JP3079295B2 - Steel cord for rubber reinforcement - Google Patents

Steel cord for rubber reinforcement

Info

Publication number
JP3079295B2
JP3079295B2 JP04245960A JP24596092A JP3079295B2 JP 3079295 B2 JP3079295 B2 JP 3079295B2 JP 04245960 A JP04245960 A JP 04245960A JP 24596092 A JP24596092 A JP 24596092A JP 3079295 B2 JP3079295 B2 JP 3079295B2
Authority
JP
Japan
Prior art keywords
wire
core
strands
diameter
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04245960A
Other languages
Japanese (ja)
Other versions
JPH0673673A (en
Inventor
俊次 蜂須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rope Manufacturing Co Ltd
Original Assignee
Tokyo Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rope Manufacturing Co Ltd filed Critical Tokyo Rope Manufacturing Co Ltd
Priority to JP04245960A priority Critical patent/JP3079295B2/en
Publication of JPH0673673A publication Critical patent/JPH0673673A/en
Application granted granted Critical
Publication of JP3079295B2 publication Critical patent/JP3079295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2006Wires or filaments characterised by a value or range of the dimension given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2027Compact winding
    • D07B2201/2028Compact winding having the same lay direction and lay pitch
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2051Cores characterised by a value or range of the dimension given

