JP3080751B2 - High frequency heating equipment - Google Patents

High frequency heating equipment

Info

Publication number
JP3080751B2
JP3080751B2 JP04009991A JP999192A JP3080751B2 JP 3080751 B2 JP3080751 B2 JP 3080751B2 JP 04009991 A JP04009991 A JP 04009991A JP 999192 A JP999192 A JP 999192A JP 3080751 B2 JP3080751 B2 JP 3080751B2
Authority
JP
Japan
Prior art keywords
frequency
power
plasma
heating
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04009991A
Other languages
Japanese (ja)
Other versions
JPH05196759A (en
Inventor
則幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP04009991A priority Critical patent/JP3080751B2/en
Publication of JPH05196759A publication Critical patent/JPH05196759A/en
Application granted granted Critical
Publication of JP3080751B2 publication Critical patent/JP3080751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は複数の電力増幅装置を有
する高周波加熱装置に係り、特にプラズマに高周波電力
を入射し、プラズマの加熱やプラズマ中に電流を発生さ
せる高周波加熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency heating apparatus having a plurality of power amplifying devices, and more particularly to a high-frequency heating apparatus that applies high-frequency power to plasma to heat the plasma and generate a current in the plasma.

【0002】[0002]

【従来の技術】磁場を用いてプラズマを閉じ込める装置
の1つに図3に示すトカマク型核融合装置がある。この
トカマク型核融合装置では垂直方向の垂直磁場Bvと、
周方向に沿った動径方向のトロイダル磁場Btと、内部
を流れるプラズマ電流Ipが作り出すポロイダル磁場B
pとによりプラズマ1を円環状(トーラス状)に閉じ込
めている。
2. Description of the Related Art A tokamak-type fusion device shown in FIG. 3 is one of devices for confining plasma using a magnetic field. In this tokamak fusion device, the vertical magnetic field Bv in the vertical direction
Radial toroidal magnetic field Bt along the circumferential direction and poloidal magnetic field B generated by plasma current Ip flowing inside
The plasma 1 is confined in an annular shape (torus shape) by p.

【0003】垂直磁場Bvは図4に示すように円環状の
プラズマ1に沿うように配置したポロイダルコイル2に
より発生させ、トロイダル磁場Btは円環状のソレノイ
ドコイルを形成するように並べたトロイダルコイル3に
より発生させる。また、プラズマ電流Ipは電磁誘導に
より発生させる。すなわち、プラズマ電流Ipはトカマ
ク型核融合装置中心部に配置された誘導用コイル4の電
流を急激に変化させるとともに、磁束の時間変化によ
り、プラズマ1に電場を誘起し、その電場により電子を
加速して発生させる。
A vertical magnetic field Bv is generated by a poloidal coil 2 arranged along an annular plasma 1 as shown in FIG. 4, and a toroidal magnetic field Bt is generated by a toroidal coil 3 arranged to form an annular solenoid coil. generate. The plasma current Ip is generated by electromagnetic induction. That is, the plasma current Ip rapidly changes the current of the induction coil 4 arranged at the center of the tokamak fusion device, and induces an electric field in the plasma 1 due to the time change of the magnetic flux, thereby accelerating the electrons by the electric field. And generate.

【0004】このようなトカマク型核融合装置で発生し
たプラズマ1の温度はそのままでは数千万度程度しかな
く、核融合炉に必要とされる数億度に達するためには何
らかのプラズマ加熱が必要となる。プラズマ加熱の1つ
に、磁場中のイオンの旋回運動(これをサイクロトロン
運動という。)の周期と同期する周波数の高周波を入射
し、周波数共鳴させて高周波のエネルギをイオンに与え
プラズマ1の加熱を行なうイオンサイクロトロン加熱が
ある。
[0004] The temperature of the plasma 1 generated by such a tokamak fusion device is only about tens of millions of degrees as it is, and some kind of plasma heating is necessary to reach the hundreds of millions of degrees required for a fusion reactor. Becomes In one of the plasma heatings, a high frequency having a frequency synchronized with the cycle of the swirling motion of ions in a magnetic field (this is called cyclotron motion) is incident, and the frequency is resonated to give high frequency energy to the ions to heat the plasma 1. There is ion cyclotron heating performed.

