into carbon dioxide. Since there is no hydrogen separation membrane 3 in this region, hydrogen does not flow backward from the permeation side 7 of the hydrogen separation membrane 3 to increase the hydrogen partial pressure of the catalyst layer 4 and reduce the reaction rate.

【0018】伝熱部4aを通過後の水素分圧は透過側7
の水素分圧より高くなっており、伝熱部4aの下流に設
置された水素分離膜3を介して水素は効率よく触媒層4
より透過側7へ透過する。
The hydrogen partial pressure after passing through the heat transfer section 4a is
Is higher than the hydrogen partial pressure of the catalyst layer 4, and hydrogen is efficiently transferred to the catalyst layer 4 through the hydrogen separation membrane 3 provided downstream of the heat transfer section 4 a.
The light is further transmitted to the transmission side 7.

【0019】以上の通り、本発明に係る実施例によれ
ば、触媒層の入口部に水素分離膜のない伝熱部を設けた
ことによって、水素の透過側から触媒層側への逆流を防
ぎ、水蒸気改質反応の促進と水素分離の効率を向上させ
ることができる。
As described above, according to the embodiment of the present invention, by providing the heat transfer section without the hydrogen separation membrane at the inlet of the catalyst layer, the backflow of hydrogen from the permeation side to the catalyst layer side is prevented. In addition, the steam reforming reaction can be promoted and the efficiency of hydrogen separation can be improved.

【0020】(実施例2)次に、図3によって他の実施
例を説明する。この実施例は、図8に示した従来例を改
良したものである。その構造、機能は、基本的には従来
例と同じであるため詳細説明は省き、主に本発明に係る
構造の相違と作用の説明をする。
(Embodiment 2) Next, another embodiment will be described with reference to FIG. This embodiment is an improvement of the conventional example shown in FIG. Since the structure and function are basically the same as those of the conventional example, detailed description will be omitted, and the difference between the structure and the operation according to the present invention will be mainly described.

【0021】この実施例では触媒層2の入口部に水素分
離膜3のない触媒層だけの伝熱部4aを設けてあるた
め、実施例1と同様に、水素の逆流による触媒層4での
水素分圧とそれに伴う反応速度の低下はない。このた
め、水蒸気改質反応の促進と水素分離の向上につなが
る。
In this embodiment, the heat transfer portion 4a of only the catalyst layer without the hydrogen separation membrane 3 is provided at the inlet of the catalyst layer 2, and therefore, as in the first embodiment, the heat in the catalyst layer 4 due to the backflow of hydrogen is provided. There is no reduction in hydrogen partial pressure and the reaction rate associated therewith. This leads to promotion of the steam reforming reaction and improvement of hydrogen separation.

【0022】図4(実施例1)及び図5(実施例2)に
水素分圧変化を示すが、従来例に示したような触媒層入
口部での触媒層と透過側との水素分圧の逆転はない。
FIGS. 4 (Embodiment 1) and FIG. 5 (Embodiment 2) show changes in the hydrogen partial pressure. The hydrogen partial pressure between the catalyst layer and the permeate side at the inlet of the catalyst layer as shown in the conventional example is shown. There is no reversal.

【0023】[0023]

【発明の効果】触媒層入口部に水素分離膜のない伝熱部
を設け、水素分離膜を伝熱部以降に設定する。このよう
に水素分離膜を配置することによって、触媒層入口部で
の水素分圧逆転することがなく、水素の逆流もないため
触媒層での反応速度の低下、膜の分離効率低下も防ぐこ
とができる。従って、装置の性能向上につながり、反応
器のコンパクト化の一助となる。
According to the present invention, a heat transfer section having no hydrogen separation membrane is provided at the inlet of the catalyst layer, and the hydrogen separation membrane is set at a position after the heat transfer section. By arranging the hydrogen separation membrane in this way, the partial pressure of hydrogen does not reverse at the inlet of the catalyst layer, and there is no backflow of hydrogen. Can be. Therefore, it leads to the improvement of the performance of the apparatus and helps to make the reactor compact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水蒸気改質反応器の実施例1の説明
図。
FIG. 1 is an explanatory view of Embodiment 1 of a steam reforming reactor of the present invention.

【図2】本発明の水素分離膜の一実施例の説明図。FIG. 2 is an explanatory view of one embodiment of the hydrogen separation membrane of the present invention.

【図3】本発明の水蒸気改質反応器の実施例2の説明
図。
FIG. 3 is an explanatory view of Embodiment 2 of the steam reforming reactor of the present invention.

【図4】本発明の実施例1の作用・効果の説明図表。FIG. 4 is an explanatory diagram of the operation and effect of the first embodiment of the present invention.

【図5】本発明の実施例2の作用・効果の説明図表。FIG. 5 is an explanatory diagram of the operation and effect of the second embodiment of the present invention.

【図6】従来の水蒸気改質反応器の一態様の説明図。FIG. 6 is an explanatory view of one embodiment of a conventional steam reforming reactor.

【図7】従来の水素分離膜の一実施例の説明図。FIG. 7 is an explanatory view of one embodiment of a conventional hydrogen separation membrane.

【図8】従来の水蒸気改質反応器の他の態様の説明図。FIG. 8 is an explanatory view of another embodiment of the conventional steam reforming reactor.

【図9】図6の水蒸気改質反応器の作用の説明図表。FIG. 9 is an explanatory diagram of the operation of the steam reforming reactor of FIG. 6;

【図10】図8の水蒸気改質反応器の作用の説明図。FIG. 10 is a diagram illustrating the operation of the steam reforming reactor in FIG.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−219001(JP,A) 特開 平4−121973(JP,A) 特開 平5−132301(JP,A) 特公 昭44−13363(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C01B 3/32 C01B 3/38 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-219001 (JP, A) JP-A-4-121197 (JP, A) JP-A-5-132301 (JP, A) 13363 (JP, B1) (58) Field surveyed (Int. Cl. 7 , DB name) C01B 3/32 C01B 3/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化水素や含酸素炭化水素が原料として
供給され、水蒸気改質反応によって水素を製造する反応
器であって、水素分離膜を水蒸気改質反応触媒層内に内
蔵し、圧力差によって水素を選択的に分離しながら反応
を進行させる水素分離型の水蒸気改質反応器において、
該触媒層の上流側に該水素分離膜を内蔵しない領域を設
け、該領域より下流側の領域に前記水素分離膜を内蔵さ
せてなることを特徴とする水蒸気改質反応器。
1. A reactor in which a hydrocarbon or an oxygen-containing hydrocarbon is supplied as a raw material to produce hydrogen by a steam reforming reaction, wherein a hydrogen separation membrane is built in a steam reforming reaction catalyst layer, and a pressure difference In a hydrogen separation type steam reforming reactor in which the reaction proceeds while selectively separating hydrogen by
A steam reforming reactor comprising: a region in which the hydrogen separation membrane is not provided upstream of the catalyst layer; and the hydrogen separation membrane in a region downstream of the region.
JP04008158A 1992-01-21 1992-01-21 Steam reforming reactor Expired - Lifetime JP3082796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04008158A JP3082796B2 (en) 1992-01-21 1992-01-21 Steam reforming reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04008158A JP3082796B2 (en) 1992-01-21 1992-01-21 Steam reforming reactor

Publications (2)

Publication Number Publication Date
JPH05193903A JPH05193903A (en) 1993-08-03
JP3082796B2 true JP3082796B2 (en) 2000-08-28

Family

ID=11685528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04008158A Expired - Lifetime JP3082796B2 (en) 1992-01-21 1992-01-21 Steam reforming reactor

Country Status (1)

Country Link
JP (1) JP3082796B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2775459B1 (en) * 1998-02-27 2000-04-21 Bosch Syst Freinage HYDRO-MECHANICAL POWER TRANSMISSION DEVICE
JP4519225B2 (en) * 1999-10-19 2010-08-04 日本碍子株式会社 Fuel cell system and control method thereof
DE102008031092A1 (en) * 2008-07-01 2010-01-07 Linde Aktiengesellschaft Method and device for generating hydrogen
NL2006245C2 (en) * 2011-02-18 2012-08-21 Stichting Energie MEMBRANE REACTOR AND PROCESS FOR THE PRODUCTION OF A GASEOUS PRODUCT WITH SUCH REACTOR.

Also Published As

Publication number Publication date
JPH05193903A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
RU2144494C1 (en) Production of synthesis gas by means of ion-conducting membranes
US6254807B1 (en) Control of H2 and CO produced in partial oxidation process
US7226490B2 (en) Fuel processor for producing a hydrogen rich gas
US6171574B1 (en) Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
US5525322A (en) Method for simultaneous recovery of hydrogen from water and from hydrocarbons
JP4351010B2 (en) Syngas production method
US6090312A (en) Reactor-membrane permeator process for hydrocarbon reforming and water gas-shift reactions
US20040265224A1 (en) Autothermal reactor and method for production of synthesis gas
RU2248931C2 (en) Method for production of gas enriched with hydrogen and/or carbon oxide
JP2000026102A (en) Ceramic membrane type reforming reactor
JP2008222526A (en) Selective permeation membrane type reactor, and hydrogen production method
KR100245781B1 (en) Process for manufacturing synthesis gas and their device
JP2000185906A (en) Method for producing synthetic gas, and reactor system therefor
WO1990006281A1 (en) Production of ammonia from hydrocarbonaceous feedstock
US6923944B2 (en) Membrane reactor for gas extraction
WO1990006282A1 (en) Production of methanol from hydrocarbonaceous feedstock
US6783749B2 (en) Gas recovery process
JP3082796B2 (en) Steam reforming reactor
US7267804B2 (en) Membrane reactor for gas extraction
JPH0640703A (en) Steam reforming reactor
JPH04331703A (en) Method of synthesis of ammonia gas manufacturing
EP1441981B1 (en) Reactor for reformation of natural gas and simultaneous production of hydrogen
JP3051564B2 (en) Steam reforming reactor
US20060168887A1 (en) Method for producing a fuel gas containing hydrogen for electrochemical cells and associated device
JPH0640701A (en) Hydrogen separation type steam reforming reactor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12