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、スチールラジアルタイ
ヤ、高圧ホース、ベルトコード等のゴム補強材として好
適なゴム補強用スチールコードに関するものである。 【0002】 【従来の技術】従来、トラツクやバス等のスチールラジ
アルタイヤには、そのゴム補強材として多量のスチール
コードが用いられ、また、タイヤの部分ごとに異なる各
種の構造のスチールコードが適用されている。特に、そ
のカーカス部では、疲労性を考慮して細径(例えば0.
175mm)の素線を多数本撚り合わせて形成した3+9
+15×0.175構造や7×4×0.175構造のス
チールコードが代表的になつているが、これらのスチー
ルコードは、多数本の素線を2工程又は3工程で撚り合
わせて製造されコスト高になるとともに、コード中心部
にゴムが浸透し難く、その耐腐食性等の改善が課題にな
つている。 【0003】最近は、素線の線径をやや太くしてその本
数を減少し、その素線を12本、19本又は27本全て
同じ撚り方向及び同様な撚りピツチで一度に撚り合わせ
て形成した1×12構造、1×19構造、1×27構造
のスチールコードが開発され提案されている。このよう
なバンチドタイプのスチールコードは、多数本の素線を
一度に撚り合わせて製造でき低コストで提供されるとと
もに、各素線が線接触状となり疲労性に優れ、また、素
線本数の減少によりゴムが浸透し易くなるなどの利点が
ある。 【0004】しかし、前記バンチドタイプのスチールコ
ードにおいて、例えば、1×12構造では、図3(A)
に示すように同一線径の素線を12本撚り合わせたスチ
ールコード13aに構成すると、3本の芯部素線11と
9本の側部素線12で構成された形状となり、全ての素
線が緊密、コンパクトに撚り合わされて内層部にゴムが
浸透し難い構造となる。その改善策として、図(B)に
示すように3本の芯部素線11bを太い線径にして9本
の側部素線12間に隙間を形成しゴム浸透性を高めたス
チールコード13bに構成し、芯増径コードとして提案
されている。 【0005】また、1×19構造では、同一線径の素線
を19本撚り合わせたスチールコードに構成すると、1
本の芯部素線と、6本の中間部素線及び12本の側部素
線で構成された形状になり、その芯部素線は殆んど型付
けされず直線状になり、中間部素線は型付けが少なく、
側部素線は型付けが最も大きくなつて内層部にゴムが浸
透し難い構造となる。その改善策として、芯部素線を太
い線径とし中間部素線及び側部素線間に隙間を形成して
ゴム浸透性を高めたスチールコードに構成し、芯増径コ
ードとして提案されている。 【0006】 【発明が解決しようする課題】従来の前記バンチドタイ
プのスチールコードは、多数本の素線を全て一度に撚り
合わせて製造でき低コストで提供される利点を有し、ま
た、前記のような芯増径コードに構成すると、ゴム浸透
性が改善されるが、比較的に型付け率が小さくコード長
手方向の素線撚り込み率(長さ)の低い(短い)芯部素
線が増径されるため、芯部素線の引張応力や曲げ応力の
負担が大きくなつて、タイヤ疲労性には不利となり芯部
素線の破断に至ることがあるなど、その疲労性などが課
題になつている。 【0007】 【課題を解決するための手段】本発明は、上記のような
課題を解決するために開発されてものであって、その目
的とする処は、製造コストの低減とともに埋設性能、耐
疲労性及びゴム浸透性などを高めるなど、総合的にゴム
補強性能を向上したゴム補強用スチールコードを提供す
るにある。 【0008】 【課題を解決するための手段】本発明は、芯部素線の線
径d1と側部素線の線径d2との線径比Rをd1/d2
=0.95±0.025とし、かつ4本の芯部素線及び
9本の側部素線によつて構成するとともに、全ての芯部
素線及び全ての側部素線を同じ撚り方向及び同様な撚り
ピッチで一度に撚り合わせて構成し、バンチドタイプで
1×13構造としてコストを節減するとともに、前記の
線径比R(側部素線に対し芯部素線の線径を適度に小さ
く細径化)としかつ芯部素線のみを1本増加して、コー
ド径を格別に増加しないで埋設性能を高め、芯部(4本
の芯部素線)と側部(9本の側部素線)との両破断荷重
(引張応力及び曲げ応力等)を均衡させて耐疲労性を高
め、側線素線の間に適度の隙間を形成してゴム浸透性を
高めるなど、優れた埋設性能、耐疲労性及びゴム浸透性
等を兼ね備え、総合的にゴム補強性能を効果的に向上し
たゴム補強用スチールコードを提供するにある。 【0009】 【作用】芯部素線の線径d1と側部素線の線径d2との
線径比Rをd1/d2=0.95±0.025とし、
つ4本の芯部素線及び9本の側部素線によつて構成する
とともに、全ての芯部素線及び全ての側部素線を同じ撚
り方向及び同様な撚りピッチで一度に撚り合わせて構成
したことにより、1工程で撚り合わせて製造されるバン
チドタイプで1×13構造として製造コストを大幅に低
減するとともに、このスチールコードは、従来の1×1
2構造のスチールコードに比べ前記の線径比Rとし即ち
側部素線に対し芯部素線の線径を適度に小さく細径化し
かつ芯部素線のみを1本増加しているので、コード径が
格別に増加されずゴム内への埋設性能が高めるととも
に、4本の芯部素線からなる芯部と9本の側部素線から
なる側部との引張応力及び曲げ応力等つまり両破断荷重
をほぼ同じ水準に均衡させて耐疲労性を効果的に高めて
いる。さらに側部素線の素線間に適度の隙間を形成して
ゴム浸透性を高めているなど、優れた埋設性能、耐疲労
性及びゴム浸透性等を兼ね備えたゴム補強用スチールコ
ードとし、総合的にゴム補強性能を効果的に向上してい
る。 【0010】 【実施例】図1に本発明の一実施例、図2(A)(B)
(C)に比較例を示す。図中1,1a,1c,1dは芯
部素線、2は側部素線、3a,3b,3c,3dはゴム
補強用スチールコード、d1は芯部素線の線径、d2は
部素線の線径、R(図示省略),d1/d2は芯部素
線の線径と側部素線の線径との線径比であつて、図1に
示す実施例は、芯部素線1aの線径d1と側部素線2の
線径d2との線径比Rをd1/d2=0.95±0.0
25とし、かつ4本の芯部素線1a及び9本の側部素線
2によつて構成するとともに、全ての芯部素線1a及び
全ての側部素線2を同じ撚り方向及び同様な撚りピッチ
で一度に撚り合わせて構成したことを特徴とするゴム補
強用スチールコード3aになっている。 【0011】さらに詳述すると、前記の芯部素線1a及
び側部素線2には、好ましくは炭素C0.82重量%を
含む高炭素鋼線に、拡散めっき法により銅、亜鉛めっき
を施し、その後熱処理により合金化して、銅Cu63.
5重量%、その付着量4.0g/kgのめっきを施し、
これをダイスを用い順次に細径に伸線加工して所定の線
径に形成した素線が使用され、芯部素線1aの線径をd
1 、側部素線2の線径をd2 とすると、その芯部素線1
aの線径d1 と側部素線2の線径d2 との線径比Rはd
1 /d2 =0.95±0.025の範囲内に構成され、
即ち、芯部素線1aを側部素線2に対し適度の細径に構
成するとともに、その芯部素線1aを4本に増加して9
本の側部素線2とともにバンチャー型撚り線機にかけ、
必要に応じ各素線に適度の型付けを施して一度に撚り合
わせて前記のような1×13構造(バンチドタイプ)の
ゴム補強用スチールコード3aに構成される。さらに、
各側部素線2の外側には、細径のラツピングワイヤ5を
逆撚り方向かつ大きい螺旋ピツチで絡ませて構成するの
が好ましく、そのコードの保形性が高められる。 【0012】疲労試験において各素線の破断進行状況を
詳細に調査した結果、従来のバンチドタイプのスチール
コードは、芯部素線と側部素線を全て一度に同じ撚り方
向及び同様な撚りピツチで撚り合わせるため、芯部素線
の型付け率が側部素線よりも小さくなり、コード長手方
向に撚り込まれる芯部素線の撚り込み率(長さ)が相対
的に短くなつて、その芯部素線はコードにかかる引張応
力を多めに負担し、その素線径に比例した大きい曲げ応
力が加わり、その傾向は芯増径コード即ち芯部素線の増
径に伴い顕著になつて、芯部素線の破断原因になること
が判明した。 【0013】一方、本発明のゴム補強用スチールコード
3aは、芯部素線1aの線径d1 と側部素線2の線径d
2 との線径比Rをd1 /d2 =0.95±0.025に
するとともに、4本の前記芯部素線1aと9本の前記側
部素線2を全て同じ撚り方向及び同様な撚りピツチで一
度に撚り合わせて構成したことにより、その芯部素線1
aは側部素線2に対し適度に細径化されるとともに4本
に増加されて、その芯部素線の耐疲労性が効果的に高め
られて側部素線と均等化され、総合的に耐疲労性が著し
く高められるとともに、4本の芯部素線で形成されたコ
ード芯部の占有断面積が程よく増加されてゴム浸透性が
高められている。 【0014】 【表1】 【表2】 【0015】表1及び表2に示す試料は、線径0.20
mm、0.205mm及び0.21mmの側部素線に対
し芯部素線の線径を同一、太径又は数種の細径にして組
み合わせ、3本又は4本の芯部素線と9本の側部素線を
全て同じ撚り方向及び同様な撚りピッチで一度に撚り合
わせて形成した各種の1×12構造及び1×13構造
(バンチドタイプ)のスチールコードを製造し、図1に
示すように4本の芯部素線1(側部素線に対し細径)と
9本の側部素線2とからなるバンチドタイプで1×13
構造のスチールコード3aを実施例1、2、3、図2
(B)に示すように4本の芯部素線1(側部素線と
径)と9本の側部素線2からなる1×13構造のスチー
ルコード3bを比較例1、図2(C)に示すように4本
の芯部素線1c(側部素線に対し細径)と9本の側部素
線2からなる1×13構造のスチールコード3cを比較
例2、また、図3(A)に示すように3本の芯部素線1