【0005】標準的なイオンサイクロトロン加熱装置の
概略構成を図5に示す。このイオンサイクロトロン加熱
装置は8本のアンテナ15に高周波電力を供給する装置
を例示しており、原発振器10で発生させた小電力の高
周波を8分配し、移相器11により各列間の加熱に必要
とされる位相差を設けてから電力増幅を行なう。原発振
器10からの高周波電力は非常に小さく、そのままでは
真空管を使った電力増幅ができないため前置増幅器12
により適当なレベルまで電力上昇させた後、電力増幅装
置20に高周波を入力する。
FIG. 5 shows a schematic configuration of a standard ion cyclotron heating apparatus. This ion cyclotron heating device exemplifies a device for supplying high-frequency power to eight antennas 15, distributes the low-power high-frequency generated by the original oscillator 10 into eight, and heats the space between each row by the phase shifter 11. After the required phase difference is provided, power amplification is performed. Since the high-frequency power from the original oscillator 10 is very small and cannot be amplified using a vacuum tube as it is, the preamplifier 12
After the power is raised to an appropriate level, a high frequency is input to the power amplifying device 20.

【0006】この電力増幅装置20は低電力増幅器(L
PA:Low Power Amp.)21、中間電力増幅器(IP
A:Intermediate Power Amp. )22、大電力増幅器
(HPA:High Power Amp. )23から構成され、10
0W級の高周波をMW級まで電力増幅する。
The power amplifying device 20 is a low power amplifier (L
PA: Low Power Amp. 21, Intermediate power amplifier (IP
A: Intermediate Power Amp.) 22 and high power amplifier (HPA: High Power Amp.)
Amplifies the high frequency of 0W class to the MW class.

【0007】また、電力増幅装置20から送出された高
周波は同軸給電線等の伝送線13によりインピーダンス
整合装置(IMS)14を経てアンテナ15に伝送され
る。一般に、アンテナ15の入力インピーダンスは伝送
線13の特性インピーダンスと異なるため、伝送線13
の途中にスタブ等で構成されたインピーダンス整合装置
14が設置される。
The high frequency transmitted from the power amplifying device 20 is transmitted to an antenna 15 via an impedance matching device (IMS) 14 via a transmission line 13 such as a coaxial feed line. Generally, since the input impedance of the antenna 15 is different from the characteristic impedance of the transmission line 13,
Is installed in the middle of the process.

【0008】ところで、従来の高周波加熱装置はプラズ
マの加熱を主目的としていたが、高周波を利用すると電
磁誘導と異なりトカマク型核融合装置のプラズマ中に連
続的に電流を流すことが可能なため、プラズマ中に電流
を発生させる高周波電流駆動の研究が近年盛んになって
いる。イオンサイクロトロン加熱装置においても高周波
により電子を加速する電流駆動の実験が進められてい
る。その場合、イオンによる高周波の吸収を避けるた
め、加熱とは異なる周波数に変更する必要がある。
[0008] By the way, the conventional high-frequency heating apparatus is mainly intended for heating the plasma, but when high frequency is used, unlike electromagnetic induction, a current can be continuously passed through the plasma of the tokamak-type fusion apparatus. Research on high-frequency current driving for generating a current in plasma has been actively pursued in recent years. Also in the ion cyclotron heating apparatus, experiments of current driving for accelerating electrons by high frequency are being advanced. In this case, it is necessary to change the frequency to a frequency different from that for heating in order to avoid high frequency absorption by ions.

【0009】また、従来の高周波加熱装置は一方向に電
子を加速するため、図6に示すアンテナ15からプラズ
マへ高周波を入射させる際、電磁波が進行波を形成する
ように各々アンテナ15a,15b,15c,15d間
に加熱時とは異なった位相差を設定する必要がある。各
アンテナ15a〜15dはリターン導体16を介してそ
れぞれ内部導体17および外部導体18と接続されてい
る。
In addition, since the conventional high-frequency heating device accelerates electrons in one direction, when a high-frequency wave is incident on the plasma from the antenna 15 shown in FIG. 6, the antennas 15a, 15b, and 15b are respectively formed so that the electromagnetic waves form traveling waves. It is necessary to set a phase difference different from that at the time of heating between 15c and 15d. Each antenna 15a to 15d is connected to an inner conductor 17 and an outer conductor 18 via a return conductor 16, respectively.

【0010】将来の核融合炉を想定するとき、建設費と
占有空間を低減させる観点から加熱用と電流駆動用と別
個に高周波加熱装置を設けることは不適当であり、同一
の装置で加熱と電流駆動ができなければならない。
When assuming a future fusion reactor, it is inappropriate to provide separate high-frequency heating devices for heating and current driving from the viewpoint of reducing construction costs and occupied space. Current drive must be possible.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、同一の
高周波加熱装置で加熱および電流駆動の双方の運転を行
うと、運転途中において周波数や位相差を変更しなけれ
ばならない。この位相差変更は電子回路で行なえるた
め、短時間で変更可能であるものの、周波数変更は以下
で説明する理由により一定の時間がかかる。また、周波
数と位相差の変更によりアンテナの入力インピーダンス
が変わるため、インピーダンス整合を調整し直す必要が
ある。
However, when both heating and current driving are performed by the same high-frequency heating device, the frequency and phase difference must be changed during the operation. Since this phase difference can be changed by an electronic circuit, it can be changed in a short time, but the frequency change requires a certain time for the reason described below. Further, since the input impedance of the antenna changes due to the change of the frequency and the phase difference, it is necessary to readjust the impedance matching.

【0012】したがって、このような運転変更の間は高
周波出力を停止させなければならないが、プラズマの温
度、特に電子温度が下がると著しく電流駆動の効率が低
下するため、加熱モードから電流駆動モードへの移行に
かかる時間を可及的に短かくすることが要求される。
Therefore, the high-frequency output must be stopped during such a change in operation. However, when the temperature of the plasma, especially the electron temperature, decreases, the efficiency of current driving is significantly reduced. It is required to minimize the time required for the migration of the system.

【0013】しかし、周波数を変えるためには単に原発
振器10の発振周波数を変えるだけでなく、電力増幅装
置20を構成する各増幅器21,22,23の各出力回
路の同調周波数および入力回路のインピーダンスを変更
しなければならない。例えば増幅器の出力回路の共振器
の一例を図7に示すと、リエントラント型の空胴共振器
30は内部導体31および外部導体32を有し、この空
胴共振器30を使用するとき、同調周波数は短絡板33
を内部導体31および外部導体32の軸方向に沿って移
動させ距離Lを変えて変更する。
However, in order to change the frequency, not only the oscillation frequency of the original oscillator 10 is changed, but also the tuning frequency of each output circuit of each of the amplifiers 21, 22, and 23 constituting the power amplifying device 20 and the impedance of the input circuit. Must be changed. For example, FIG. 7 shows an example of a resonator of an output circuit of an amplifier. A reentrant cavity 30 has an inner conductor 31 and an outer conductor 32. When this cavity 30 is used, the tuning frequency Is the short-circuit plate 33
Is moved along the axial direction of the inner conductor 31 and the outer conductor 32 to change the distance L.

【0014】したがって、周波数の変更に際しては短絡
板33の移動にかかる時間だけ必要である。また、短絡
板33には電気的な接触を確実にするため一定の圧力で
押し付けられた金属接触子34が取り付けられている。
Therefore, when changing the frequency, only the time required for moving the short-circuit plate 33 is required. Further, a metal contact 34 pressed with a constant pressure is attached to the short-circuit plate 33 to ensure electrical contact.

【0015】このような金属接触子34は周方向に沿っ
て多数取り付けられているため、短絡板33の移動には
金属接触子34の全接触圧以上の力が必要である。その
上、力を瞬間に発生させ停止することは物理的に不可能
であるため、短絡板33の移動にはさらに時間がかかる
と考えられ、通常の機械技術の範囲では数10秒はかか
ると予想される。
Since a large number of such metal contacts 34 are attached along the circumferential direction, the movement of the short-circuit plate 33 requires a force greater than the total contact pressure of the metal contacts 34. In addition, since it is physically impossible to instantaneously generate and stop a force, it is considered that the movement of the short-circuit plate 33 takes more time, and it takes several tens of seconds in the range of ordinary mechanical technology. is expected.

【0016】現在、核融合炉として想定されているプラ
ズマのエネルギ閉じ込め時間は1秒程度であるため、加
熱モードから電流駆動モードへ周波数変更をしている間
にプラズマは冷えてしまい、効率の良い電流駆動は不可
能となる。短絡板33の移動速度を極端に速めること
は、金属接触子34の接触性能を損って寿命を短かくす
る虞れがあり、また短絡板33を移動させるための駆動
力発生部の不釣り合いを招く問題点がある。
At present, the energy confinement time of plasma supposed as a fusion reactor is about 1 second. Therefore, the plasma cools down while the frequency is changed from the heating mode to the current driving mode, and the efficiency is improved. Current drive becomes impossible. If the moving speed of the short-circuit plate 33 is extremely increased, there is a possibility that the contact performance of the metal contact 34 may be impaired and the life thereof may be shortened. There is a problem that causes.

【0017】本発明は上述した事情を考慮してなされた
もので、加熱モードから電力駆動モードへの変更を効率
よく行なう高周波加熱装置を提供することを目的とす
る。
The present invention has been made in view of the above-described circumstances, and has as its object to provide a high-frequency heating apparatus that efficiently changes a heating mode to a power driving mode.

【0018】[0018]

【課題を解決するための手段】本発明に係る高周波加熱
装置は、上述した課題を解決するために、複数の電力増
幅装置を有する高周波加熱装置において、上記複数の電
力増幅装置毎にブロックを構成し、各ブロックの電力増
幅装置に高周波を発生する原発振器を設け、イオンの加
熱を行なう加熱モードからプラズマ中の電子を加速して
電流を発生させる電流駆動モードへ変更する際、上記複
数のブロックの電力増幅装置の内、少なくとも1ブロッ
クずつの電力増幅装置の高周波パラメータを順次変更さ
せるように設定したものである。
In order to solve the above-mentioned problems, a high-frequency heating apparatus according to the present invention comprises, in a high-frequency heating apparatus having a plurality of power amplifiers, a block for each of the plurality of power amplifiers. The power amplifier of each block is provided with an original oscillator for generating a high frequency, and when changing from a heating mode for heating ions to a current drive mode for accelerating electrons in plasma to generate a current, the plurality of blocks are used. Are set so that the high frequency parameters of at least one block of the power amplifying device are sequentially changed.

【0019】[0019]

【作用】上記の構成を有する本発明においては、複数の
ブロックの電力増幅装置の内、少なくとも1ブロックず
つの電力増幅装置の高周波パラメータを順次変更させる
ように設定したので、加熱モードから電流駆動モードへ
変更する際に高周波電力の印加が途切れることなく、プ
ラズマを加熱しながら電流駆動を行なうことができる。
したがって、高周波電力の一次的な途絶によるプラズマ
温度の急速な低下を防ぐことができ、効率の良い電流駆
動が実現できる。
In the present invention having the above configuration, the high-frequency parameters of the power amplifying devices of at least one block among the plurality of power amplifying devices are set so as to be sequentially changed. The current drive can be performed while heating the plasma without interruption of the application of the high-frequency power when changing to.
Therefore, it is possible to prevent a rapid decrease in the plasma temperature due to the temporary interruption of the high-frequency power, thereby realizing efficient current driving.

【0020】[0020]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1に本発明に係る高周波加熱装置の一実
施例の基本構成を示す。なお、従来の構成と同一の部分
には同一の符号を用いて説明する。
FIG. 1 shows the basic configuration of an embodiment of the high-frequency heating apparatus according to the present invention. Note that the same parts as those of the conventional configuration will be described using the same reference numerals.

【0022】本実施例ではアンテナ15の総数が16台
の場合に図6に示すような4台のアンテナ15を1ブロ
ックとして加熱モードから電流駆動モードへ変更する例
を示す。高周波加熱装置は、それぞれ4ブロックの原発
振器10で発生させた小電力の高周波を4分配し、移相
器11により各列間の高周波加熱に必要とされる位相差
を設けてから電力増幅を行なう。
In this embodiment, when the total number of the antennas 15 is 16, an example is shown in which four antennas 15 as shown in FIG. 6 are used as one block and the mode is changed from the heating mode to the current driving mode. The high-frequency heating device distributes the low-power high-frequency generated by the four blocks of the original oscillator 10 into four, and provides a phase difference required for high-frequency heating between the columns by the phase shifter 11, and then performs power amplification. Do.

【0023】そして、移相器11から送出された小電力
の高周波は前置増幅器12により100W程度まで増幅
した後、低電力増幅器21、中間電力増幅器22、大電
力増幅器23から成る電力増幅装置20で1MW級の大
電力まで増幅し、さらにインピーダンス整合器13を通
じて各アンテナ15に高周波を給電する。このように上
記高周波加熱装置の図5に示す従来例との違いは電流駆
動に必要な4台のアンテナ15のそれぞれに接続される
4つの電力増幅装置20を1ブロックとし、この1ブロ
ック毎に原発振器10を設けた構成である。
The low-power high-frequency wave transmitted from the phase shifter 11 is amplified by the preamplifier 12 to about 100 W, and then a power amplifier 20 including a low-power amplifier 21, an intermediate power amplifier 22, and a large-power amplifier 23. , And amplifies to a large power of 1 MW class, and supplies a high frequency to each antenna 15 through the impedance matching unit 13. As described above, the difference between the high-frequency heating apparatus and the conventional example shown in FIG. 5 is that four power amplifiers 20 connected to each of the four antennas 15 necessary for current driving are formed as one block, and each block is This is a configuration in which an original oscillator 10 is provided.

【0024】すなわち、本実施例の高周波加熱装置は1
6台の電力増幅装置20を4つのブロック毎に分割し、
この4つのブロックの電力増幅装置20の各々に高周波
を発生させる原発振器10が設けられている。そして、
イオンの加熱を行なう加熱モードからプラズマ中の電子
を加速して電流を発生させる電流駆動モードへ変更する
際には、4つのブロックの電力増幅装置20の内、少な
くとも1ブロックずつの電力増幅装置20の高周波パラ
メータを順次変更させるように設定している。ここで、
上記高周波パラメータとは電力増幅装置20の出力同調
回路および入力同調回路の同調周波数、高周波の位相な
どをいう。
That is, the high-frequency heating device of the present embodiment
The six power amplifiers 20 are divided into four blocks,
Each of these four blocks of power amplifying devices 20 is provided with an original oscillator 10 for generating a high frequency. And
When changing from the heating mode in which the ions are heated to the current driving mode in which the electrons in the plasma are accelerated to generate a current, at least one of the four blocks of the power amplifying apparatus 20 is used. Are set so as to be sequentially changed. here,
The high frequency parameters refer to the tuning frequency, high frequency phase, and the like of the output tuning circuit and the input tuning circuit of the power amplifying device 20.

【0025】なお、電力増幅装置20の高周波パラメー
タを変更させる手段としては、空胴共振器の長さを変え
たり、入力回路のインピーダンス整合を取り直すことな
どが挙げられる。
The means for changing the high frequency parameter of the power amplifying device 20 includes changing the length of the cavity resonator and re-establishing the impedance matching of the input circuit.

【0026】次に、本実施例の作用を説明する。Next, the operation of this embodiment will be described.

【0027】上記高周波加熱装置では、4台のアンテナ
15のそれぞれに接続される4つの電力増幅装置20に
ついて原発振器10毎に高周波パラメータを変えて運転
することが可能であるため、高周波電力の印加が途切れ
ることなく、アンテナ4台毎にイオンの加熱を行なう加
熱モードからプラズマ中の電子を加速して電流を発生さ
せる電流駆動モードへ順次運転変更が可能となる。
In the above-described high-frequency heating device, the four power amplifiers 20 connected to the four antennas 15 can be operated by changing the high-frequency parameters for each of the source oscillators 10. Without interruption, it is possible to sequentially change the operation from the heating mode in which ions are heated for every four antennas to the current driving mode in which electrons in the plasma are accelerated to generate a current.

【0028】このように本実施例によれば、複数台の電
力増幅装置20を1ブロックとして運転変更が可能とな
るため、電力増幅装置20の同調周波数の変更を極端に
短時間に行うことなく、プラズマの加熱をしながら、数
台ずつの電力増幅装置20を電流駆動モードに順次移行
させることにより、プラズマの温度を低下させることな
く、効率のよい電流駆動を実現できる。
As described above, according to the present embodiment, the operation can be changed by using a plurality of power amplifying devices 20 as one block, so that the tuning frequency of the power amplifying device 20 need not be changed in an extremely short time. By sequentially shifting several power amplifying devices 20 to the current driving mode while heating the plasma, efficient current driving can be realized without lowering the plasma temperature.

【0029】また、電力増幅装置20において同調回路
等の高速動作が不要なため、信頼性の高い高周波加熱装
置を提供できる。さらに、高周波加熱装置の全出力を一
度に停止・再投入することがなくなるため、電源に対す
る負荷変動を少なくでき、安定した運転が可能となる。
Further, since the power amplifier 20 does not require a high-speed operation of a tuning circuit or the like, a highly reliable high-frequency heating device can be provided. Further, since it is not necessary to stop and restart all the outputs of the high-frequency heating device at once, a load fluctuation on the power supply can be reduced, and stable operation can be performed.

【0030】図2は本発明に係る高周波加熱装置の他の
実施例を示し、同図は加熱モードから電流駆動モードへ
変更時の1台の電力増幅装置についての高周波出力レベ
ルの変化を示し、横軸は時間t、縦軸は電力増幅装置の
出力Piを表わすものとする。また、区間Aは加熱モー
ドの期間、区間Cは電流駆動モードの期間、斜線で示す
区間Bは運転状態変更の期間を示すものとする。
FIG. 2 shows another embodiment of the high-frequency heating device according to the present invention. FIG. 2 shows a change in the high-frequency output level of one power amplifying device when the mode is changed from the heating mode to the current driving mode. The horizontal axis represents time t, and the vertical axis represents the output Pi of the power amplifier. In addition, the section A indicates a period of the heating mode, the section C indicates a period of the current drive mode, and the section B indicated by oblique lines indicates a period of change of the operating state.

【0031】本実施例では、区間Bにおいて出力Piを
電力増幅装置20の最終段の大電力増幅器23の増幅管
の許容反射電力値Pc以下に低減させ、周波数変更とイ
ンピーダンス整合の再調整を行ない、その期間中は完全
に出力Piをゼロにしないようにしている。
In this embodiment, in section B, the output Pi is reduced to a value equal to or less than the allowable reflected power value Pc of the amplifier tube of the high power amplifier 23 at the last stage of the power amplifier 20, and the frequency is changed and the impedance matching is readjusted. During this period, the output Pi is not completely set to zero.

【0032】このように本実施例によれば、電源に対す
る負荷変動を一段と少なくでき、安定且つ効率のよい高
周波加熱装置の運転が可能となる。
As described above, according to the present embodiment, the fluctuation of the load on the power supply can be further reduced, and the stable and efficient operation of the high-frequency heating device can be performed.

【0033】[0033]

【発明の効果】以上説明したように、本発明に係る高周
波加熱装置によれば、複数のブロックの電力増幅装置の
内、少なくとも1ブロックずつの電力増幅装置の高周波
パラメータを順次変更させるように設定したので、高周
波電力の一時的な途絶によるプラズマの温度低下の影響
なしに加熱モードから電流駆動モードへ運転を移行でき
る。その結果、効率のよい電流駆動が実現できるとと
に、負荷変動を低減でき安定した高周波加熱装置の運転
が可能となる。
As described above, according to the high-frequency heating device of the present invention, the high-frequency parameters of the power amplifying devices of at least one block among the plurality of power amplifying devices are set so as to be sequentially changed. Therefore, the operation can be shifted from the heating mode to the current drive mode without the influence of the plasma temperature drop due to the temporary interruption of the high-frequency power. As a result, efficient current driving can be realized, and a stable operation of the high-frequency heating device can be realized with reduced load fluctuation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る高周波加熱装置の一実施例を示す
概略構成図。
FIG. 1 is a schematic configuration diagram showing one embodiment of a high-frequency heating device according to the present invention.

【図2】本発明の他の実施例を示した電力増幅器からの
出力変化を示す説明図。
FIG. 2 is an explanatory diagram showing a change in output from a power amplifier according to another embodiment of the present invention.

【図3】一般のトカマク型核融合装置の原理を示す原理
図。
FIG. 3 is a principle diagram showing the principle of a general tokamak fusion device.

【図4】トカマク型核融合装置のコイル構成を示す概略
構成図。
FIG. 4 is a schematic configuration diagram showing a coil configuration of a tokamak fusion device.

【図5】従来の標準的なイオンサイクロトロン加熱装置
の構成を説明する概略構成図。
FIG. 5 is a schematic configuration diagram illustrating the configuration of a conventional standard ion cyclotron heating apparatus.

【図6】図5のイオンサイクロトロン加熱装置で使用す
るアンテナを示す概略斜視図。
6 is a schematic perspective view showing an antenna used in the ion cyclotron heating device of FIG.

【図7】電力増幅器の出力同調回路に使用する空胴共振
器の一例を示す概略図。
FIG. 7 is a schematic diagram showing an example of a cavity resonator used in an output tuning circuit of a power amplifier.

【符号の説明】[Explanation of symbols]

10 原発振器 11 移相器 12 前置増幅器 14 インピーダンス整合装置 15 アンテナ 20 電力増幅装置 21 低電力増幅器 22 中間電力増幅器 23 大電力増幅器 DESCRIPTION OF SYMBOLS 10 Original oscillator 11 Phase shifter 12 Preamplifier 14 Impedance matching device 15 Antenna 20 Power amplifier 21 Low power amplifier 22 Intermediate power amplifier 23 High power amplifier

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の電力増幅装置を有する高周波加熱
装置において、上記複数の電力増幅装置毎にブロックを
構成し、各ブロックの電力増幅装置に高周波を発生する
原発振器を設け、イオンの加熱を行なう加熱モードから
プラズマ中の電子を加速して電流を発生させる電流駆動
モードへ変更する際、上記複数のブロックの電力増幅装
置の内、少なくとも1ブロックずつの電力増幅装置の高
周波パラメータを順次変更させるように設定したことを
特徴とする高周波加熱装置。
In a high-frequency heating device having a plurality of power amplifiers, a block is formed for each of the plurality of power amplifiers, and a power oscillator for generating a high frequency is provided in each of the power amplifiers to heat ions. When changing from the heating mode to the current driving mode in which electrons in the plasma are accelerated to generate a current, the high-frequency parameters of at least one block of the power amplifiers of the plurality of blocks are sequentially changed. A high-frequency heating apparatus characterized in that:
JP04009991A 1992-01-23 1992-01-23 High frequency heating equipment Expired - Fee Related JP3080751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04009991A JP3080751B2 (en) 1992-01-23 1992-01-23 High frequency heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04009991A JP3080751B2 (en) 1992-01-23 1992-01-23 High frequency heating equipment

Publications (2)

Publication Number Publication Date
JPH05196759A JPH05196759A (en) 1993-08-06
JP3080751B2 true JP3080751B2 (en) 2000-08-28

Family

ID=11735333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04009991A Expired - Fee Related JP3080751B2 (en) 1992-01-23 1992-01-23 High frequency heating equipment

Country Status (1)

Country Link
JP (1) JP3080751B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA126673C2 (en) * 2016-11-15 2023-01-11 Тае Текнолоджіз, Інк. Systems and methods for improved sustainment of a high performance frc and high harmonic fast wave electron heating in a high performance frc

Also Published As

Publication number Publication date
JPH05196759A (en) 1993-08-06

Similar Documents

Publication Publication Date Title
US5179264A (en) Solid state microwave powered material and plasma processing systems
Li et al. A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system
Zohm et al. On the use of step-tuneable gyrotrons in ITER
Cai et al. Design study of a high-power Ka-band high-order-mode multibeam klystron
Wang et al. Design of a W-band second-harmonic TE/sub 02/gyro-TWT amplifier
Ioannidis et al. Generation of 1.5 MW–140 GHz pulses with the modular pre-prototype gyrotron for W7-X
Gao et al. A novel dual-band nested transit time oscillator
JP3080751B2 (en) High frequency heating equipment
EP2509399B1 (en) Electron accelerator having a coaxial cavity
Saraph et al. 100-150 MW designs of two-and three-cavity gyroklystron amplifiers operating at the fundamental and second harmonics in X-and Ku-bands
JP3751967B1 (en) Magnetron oscillator
JP3856153B1 (en) Magnetron oscillator
Kalaria et al. Interaction circuit design and RF behavior of a 236 GHz gyrotron for DEMO
US5444337A (en) Radio frequency amplifying apparatus
Mutoh et al. ICRF heating system in LHD
Alesini Linear Accelerator Technology
US2971122A (en) High-power magnetron
JPH08315998A (en) Microwave plasma treatment device
Faillon Technical and industrial overview of RF and microwave tubes for fusion
Ghodke et al. Development of a pulsed radio frequency ignited multicusp-free negative hydrogen ion source
Empacher et al. New developments and test of high power transmission components for ECRH on ASDEX-Upgrade and W7-AS
Oda High-Power Beam Source and Beam Transmission
JP4199521B2 (en) Active phased array antenna for satellite installation
Dammertz et al. Highly efficient long pulse operation of an advanced 140 GHz 0.5 MW gyrotron oscillator
Takada et al. Nd-Fe-B permanent magnet circuit for a 28 GHz CW gyrotron

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees