JP3078202B2 - Painting posture control method for articulated robot - Google Patents

Painting posture control method for articulated robot

Info

Publication number
JP3078202B2
JP3078202B2 JP07111389A JP11138995A JP3078202B2 JP 3078202 B2 JP3078202 B2 JP 3078202B2 JP 07111389 A JP07111389 A JP 07111389A JP 11138995 A JP11138995 A JP 11138995A JP 3078202 B2 JP3078202 B2 JP 3078202B2
Authority
JP
Japan
Prior art keywords
coating
axis
painting
spray
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07111389A
Other languages
Japanese (ja)
Other versions
JPH08305423A (en
Inventor
国男 宮脇
博 大窪
紀昭 篠原
康浩 定家
幸男 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP07111389A priority Critical patent/JP3078202B2/en
Publication of JPH08305423A publication Critical patent/JPH08305423A/en
Application granted granted Critical
Publication of JP3078202B2 publication Critical patent/JP3078202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、6つの回転軸を有する
多関節ロボット(マニピュレータ)により塗装作業を行
なう場合の姿勢の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling a posture when a painting operation is performed by an articulated robot (manipulator) having six rotation axes.

【0002】[0002]

【従来の技術】従来、6つの回転軸を有するロボット
(マニピュレータ)は、たとえば図6に示すように、基
台1上に第1軸S1を中心とした回転角θ1で回動され
る回転台2と、この回転台2に第1軸S1に直交する第
2軸S2を中心とする回転角θ2で回動される第1アー
ム3と、この第1アーム3の先端部で第2軸S2と平行
な第3軸S3を中心とする回転角θ3で回動される第2
アーム4と、この第2アーム4の先端側で第2アーム4
の中心に沿う第4軸S4を中心とする回転角θ4で回動
される第3アーム5と、第3アーム5の先端部で第4軸
S4と直交する第5軸(手首軸)S5を中心とする回転
角θ5で回動される第4アーム6と、第4アーム6の先
端部で第4アームの中心軸に沿う第6軸S6を中心とす
る回転角θ6で回動されるツールホルダ部7とで構成さ
れる。
2. Description of the Related Art Conventionally, a robot (manipulator) having six rotation axes is, for example, as shown in FIG. 6, a turntable that is turned on a base 1 at a rotation angle θ1 about a first axis S1. 2, a first arm 3 that is turned on the turntable 2 at a rotation angle θ2 about a second axis S2 perpendicular to the first axis S1, and a second axis S2 at the tip end of the first arm 3. Rotated at a rotation angle θ3 about a third axis S3 parallel to
Arm 4 and a second arm 4 at the distal end side of the second arm 4.
A third arm 5 rotated at a rotation angle θ4 about a fourth axis S4 along the center of the third arm 5 and a fifth axis (wrist axis) S5 orthogonal to the fourth axis S4 at the tip of the third arm 5 A fourth arm 6 rotated at a rotation angle θ5 about the center, and a tool rotated at a tip end of the fourth arm 6 at a rotation angle θ6 about a sixth axis S6 along the center axis of the fourth arm. It is composed of a holder 7.

【0003】上記多関節ロボットを使用しツールホルダ
部7に塗装用スプレーガン(以下塗装ガンという。)8
を保持させて被塗装面に一様な塗膜を形成する場合、従
来ではロボットの姿勢をオイラー角で明確に与えてい
た。すなわち、そして第1〜第6軸S1〜S6を有する
関節部はそれぞれアクチュエータおよび減速機を介して
駆動され、塗装ガン8による塗装速度、塗装距離、被塗
装面に対するスプレー軸Cの角度を一定に保持しつつ塗
装ガン8を被塗装面に対して塗装方向に沿って平行移動
させることにより、始点A〜終点Bまで均一な塗装を行
なっていた。
[0003] A spray gun for painting (hereinafter referred to as a painting gun) 8 is applied to the tool holder 7 using the articulated robot.
In order to form a uniform coating film on the surface to be coated by holding the robot, conventionally, the posture of the robot is clearly given by the Euler angle. That is, the joints having the first to sixth axes S1 to S6 are driven via actuators and reduction gears, respectively, so that the coating speed by the coating gun 8, the coating distance, and the angle of the spray axis C to the surface to be coated are kept constant. The coating is uniformly performed from the starting point A to the ending point B by moving the coating gun 8 parallel to the surface to be coated along the coating direction while holding.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の塗装作
業では、たとえば図7に示すように、第4軸S4と第6
軸S6が一直線に並ぶ姿勢位置およびその近傍で、第4
軸S4の回転が極めて大きくなる点(特異点Eという)
がある。これは上記構成において、デカルト空間速度か
ら見たマニピュレータの関節速度は式で計算され、
However, in the above-mentioned coating operation, for example, as shown in FIG.
In the posture position where the axis S6 is aligned and in the vicinity thereof, the fourth position
A point at which the rotation of the axis S4 becomes extremely large (referred to as a singular point E)
There is. This is because, in the above configuration, the joint velocity of the manipulator viewed from the Cartesian space velocity is calculated by an equation,

【0005】[0005]

【数1】 (νは6×1デカルト速度ベクトル、Θはマニピュレー
タの関節角ベクトル、Jは6×6のヤゴビの行列式)こ
のJ-1(Θ)において関節角速度が極めて大きくなる点
があるためであり、さらに、第4〜第6軸S4〜S6が
交差する図8に示す手首部の構造であるため、第4軸S
4と第6軸S6とが一直線に並ぶ姿勢で第4軸S4が高
速で回転されると、図7に示すように、塗装ガン8の姿
勢(塗装パターンの広がり角)を維持するために、第5
軸S5および第6軸S6もそれぞれ高速で回転させる必
要がある。
(Equation 1) (Ν is a 6 × 1 Cartesian velocity vector, Θ is a joint angle vector of the manipulator, J is a 6 × 6 Jagobian determinant) This is because there is a point where the joint angular velocity becomes extremely large in J −1 (Θ). Furthermore, since the fourth to sixth axes S4 to S6 intersect, the structure of the wrist shown in FIG.
When the fourth axis S4 is rotated at a high speed with the fourth and sixth axes S6 aligned in a straight line, as shown in FIG. 7, in order to maintain the attitude of the coating gun 8 (the spread angle of the coating pattern), Fifth
The shaft S5 and the sixth shaft S6 also need to be rotated at high speed.

【0006】したがって、所定以上に塗装速度をあげる
と<この変位点E付近で関節の最高角速度を上回ってし
まい、塗装が困難になるという問題があり、塗装速度が
特異点における第4〜第6軸S4〜S6の最高角速度に
より規制されて塗装速度が低くなり、これにより塗装速
度を上げられず、能率が悪いという問題があった。
Therefore, if the coating speed is increased beyond a predetermined value, the maximum angular velocity of the joint will be exceeded near the displacement point E, making the coating difficult. The coating speed is reduced by being restricted by the maximum angular speed of the shafts S4 to S6, and there is a problem that the coating speed cannot be increased and efficiency is poor.

【0007】本発明は上記問題点を解決して、多関節ロ
ボットにおいて2本の回転軸が一直線上に並ぶ特異点に
おける関節の回転を無くして、塗装速度を高速化できる
多関節ロボットの塗装姿勢制御方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention solves the above problems, and eliminates the rotation of a joint at a singular point where two rotating axes are aligned in a multi-joint robot, thereby increasing the painting speed. It is an object to provide a control method.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の多関節ロボットの塗装姿勢制御方法は、第
1軸と、第1軸に直交交差する第2軸と、第2軸と平行
な第3軸と、第3軸に直交する第4軸と、第4軸に直交
する第5軸と、第5軸に直交する第6軸とをそれぞれ中
心に回動自在な多関節ロボットにより、第6軸方向にス
プレー軸を形成する塗装用スプレーガンを使用して被塗
装面に塗装するに際し、塗装速度を一定に保持するとと
もに、塗装距離を一定とし、また塗装パターンの広がり
角を一定とし、さらにスプレー軸の塗装角が所定範囲と
なるように、各軸にオイラー角を設定し、さらに第4軸
または第6軸を固定することにより、塗装用スプレーガ
ンの噴射口を塗装方向に移動させると同時に、塗装点を
中心とし塗装距離を半径とする円弧線上で移動させるも
のである。
In order to solve the above problems, a method of controlling a painting posture of an articulated robot according to the present invention comprises a first axis, a second axis orthogonal to the first axis, and a second axis. , A fourth axis orthogonal to the third axis, a fifth axis orthogonal to the fourth axis, and a sixth axis orthogonal to the fifth axis. When painting on the surface to be painted by using a painting spray gun that forms a spray axis in the sixth axis direction by a robot, the painting speed is kept constant, the painting distance is kept constant, and the spread angle of the painting pattern Is fixed, the Euler angles are set for each axis so that the spray angle of the spray axis is within a predetermined range, and the fourth or sixth axis is fixed, so that the spray port of the spray gun for coating is coated. At the same time as moving in the direction It is intended to move in a circular arc line of the radius.

【0009】また、上記構成において、塗装の始端部を
塗装する時に、上記塗装姿勢制御における塗装面での塗
装速度を塗膜を薄膜から所定膜厚となるようにボカシ塗
装し、塗装の終端部を塗装する時に、上記塗装姿勢制御
における塗装面での塗装速度を加速させつつ塗膜を所定
膜厚から薄くするボカシ塗装するものである。
In the above structure, when the starting end of the coating is applied, the coating speed on the coating surface in the above-mentioned coating attitude control is applied in such a manner that the coating is applied from the thin film to the predetermined thickness, and the end of the coating is applied. When coating a film, the coating speed is reduced on the coated surface in the above-mentioned coating posture control, and the coating is thinned from a predetermined film thickness.

【0010】[0010]

【作用】通常塗装用スプレーガンによる均一な塗装作業
の要件として、塗装速度、塗装距離、塗装パターン方向
の広がり角をそれぞれ一定に保持することが必要である
が、被塗装面に対するスプレー軸の塗装角は、スプレー
軸が約45°〜135°の範囲であれば均一な塗膜が得
られることが実験的に判明されている。したがって、塗
装用スプレーガンによる塗装速度、塗装距離、塗装パタ
ーンの広がり角をそれぞれ一定に保持するとともに、塗
装用スプレーガンの吐出口の位置を、塗装点を中心とし
て塗装距離を半径とする円弧上で、かつスプレー軸が所
定角度範囲にあれば均一に塗装することができる。
[Function] Normally, it is necessary to keep the coating speed, the coating distance, and the spread angle in the coating pattern direction constant as the requirements for uniform coating work using a spray gun for coating. However, the coating of the spray shaft on the surface to be coated is required. It has been experimentally found that a uniform coating can be obtained when the angle of the spray axis is in the range of about 45 ° to 135 °. Therefore, while keeping the coating speed, coating distance, and divergence angle of the coating pattern by the coating spray gun constant, the position of the discharge port of the coating spray gun is set on an arc whose radius is the coating distance with the coating point as the center. If the spray axis is within a predetermined angle range, the coating can be performed uniformly.

【0011】上記方法では、第4軸または第6軸を固定
して第5軸を塗装方向に直交する方向に固定することに
より、第5軸によるスプレー軸の回動方向を設定し、塗
装速度および塗装パターンの広がり角およびスプレー軸
の塗装角を一定となるように、各軸のオイラー角をロボ
ットに与える。こりによりスプレー軸の塗装角を連続し
て変化させて、塗装用スプレーガンの吐出口を塗装点を
中心とする塗装距離を半径とする円弧上を移動させるこ
とにより、第4軸と第6軸が一直線上に並ぶ特異点付近
でも関節部の高速回転もなく、塗装用スプレーガンによ
り一様な塗装を行なうことができる。したがって、従来
の特異点における関節部の高速回動が無くなり、これに
より通常の塗装作業時の関節部の角速度が規制されるこ
とがないので、塗装速度をより高速化することができ、
能率良く塗装作業を行なうことができる。
In the above method, the fourth axis or the sixth axis is fixed, and the fifth axis is fixed in a direction orthogonal to the painting direction. The Euler angle of each axis is given to the robot so that the spread angle of the paint pattern and the spray angle of the spray axis become constant. The coating angle of the spray axis is continuously changed by this, and the discharge port of the spray gun for coating is moved on an arc having a coating distance as a radius around the coating point to form the fourth and sixth axes. In the vicinity of a singular point on which a straight line is arranged, there is no high-speed rotation of the joint, and uniform coating can be performed by the spray gun for coating. Therefore, the conventional high-speed rotation of the joint at the singular point is eliminated, and thus the angular velocity of the joint during normal painting work is not restricted, so that the painting speed can be further increased,
Coating work can be performed efficiently.

【0012】また、上記制御方法において始端部および
終端部の位置が異なると、塗装用スプレーガンの姿勢が
それぞれ異なるため、手首部を回動させる従来の手法で
ボカシ塗装することは極めて困難であるが、均一塗装部
と同じ姿勢制御で塗装速度のみ加速または減速すること
で、ボカシ塗装を容易に行なうことができる。したがっ
て、ボカシ塗装を重ねることにより、塗装の継ぎ目の塗
膜厚を一定にすることができる。
In the above control method, if the positions of the starting end and the end are different, the positions of the spray guns for painting are different from each other, so that it is extremely difficult to apply the conventional method of rotating the wrist. However, by only accelerating or decelerating only the coating speed under the same attitude control as that of the uniform coating portion, the blur coating can be easily performed. Therefore, the coating thickness of the seam of the coating can be made constant by overlapping the blur coating.

【0013】[0013]

【実施例】以下、本発明に係る多関節ロボットの塗装姿
勢制御方法の一実施例を図面に基づいて説明する。な
お、従来と同一の部材は同一符号を付し、説明は省略す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for controlling a painting posture of an articulated robot according to the present invention will be described below with reference to the drawings. The same members as those in the related art are denoted by the same reference numerals, and description thereof will be omitted.

【0014】図1に示すように、6軸多関節ロボットを
使用して塗装ガン8を移動し、一定の厚さの塗膜を始点
Aから終点Bまで塗装ラインLに沿って形成する場合、
その要件として、スプレー軸Cが被塗装面Gと交差する
塗装点Pの移動速度、すなわち塗装速度Vと、塗装ガン
8の吐出口から塗装点Pまでの塗装距離CDと、塗装ラ
インLに対する塗装パターンCPの広がり角αを一定に
保持する必要がある。しかし、均一な塗膜を形成するた
めに、被塗装面Gに対するスプレー軸Cの塗装角βは常
に90°である必要はなく、塗装角βはおおむね約45
°〜135°の適性角度範囲Sβ内で均一な塗膜が得ら
れることが実験的に判明している。したがって、塗装パ
ターンCPの広がり角αによる塗装幅を一定に保持する
関係から、被塗装面Gに対して垂直でかつ塗装ラインL
を含む平面H上で、塗装点Pを中心として半径が塗装距
離CDとする円弧線R上で、塗装角βが適性角度範囲S
βにあれば、塗装点Pにおいて均一な塗膜を形成するこ
とができる。
As shown in FIG. 1, when a coating gun 8 is moved by using a six-axis articulated robot and a coating film having a constant thickness is formed along a coating line L from a start point A to an end point B,
As the requirements, the moving speed of the coating point P where the spray axis C intersects the surface G to be coated, that is, the coating speed V, the coating distance CD from the discharge port of the coating gun 8 to the coating point P, and the coating for the coating line L It is necessary to keep the spread angle α of the pattern CP constant. However, in order to form a uniform coating film, the coating angle β of the spray axis C with respect to the surface G to be coated does not always need to be 90 °, and the coating angle β is approximately 45 °.
It has been experimentally found that a uniform coating film can be obtained within an appropriate angle range Sβ of from 135 ° to 135 °. Accordingly, in order to keep the coating width constant by the spread angle α of the coating pattern CP, the coating line L is perpendicular to the surface G to be coated.
On the arc line R whose radius is the coating distance CD around the coating point P on the plane H including
If it is β, a uniform coating film can be formed at the painting point P.

【0015】ここで、6軸多関節ロボットに対して、
塗装ラインLに沿う塗装方向、塗装距離CDおよび塗
装パターンCPの広がり角α、スプレー軸Cの方向を
塗装条件としてオイラー角で与えるとともに、塗装パタ
ーンCPの幅を変えないという条件を与えることによ
り、塗装ガン(塗装用スプレーガン)8の吐出口の位置
は前記円弧線R上に位置する。ここで多関節ロボットの
姿勢を一意に決定するため、従来の特異点Eで角速度が
大きかった第4軸S4(または第6軸S6でもよい)を
固定するという条件を加える。
Here, for a 6-axis articulated robot,
By giving the coating direction along the coating line L, the coating distance CD, the spread angle α of the coating pattern CP, and the direction of the spray axis C in Euler angles as coating conditions, and giving the condition that the width of the coating pattern CP is not changed, The position of the discharge port of the painting gun (spray gun for painting) 8 is located on the circular arc line R. Here, in order to uniquely determine the posture of the articulated robot, a condition is added that the fourth axis S4 (or the sixth axis S6) having a large angular velocity at the conventional singular point E is fixed.

【0016】上記条件で、従来の第4軸S4と第6軸S
6とが一直線上で従来の特異点を含む塗装作業では、Y
座標(塗装ライン方向)上の各塗装位置と第1軸〜第6
軸S1〜S6の回転速度との関係が図2のように表さ
れ、また塗装ガン8の座標と第1軸〜第6軸S1〜S6
の角度が表1に示すようになる。
Under the above conditions, the conventional fourth axis S4 and sixth axis S
6 is a straight line, and in a painting operation including a conventional singular point, Y
Each paint position on the coordinates (paint line direction) and the first to sixth axes
The relationship between the rotation speeds of the axes S1 to S6 is shown in FIG. 2, and the coordinates of the coating gun 8 and the first to sixth axes S1 to S6 are shown.
Are as shown in Table 1.

【0017】[0017]

【表1】 この時多関節ロボットの軌跡を概略的に表すと、図3,
図4のようになる。したがって、各アクチュエーターに
より、第1軸S1を略一定に近い角速度で回動させて第
4軸S4を第1軸S1を中心として始点A方向から終点
B方向まで回動させ、第2軸S2により第1アーム3を
前後に揺動させて塗装距離CDを調整し、第3軸S3を
回動して第1アーム3による第4軸S4の角度変化を補
正し、さらに、第5軸S5を回転して塗装ガン8の塗装
角βを制御する。これにより従来の第4軸S4と第6軸
S6が一直線に並ぶ特異点における回転速度の上昇を無
くすことができ、均一な塗装状態を得ることができる。
[Table 1] At this time, the trajectory of the articulated robot is schematically shown in FIG.
As shown in FIG. Therefore, each actuator rotates the first axis S1 at a substantially constant angular velocity, rotates the fourth axis S4 about the first axis S1 from the direction of the start point A to the direction of the end point B, and rotates the fourth axis S4 with the second axis S2. The coating distance CD is adjusted by swinging the first arm 3 back and forth, the third axis S3 is rotated to correct the angle change of the fourth axis S4 due to the first arm 3, and the fifth axis S5 is adjusted. It rotates to control the coating angle β of the coating gun 8. As a result, it is possible to eliminate the conventional increase in the rotation speed at the singular point where the fourth axis S4 and the sixth axis S6 are aligned, and to obtain a uniform coating state.

【0018】ところで、図5に示すように、塗装開始点
A′から一定塗膜厚Tを形成する始点Aまでの始端部a
と、終点Bから塗装終了点B′までの終端部bでは、前
の塗装作業により形成する塗膜と次の塗装作業により形
成する塗膜とを重ねて一定膜厚にするため、テーパー状
塗膜厚T′を形成するボカシ塗装を行なう。従来の塗装
ガン8を平行移動させる姿勢制御では、始点Aおよび終
点Bで塗装角βが通常90°で一定で、かつ被塗装面G
と塗装ガン8との距離も塗装距離CDと同じであるた
め、第5軸S5を中心に塗装ガン8を加速または減速し
て回動させるだけて、始端部aおよび終端部bでボカシ
塗装を行なうことができた。
By the way, as shown in FIG. 5, a starting end a from a coating start point A 'to a start point A where a constant coating film thickness T is formed.
At the end b from the end point B to the coating end point B ', the coating formed by the previous coating operation and the coating formed by the next coating operation are overlapped to have a constant thickness. A blur coating for forming the film thickness T 'is performed. In the conventional attitude control for moving the coating gun 8 in parallel, the coating angle β at the start point A and the end point B is usually constant at 90 °, and
Since the distance between the paint gun 8 and the paint gun 8 is the same as the paint distance CD, the paint gun 8 can be accelerated or decelerated and rotated about the fifth axis S5, and the blur coating can be performed at the start end a and the end end b. Could do it.

【0019】しかし、上記姿勢制御では、始点Aおよび
終点Bにおける塗装ガン8の塗装角βが一定でないた
め、従来のように手首部の回動では、塗装速度の制御が
容易ではない。ここでは図5に示すように、均一塗装部
と同様の姿勢制御方法でその塗装速度を減速および加速
することによりボカシ塗装を行っている。したがって、
始点Aおよび終点Bにおける塗装ガン8の姿勢が一定で
なくても、どの様な姿勢であっても極めて容易にボカシ
塗装を行なうことができ、塗装の継ぎ目の塗膜厚を一定
にすることができる。
However, in the above posture control, since the coating angle β of the coating gun 8 at the starting point A and the ending point B is not constant, it is not easy to control the coating speed by rotating the wrist as in the prior art. Here, as shown in FIG. 5, the coating is performed by reducing and accelerating the coating speed by the same attitude control method as that of the uniform coating portion. Therefore,
Even if the posture of the coating gun 8 at the start point A and the end point B is not constant, it is possible to perform the faint coating easily regardless of the posture, and to make the coating thickness of the seam of the coating constant. it can.

【0020】[0020]

【発明の効果】以上に述べたごとく本発明によれば、第
4軸または第6軸を固定して第5軸を塗装方向に直交す
る方向に固定することにより、第5軸によるスプレー軸
の回動方向を設定し、塗装速度および塗装パターンの広
がり角およびスプレー軸の塗装角を一定となるように、
各軸のオイラー角をロボットに与える。これによりスプ
レー軸の塗装角を連続して変化させて、塗装用スプレー
ガンの吐出口を塗装点を中心とする塗装距離を半径とす
る円弧上を移動させることにより、第4軸と第6軸が一
直線上に並ぶ特異点付近でも関節部の高速回転もなく、
塗装用スプレーガンにより一様な塗装を行なうことがで
きる。したがって、従来の特異点における関節部の高速
回動が無くなり、これにより通常の塗装作業時の関節部
の角速度が規制されることがないので、塗装速度をより
高速化することができ、能率良く塗装作業を行なうこと
ができる。
As described above, according to the present invention, the fourth axis or the sixth axis is fixed, and the fifth axis is fixed in a direction orthogonal to the painting direction. Set the rotation direction, so that the coating speed and the spreading angle of the coating pattern and the coating angle of the spray axis are constant.
The Euler angles of each axis are given to the robot. By changing the coating angle of the spray axis continuously, and moving the discharge port of the spray gun for coating on an arc whose radius is the coating distance centered on the coating point, the fourth axis and the sixth axis are moved. There is no high-speed rotation of the joint even near the singular point where
Uniform coating can be performed with a spray gun for coating. Therefore, the conventional high-speed rotation of the joint at the singular point is eliminated, and the angular velocity of the joint during normal painting work is not regulated, so that the painting speed can be further increased and the efficiency can be improved. Painting work can be performed.

【0021】また、上記制御方法において始端部および
終端部の位置が異なると、塗装用スプレーガンの姿勢が
それぞれ異なるため、手首部を回動させる従来の手法で
ボカシ塗装することは極めて困難であるが、均一塗装部
と同じ姿勢制御で塗装速度のみ加速または減速すること
で、ボカシ塗装を容易に行なうことができる。したがっ
て、ボカシ塗装を重ねることにより塗装の継ぎ目の塗膜
厚を一定にすることができる。
In the above control method, if the positions of the start end and the end are different, the positions of the spray guns for painting are different from each other. Therefore, it is extremely difficult to perform the blur coating by the conventional method of rotating the wrist. However, by only accelerating or decelerating only the coating speed under the same attitude control as that of the uniform coating portion, the blur coating can be easily performed. Therefore, the coating thickness of the seam of the coating can be made constant by overlapping the blur coating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る多関節ロボットの塗装姿勢制御方
法の一実施例を示す説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of a method of controlling a painting posture of an articulated robot according to the present invention.

【図2】同塗装制御方法による多関節ロボットの関節部
の回転速度を示すグラフである。
FIG. 2 is a graph showing a rotation speed of a joint of an articulated robot according to the coating control method.

【図3】同塗装制御方法による多関節ロボットの動作を
説明する斜視図である。
FIG. 3 is a perspective view illustrating an operation of the articulated robot according to the coating control method.

【図4】同塗装制御方法による多関節ロボットの動作を
説明する平面図である。
FIG. 4 is a plan view illustrating an operation of the articulated robot according to the coating control method.

【図5】同塗装制御方法による始端部および終端部にお
ける動作を説明するグラフである。
FIG. 5 is a graph illustrating operations at a start end and an end according to the coating control method.

【図6】従来の多関節ロボットを示す斜視図である。FIG. 6 is a perspective view showing a conventional articulated robot.

【図7】従来の塗装制御方法による多関節ロボットの関
節部の回転速度を示すグラフである。
FIG. 7 is a graph showing a rotational speed of a joint of an articulated robot according to a conventional coating control method.

【図8】従来の多関節ロボットの関節部の構造を示す断
面図である。
FIG. 8 is a sectional view showing a structure of a joint of a conventional articulated robot.

【符号の説明】[Explanation of symbols]

S1 第1軸 S2 第2軸 S3 第3軸 S4 第4軸 S5 第5軸 S6 第6軸 8 塗装用スプレーガン(塗装ガン) C スプレー軸 L 塗装ライン P 塗装点 CD 塗装距離 CP 塗装パターン V 塗装速度 G 被塗装面 α 塗装パターンの広がり角 β 塗装角 R 円弧線 A 始点 B 終点 S1 1st axis S2 2nd axis S3 3rd axis S4 4th axis S5 5th axis S6 6th axis 8 Spray gun for painting (painting gun) C Spray axis L Painting line P Painting point CD Painting distance CP Painting pattern V Painting Speed G Painted surface α Spread angle of paint pattern β Paint angle R Arc line A Start point B End point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 定家 康浩 大阪府大阪市此花区西九条5丁目3番28 号 日立造船株式会社内 (72)発明者 斉藤 幸男 大阪府大阪市此花区西九条5丁目3番28 号 日立造船株式会社内 (56)参考文献 特開 昭62−241010(JP,A) 特開 昭63−64101(JP,A) 特開 平8−252495(JP,A) (58)調査した分野(Int.Cl.7,DB名) G05B 19/18 - 19/46 B25J 3/00 - 3/04 B25J 9/10 - 9/22 B25J 13/00 - 13/08 B05B 12/00 - 13/06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuhiro Sadaya 3-28, Nishikujo, Konohana-ku, Osaka-shi, Osaka Within Hitachi Zosen Corporation (72) Inventor Yukio Saito 5 Nishikujo, Konohana-ku, Osaka-shi, Osaka No. 3-28, Hitachi Zosen Corporation (56) References JP-A-62-241010 (JP, A) JP-A-63-64101 (JP, A) JP-A-8-252495 (JP, A) (58 ) Surveyed field (Int.Cl. 7 , DB name) G05B 19/18-19/46 B25J 3/00-3/04 B25J 9/10-9/22 B25J 13/00-13/08 B05B 12/00 -13/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1軸と、第1軸に直交交差する第2軸
と、第2軸と平行な第3軸と、第3軸に直交する第4軸
と、第4軸に直交する第5軸と、第5軸に直交する第6
軸とをそれぞれ中心に回動自在な多関節ロボットによ
り、第6軸方向にスプレー軸を形成する塗装用スプレー
ガンを使用して被塗装面に塗装するに際し、塗装速度を
一定に保持するとともに、塗装距離を一定とし、また塗
装パターンの広がり角を一定とし、さらにスプレー軸の
塗装角が所定範囲となるように、各軸にオイラー角を設
定し、さらに第4軸または第6軸を固定することによ
り、塗装用スプレーガンの噴射口を塗装方向に移動させ
ると同時に、塗装点を中心とし塗装距離を半径とする円
弧線上で移動させることを特徴とする多関節ロボットの
塗装姿勢制御方法。
1. A first axis, a second axis orthogonal to the first axis, a third axis parallel to the second axis, a fourth axis orthogonal to the third axis, and orthogonal to the fourth axis. The fifth axis and the sixth axis orthogonal to the fifth axis
With a multi-joint robot that is rotatable about each axis, when painting on the surface to be painted using a painting spray gun that forms a spray axis in the sixth axis direction, while maintaining a constant painting speed, The Euler angles are set for each axis, and the fourth or sixth axis is fixed so that the coating distance is constant, the spread angle of the coating pattern is constant, and the spray angle of the spray axis is within a predetermined range. A painting attitude control method for an articulated robot, characterized in that the spraying port of the painting spray gun is moved in the painting direction and, at the same time, is moved on an arc line having the painting distance as a center around the painting point.
【請求項2】塗装の始端部を塗装する時に、上記塗装姿
勢制御における塗装面での塗装速度を塗膜を薄膜から所
定膜厚となるようにボカシ塗装し、塗装の終端部を塗装
する時に、上記塗装姿勢制御における塗装面での塗装速
度を加速させつつ塗膜を所定膜厚から薄くするボカシ塗
装することを特徴とする請求項1記載の多関節ロボット
の塗装姿勢制御方法。
2. The method according to claim 1, wherein when the starting end of the coating is coated, the coating speed on the coating surface in the above-mentioned coating posture control is applied in a blurring manner so that the coating film is formed from a thin film to a predetermined film thickness. 2. A method according to claim 1, wherein said coating attitude control is carried out to reduce the thickness of the coating from a predetermined thickness while increasing the coating speed on the coating surface.
JP07111389A 1995-05-10 1995-05-10 Painting posture control method for articulated robot Expired - Lifetime JP3078202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07111389A JP3078202B2 (en) 1995-05-10 1995-05-10 Painting posture control method for articulated robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07111389A JP3078202B2 (en) 1995-05-10 1995-05-10 Painting posture control method for articulated robot

Publications (2)

Publication Number Publication Date
JPH08305423A JPH08305423A (en) 1996-11-22
JP3078202B2 true JP3078202B2 (en) 2000-08-21

Family

ID=14559936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07111389A Expired - Lifetime JP3078202B2 (en) 1995-05-10 1995-05-10 Painting posture control method for articulated robot

Country Status (1)

Country Link
JP (1) JP3078202B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726052B2 (en) * 2011-03-08 2015-05-27 株式会社神戸製鋼所 Control device, control method and control program for articulated robot
CN110928337B (en) * 2019-12-03 2020-08-18 广东冠能电力科技发展有限公司 Bare conductor insulation coating robot system and lifting control method thereof
CN114682422B (en) * 2022-03-29 2023-07-28 江苏迪盛智能科技有限公司 Method for controlling thickness of target spray coating

Also Published As

Publication number Publication date
JPH08305423A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
US6845295B2 (en) Method of controlling a robot through a singularity
JPH079606B2 (en) Robot controller
JP3511485B2 (en) robot
JP3078202B2 (en) Painting posture control method for articulated robot
JPH0438553B2 (en)
JP2691985B2 (en) Robot trajectory control method
JP2018164959A (en) Robot device
JP2008137143A (en) Teaching method of painting robot
WO2018199035A1 (en) Multi-joint robot and multi-joint robot system
JPS6333647Y2 (en)
JP3638676B2 (en) 6-axis vertical articulated robot for bending
JP3801264B2 (en) Industrial robot teaching method and apparatus
JP7294856B2 (en) robot equipment
JP4085208B2 (en) Robot control method
JP3278798B2 (en) Circle processing equipment
JPH0425905A (en) Robot teach/reproduction system
JPH02308311A (en) Interpolation speed commanding method for multijoint robot
JP3175993B2 (en) Trajectory control method of small hole cutting unit
JP3297170B2 (en) Robot with rotating device
JP4004157B2 (en) Robot for work
Zaki et al. Spray painting of a general three-dimensional surface
JPH05116080A (en) Tool tip position adjusting method
JP2000326280A (en) Interference check method in scalar type robot
JPS6120667A (en) Speed controlling of welding torch
JPH0411357B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term