1(側部素線と同径)と9本の側部素線12からなる1
×12構造のスチールコード13aを従来例1、図3
(B)に示すように3本の芯部素線11b(側部素線に
対し太径)と9本の側部素線12からなる1×12構造
のスチールコード13bを従来例2、図2(A)に示す
ように3本の芯部素線1d(側部素線に対し細径)と9
本の側部素線2からなる1×12構造のスチールコード
3dを対比例としたものであり、これら各試料のコー
ド径、破断荷重とともに、ゴム浸透性、3ロール疲労性
を測定して表示のような評価が得られた。なお、3ロー
ル疲労性は、各試料のスチールコードを長尺のゴムコン
パウンドに埋め込み加硫してゴムブロツクコンパウンド
とし、3個組のロールに適度の引っ張り荷重下で繰り返
し曲げ歪みを与えその疲労破断までの回数を計測して指
数とし、また、ゴム浸透性は、ゴムブロツクサンプル
(長さ14mm)を水中に配置して、その一端よ圧縮
エアを供給してその他端から出るリークエア量を測定し
たものである。 【0016】表1,2から明らかなように実施例1,
2,3は、従来例、比較例及び対比例に比べコード径は
格別に増加されず従来例とほぼ同様に確保されるととも
に、芯部(4本の芯部素線)と側部(9本の側部素線)
との両破断荷重がほぼ均衡されて耐疲労性が効果的に
高められているとともに、側部素線の素線間に適度の隙
間が形成されてゴム浸透性が十分に確保されている。比
較例1のように芯部素線と側部素線を同一線径にする
と、芯部素線を4本に増加したのみでは芯部(4本の芯
部素線)と側部(9本の側部素線)との両破断荷重が不
均衡となり耐疲労性の向上は期待できない。比較例2の
ように芯部素線の線径を過度に細径にするとゴム浸透性
が確保されない。実施例1,2,3のように、4本の芯
部素線と9本の側部素線とからなるバンチドタイプで1
×13構造にするとともに、その芯部素線1aの線径d
1と側部素線2の線径d2との線径比Rを d1/d2=0.95±0.025 の範囲内に構成することにより、コード径が格別に増加
されず4本の芯部素線からなる芯部と9本の側部素線か
らなる側部との両破断荷重もほぼ同じ水準に確保され、
しかもゴム浸透性が良好に確保される。なお、ゴム補強
用スチールコードにおいてはコード径は小さいほどゴム
厚みの減少が可能となる。また、コード破断荷重及びコ
ード径は、タイヤの設計変更にもつながるので実質的に
2%以内の同様な水準であるほうが好ましい。 【0017】 【発明の効果】本発明は、前述のような構成からなり、
芯部素線の線径d1と側部素線の線径d2との線径比R
をd1/d2=0.95±0.025とし、かつ4本の
芯部素線及び9本の側部素線によって構成するととも
に、全ての芯部素線(4本)及び全ての9本の側部素線
(9本)を同じ撚り方向及び同様な撚りピッチで一度に
撚り合わせて構成したことにより、1工程で撚り合わせ
てバンチドタイプで1×13構造のスチールコードとし
て容易に構成され、コストを大幅に低減することができ
るとともに、従来の1×12構造のスチールコードに比
側部素線の線径に対し芯部素線の線径を上記の線径比
Rのように適度に小さく細径化しかつ芯部素線のみを1
本増加して4本にしたことにより、コード径を格別に増
加しないでゴム内への埋設性能を高め、芯部(4本の芯
部素線)と側部(9本の側部素線)との両破断荷重(引
張応力及び曲げ応力等)を均衡させて耐疲労性を高め、
素線の間に適度の隙間を形成してゴム浸透性を適度
に確保するなど、優れた埋設性能、耐疲労性及びゴム浸
透性等を兼ね備えて、総合的にゴム補強性能を効果的に
向上している。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel cord for rubber reinforcement suitable as a rubber reinforcement for steel radial tires, high-pressure hoses, belt cords and the like. 2. Description of the Related Art Conventionally, a large amount of steel cord is used as a rubber reinforcing material for steel radial tires such as trucks and buses, and steel cords having various structures differing from tire to tire are applied. Have been. In particular, the carcass portion has a small diameter (e.g.
3 + 9 formed by twisting many strands (175 mm)
Steel cords of + 15 × 0.175 structure and 7 × 4 × 0.175 structure are typical, and these steel cords are manufactured by twisting a large number of strands in two or three steps. As the cost increases, the rubber hardly penetrates into the central part of the cord, and improvement of its corrosion resistance and the like has become an issue. Recently, the number of strands has been reduced by slightly increasing the diameter of the strands, and the strands are formed by twisting all 12, 12, or 27 strands at once with the same twisting direction and similar twist pitch. Steel cords having a 1 × 12 structure, a 1 × 19 structure, and a 1 × 27 structure have been developed and proposed. Such a bunched type steel cord can be manufactured by twisting a large number of strands at a time and can be provided at low cost. There is an advantage that the rubber easily penetrates due to the decrease in the amount. However, in the bunched type steel cord, for example, in a 1 × 12 structure, FIG.
When the steel cord 13a is formed by twisting twelve strands of the same diameter as shown in FIG. 1, the shape is constituted by three core strands 11 and nine side strands 12, and all the strands are formed. The wires are tightly and compactly twisted, so that the rubber does not easily penetrate the inner layer. As a remedy, a steel cord 13b in which three core strands 11b are made thicker to form a gap between the nine side strands 12 to increase rubber permeability as shown in FIG. And proposed as a core diameter increasing cord. In the 1 × 19 structure, if a steel cord is formed by twisting 19 strands having the same wire diameter, 1
Core wire, 6 middle wires and 12 side wires. The core wires are hardly formed and are straight. The strand has less typing,
The side strands have a structure in which rubber is hardly permeated into the inner layer part when the molding is the largest. As a remedy, a core cord with a large diameter and a gap between the middle strand and the side strand to form a steel cord with increased rubber permeability has been proposed as a core increased cord. I have. The conventional bunched steel cord has the advantage that it can be manufactured by twisting a large number of strands all at once and can be provided at low cost. Although the rubber permeability is improved by constructing the core-increased cord as described above, the core element wire having a relatively small molding rate and a low (short) core stranding rate (length) in the cord longitudinal direction is low. Since the diameter is increased, the burden of tensile stress and bending stress on the core wire increases, which is disadvantageous for tire fatigue and may lead to breakage of the core wire. I'm sorry. SUMMARY OF THE INVENTION The present invention has been developed to solve the above-mentioned problems. The object of the present invention is to reduce the manufacturing cost and to improve the burial performance and durability.
Comprehensive rubber, such as enhancing fatigue and rubber permeability
An object of the present invention is to provide a steel cord for rubber reinforcement with improved reinforcement performance . According to the present invention, a wire diameter ratio R between a wire diameter d1 of a core wire and a wire diameter d2 of a side wire is d1 / d2.
= 0.95 ± 0.025, and four core strands and
It is composed of nine side strands and all cores
The strand and all side strands are twisted at once with the same twist direction and similar twist pitch, and are configured as a bunched type.
As well as saving costs as a 1 × 13 structure,
Wire diameter ratio R (The wire diameter of the core wire is appropriately smaller than the side wire.
The core wire is increased by one and the core
The burial performance is improved without extraordinary increase in
Breaking load of the core wire) and the side portion (9 side wires)
(Tensile stress and bending stress) to improve fatigue resistance
To form a suitable gap between the side wires to improve rubber permeability.
Excellent embedding performance, fatigue resistance and rubber permeability
An object of the present invention is to provide a steel cord for rubber reinforcement that effectively improves rubber reinforcement performance comprehensively . The wire diameter ratio R between the wire diameter d1 of the core wire and the wire diameter d2 of the side wire is d1 / d2 = 0.95 ± 0.025 .
Consist of four core strands and nine side strands
In addition, all core strands and all side strands are twisted at the same time in the same twisting direction and the same twist pitch, so that the bunched type manufactured by twisting in one step is 1 × The 13 structure significantly reduces the manufacturing cost, and the steel cord is the same as the conventional 1 × 1
Compared with the steel cord having the two structures, the wire diameter ratio R is set as above, ie,
Reducing the diameter of the core wire to an appropriately smaller and smaller diameter than the side wire
And the core diameter is increased by one, so the cord diameter is
It is not particularly increased and the embedding performance in rubber is improved
From the core consisting of four core strands and nine side strands
Tensile stress, bending stress, etc., with both sides
To approximately the same level to effectively increase fatigue resistance
I have. In addition, form an appropriate gap between the side wires
Excellent burial performance and fatigue resistance, including enhanced rubber permeability
Steel for rubber reinforcement that has both properties and rubber permeability
The rubber reinforcement performance is effectively improved overall . FIG. 1 shows an embodiment of the present invention, and FIGS. 2 (A) and 2 (B).
(C) shows a comparative example. In the figure, 1, 1a, 1c and 1d are core strands, 2 is a side strand, 3a, 3b, 3c and 3d are rubber cords for reinforcing rubber, d1 is the diameter of the core strand and d2 is
Diameter side Bumotosen, R (not shown), d1 / d2 is filed with a line diameter ratio of the wire diameter of the wire diameter and the side strands of the core wire, the embodiment shown in Figure 1, The wire diameter ratio R between the wire diameter d1 of the core wire 1a and the wire diameter d2 of the side wire 2 is d1 / d2 = 0.95 ± 0.0.
25, and four core strands 1a and nine side strands
2 and all the core element wires 1a and
This is a steel cord 3a for rubber reinforcement, wherein all side strands 2 are twisted at a time with the same twist direction and the same twist pitch. More specifically, the core element wire 1a and the side element wire 2 are preferably made of a high-carbon steel wire containing 0.82% by weight of carbon by applying a copper or zinc plating by a diffusion plating method. , And then alloyed by heat treatment to form copper Cu 63.
5% by weight, with a plating amount of 4.0 g / kg,
A wire obtained by successively drawing the wire into a small diameter using a die to form a predetermined wire diameter is used, and the wire diameter of the core wire 1a is set to d.
1, if the wire diameter of the side wire 2 is d2, the core wire 1
The wire diameter ratio R between the wire diameter d1 of a and the wire diameter d2 of the side element wire 2 is d.
1 / d2 = 0.95 ± 0.025.
That is, the core wire 1a is configured to have a moderately small diameter with respect to the side wire 2, and the number of the core wire 1a is increased to four to 9
With a buncher-type stranded wire machine together with two side strands 2,
If necessary, each element wire is appropriately shaped and twisted at a time to form a rubber cord 3a having a 1 × 13 structure (bunched type) as described above. further,
It is preferable that a small-diameter wrapping wire 5 is entangled with a large helical pitch in the reverse twist direction on the outer side of each side element wire 2, so that the shape retention of the cord is enhanced. As a result of a detailed examination of the progress of breaking of each strand in a fatigue test, the conventional bunched type steel cord shows that the core strand and the side strand all have the same twist direction and similar twist at the same time. Since the core is twisted with a pitch, the shaping rate of the core strand is smaller than that of the side strand, and the twisting rate (length) of the core strand twisted in the longitudinal direction of the cord is relatively short. The core wire bears a large amount of tensile stress applied to the cord, and a large bending stress proportional to the wire diameter is applied, and this tendency becomes remarkable as the diameter of the core diameter increasing cord, that is, the core wire increases. As a result, it was found that the core wire was broken. On the other hand, the steel cord 3a for rubber reinforcement of the present invention has a wire diameter d1 of the core wire 1a and a wire diameter d1 of the side wire 2.
2 and d1 / d2 = 0.95 ± 0.025, and all four core strands 1a and nine side strands 2 have the same twisting direction and the same twist direction. By being twisted at once with a twisting pitch, the core wire 1
a is appropriately reduced in diameter with respect to the side strands 2 and is increased to four, and the fatigue resistance of the core strands is effectively increased, and is equalized with the side strands. In addition, the fatigue resistance is remarkably improved, and the occupied cross-sectional area of the cord core formed by the four core strands is moderately increased, so that the rubber permeability is increased. [Table 1] [Table 2] The samples shown in Tables 1 and 2 have a wire diameter of 0.20.
mm, 0.205 mm, and 0.21 mm side wires, the core wire having the same diameter, a large diameter or several kinds of small diameters, and a combination of 3 or 4 core wires and 9 Steel cords of various 1 × 12 structure and 1 × 13 structure (bunched type) formed by twisting all the side strands at the same time in the same twist direction and the same twist pitch are manufactured, and FIG. As shown, a bunched type consisting of four core strands 1 (smaller in diameter than the side strands ) and nine side strands 2 is 1 × 13.
Example 1, 2, 3, FIG. 2
As shown in (B), a steel cord 3b having a 1 × 13 structure composed of four core strands 1 ( having the same diameter as the side strands ) and nine side strands 2 was used in Comparative Example 1 and FIG. As shown in (C), a steel cord 3c having a 1 × 13 structure composed of four core strands 1c (smaller in diameter than the side strands ) and nine side strands 2 was used in Comparative Example 2, and And three core element wires 1 as shown in FIG.
1 (same diameter as the side strand ) and 9 consisting of nine side strands 12
× 12 structure steel cord 13a in Conventional Example 1, FIG.
As shown in (B), three core strands 11b ( side strands)
On the other hand , as shown in FIG. 2A, a steel cord 13b having a 1 × 12 structure composed of 9 pieces of side wires 12 (thick diameter) and three side wires 12 was used as three core wires 1d ( side wires). for small diameter) and 9
And the steel cord 3d of 1 × 12 structure consisting of the side strands 2 that the comparative example 1, the code size of each of these samples, along with breaking load, rubber penetration, 3 by measuring the roll fatigue An evaluation as shown was obtained. The three-roll fatigue was evaluated by embedding the steel cord of each sample in a long rubber compound and vulcanizing it into a rubber block compound, and repeatedly bending the three rolls under an appropriate tensile load. and index measures the number of times up to the fatigue fracture distorts, also rubber penetration, place rubber Bro arrive samples (length 14 mm) in water, the other end to supply the compressed air Ri by one end This is a measurement of the amount of leak air flowing out. As apparent from Tables 1 and 2, Examples 1 and 2
2 and 3 have a smaller cord diameter than the conventional example, the comparative example and the comparative example.
It will not be particularly increased and will be secured almost in the same way as the conventional example
, Core (four core strands) and side (9 side strands)
And both breaking loads are almost balanced, effectively improving fatigue resistance.
It is raised and has a moderate gap between the side strands.
A gap is formed to ensure sufficient rubber permeability . When the core wire and the side wire have the same wire diameter as in Comparative Example 1, the core portion (four core wires) is increased only by increasing the core wire to four wires.
The breaking load of both the side strands) and the side parts (the nine side strands)
It is balanced and no improvement in fatigue resistance can be expected. If the diameter of the core element wire is excessively small as in Comparative Example 2, rubber permeability cannot be ensured. As in the first, second, and third embodiments, a bunched type including four core strands and nine side strands is used.
× 13 structure and the wire diameter d of the core element wire 1a
By setting the wire diameter ratio R between the wire diameter 1 and the wire diameter d2 of the side wire 2 within the range of d1 / d2 = 0.95 ± 0.025, the cord diameter is significantly increased.
Instead , both breaking loads of the core composed of the four core strands and the side composed of the nine side strands are also maintained at substantially the same level,
Moreover, the rubber permeability Ru is well secured. In addition, rubber reinforcement
In steel cords for use, the smaller the cord diameter, the more the rubber thickness can be reduced. Further, the cord breaking load and the cord diameter are preferably substantially at the same level of 2% or less because this leads to a change in tire design. The present invention has the above-described configuration,
Wire diameter ratio R of wire diameter d1 of core wire and wire diameter d2 of side wire
Is set to d1 / d2 = 0.95 ± 0.025 and is composed of four core strands and nine side strands, and all core strands (four) and all nine strands (9) side strands at the same twist direction and similar twist pitch at a time, so that they can be easily twisted in one step to form a bunched type 1x13 steel cord. The cost can be greatly reduced, and the wire diameter of the core wire with respect to the wire diameter of the side wire as compared with the conventional steel cord having a 1 × 12 structure has the wire diameter ratio R as described above. Reducing the diameter to a moderately small size and using only one core wire
By increasing the number of cords to four, the embedding performance in rubber is improved without significantly increasing the cord diameter, and the core part (four core strands) and the side parts (nine side strands) ) And both breaking loads (tensile stress and bending stress, etc.) are balanced to increase fatigue resistance,
Moderate rubber penetration to form an appropriate gap between the side portions strand
It has excellent burial performance, fatigue resistance, rubber permeability, etc., and effectively improves overall rubber reinforcement performance.

【図面の簡単な説明】 【図1】本発明の一実施例を示す横断面図 【図2】比較例を示す各横断面図(A)(B)(C) 【図3】従来例を示す各横断面図(A)(B)である。 【符号の説明】 1a 芯部素線 2 側部素線 3a ゴム補強用スチールコード d1 線径(芯部素線) d2 線径(側部素線) R 線径比[Brief description of the drawings] FIG. 1 is a cross-sectional view showing one embodiment of the present invention. FIG. 2 is a cross-sectional view showing a comparative example (A), (B) and (C). FIGS. 3A and 3B are cross-sectional views showing a conventional example. [Explanation of symbols] 1a Core strand 2 Side strand 3a Steel cord for rubber reinforcement d1 wire diameter (core wire) d2 wire diameter (side wire) R wire diameter ratio

Claims (1)

(57)【特許請求の範囲】 芯部素線の線径d1と側部素線の線径d2との線径比R
をd1/d2=0.95±0.025とし、かつ4本の
芯部素線及び9本の側部素線によつて構成するととも
に、全ての芯部素線及び全ての側部素線を同じ撚り方向
及び同様な撚りピッチで一度に撚り合わせて構成したこ
とを特徴とするゴム補強用スチールコード。
(57) [Claims] The wire diameter ratio R of the wire diameter d1 of the core wire and the wire diameter d2 of the side wire.
Is set to d1 / d2 = 0.95 ± 0.025, and four
It is composed of a core strand and nine side strands.
A steel cord for rubber reinforcement , wherein all core strands and all side strands are twisted at a time in the same twisting direction and at the same twist pitch.
JP04245960A 1992-08-24 1992-08-24 Steel cord for rubber reinforcement Expired - Fee Related JP3079295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04245960A JP3079295B2 (en) 1992-08-24 1992-08-24 Steel cord for rubber reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04245960A JP3079295B2 (en) 1992-08-24 1992-08-24 Steel cord for rubber reinforcement

Publications (2)

Publication Number Publication Date
JPH0673673A JPH0673673A (en) 1994-03-15
JP3079295B2 true JP3079295B2 (en) 2000-08-21

Family

ID=17141410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04245960A Expired - Fee Related JP3079295B2 (en) 1992-08-24 1992-08-24 Steel cord for rubber reinforcement

Country Status (1)

Country Link
JP (1) JP3079295B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015727A1 (en) * 1997-09-25 1999-04-01 Bridgestone Corporation Steel cord, method of manufacturing same, and pneumatic tire
EP1961860A4 (en) 2005-10-31 2010-02-17 Bridgestone Corp Steel cord for reinforcing rubber article and pneumatic radial tire
WO2020113605A1 (en) * 2018-12-03 2020-06-11 江苏兴达钢帘线股份有限公司 High-rubber penetration steel cord having 2+2+8×n structure
EP4083542B1 (en) * 2019-12-27 2024-02-14 Daikin Industries, Ltd. Ice supply device and ice making system

Also Published As

Publication number Publication date
JPH0673673A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
JP2659072B2 (en) Steel cord for rubber reinforcement
EP2475818B1 (en) Oval steel cord of the m+n structure comprising at least one oval core wire
CA2232549A1 (en) Process for producing a steel cord and steel cord produced by this process
JP5625604B2 (en) Steel cord for rubber reinforcement
JP4806587B2 (en) Steel cord manufacturing method and steel cord
JP3079295B2 (en) Steel cord for rubber reinforcement
JP2000256977A (en) Rubber improved in penetration of rubber and steel cord for tire reinforcement
JP3519716B2 (en) Still cord for rubber reinforcement and method for producing the same
JPH08325962A (en) Steel cord for tire reinforcement
JP2978016B2 (en) Steel cord for rubber reinforcement
JPH0881889A (en) Steel cord for reinforcing rubber article
JP2863696B2 (en) Steel cord for rubber reinforcement
JP4045030B2 (en) Steel cord for tire reinforcement
JP4259652B2 (en) Steel cord for tire reinforcement
JPH0610282A (en) Steel cord for reinforcing rubber
JP2546872Y2 (en) Metal cord
JPH11200263A (en) Steel cord for reinforcing tire
JP2000256976A (en) Steel cord for reinforcing tire
JP3247469B2 (en) Steel cord reinforced rubber belt
KR100356312B1 (en) Steel cord for reinforcing rubber
JP4014959B2 (en) Steel cord for tire reinforcement
JPS59223385A (en) Reinforcing rope comprising steel wire for elastomer product
JPH07279071A (en) Metal cord and composite material of the cord and rubber
JPH0610281A (en) Steel cord for reinforcing rubber
JPH0633383A (en) Steel cord for rubber reinforcement

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees