JP3077793B2 - Automatic magnetic particle inspection equipment - Google Patents

Automatic magnetic particle inspection equipment

Info

Publication number
JP3077793B2
JP3077793B2 JP08067208A JP6720896A JP3077793B2 JP 3077793 B2 JP3077793 B2 JP 3077793B2 JP 08067208 A JP08067208 A JP 08067208A JP 6720896 A JP6720896 A JP 6720896A JP 3077793 B2 JP3077793 B2 JP 3077793B2
Authority
JP
Japan
Prior art keywords
defect
inspection object
flattening
inspection
magnetic particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08067208A
Other languages
Japanese (ja)
Other versions
JPH09229876A (en
Inventor
洋一 鈴木
昌秀 山本
俊文 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP08067208A priority Critical patent/JP3077793B2/en
Publication of JPH09229876A publication Critical patent/JPH09229876A/en
Application granted granted Critical
Publication of JP3077793B2 publication Critical patent/JP3077793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、磁化させた検査
対象物に磁粉を付着させてテレビカメラにより得た画像
データを解析し、検査対象物の表面および表面近傍の欠
陥を検出する磁粉探傷装置に関するもので、例えば、電
縫鋼管溶接部のペネトレータと呼ばれる微小な溶接欠陥
をも検出できる磁粉探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic particle flaw detection apparatus for analyzing magnetic image data obtained by a television camera by attaching magnetic powder to a magnetized test object and detecting defects on the surface and near the surface of the test object. For example, the present invention relates to a magnetic particle flaw detector capable of detecting even a minute welding defect called a penetrator in a welded portion of an electric resistance welded steel pipe.

【0002】[0002]

【従来の技術】金属材料に生じる割れ等の表面疵の検査
は、例えば、超音波探傷装置で行われているが、例え
ば、電縫鋼管にあっては、その電縫溶接部にコールドウ
エルド、ペネトレータ、溶け落ち、フッククラック等の
欠陥が発生するため、電縫溶接部を超音波探傷試験して
品質管理を行っている。前記電縫溶接部に発生する微小
な溶接欠陥であるペネトレータは、前記超音波探傷試験
では検出困難である。このため、電縫鋼管の表面疵の検
査は、図7(a)に示すとおり、電縫鋼管71を所定の
長さで切り出し、電縫溶接部72を時計の3時または9
時位置にして平板73間に挟み、図7(b)に示すとお
り、電縫鋼管71を規定高さまで押圧したのち電縫溶接
部72に欠陥があるかないか観察するへん平試験によっ
て検査している。
2. Description of the Related Art Inspection of surface flaws such as cracks generated in a metal material is performed by, for example, an ultrasonic flaw detector. For example, in the case of an ERW steel pipe, a cold weld, Since defects such as penetrators, burn-through and hook cracks occur, quality control is performed by ultrasonic testing for ERW welds. The penetrator, which is a minute welding defect generated in the electric resistance welded portion, is difficult to detect by the ultrasonic testing. For this reason, as shown in FIG. 7A, the inspection of the surface flaw of the ERW pipe is performed by cutting out the ERW pipe 71 by a predetermined length and setting the ERW welded part 72 to 3 o'clock or 9 o'clock of the watch.
As shown in FIG. 7B, the ERW steel pipe 71 is pressed to a specified height, and then inspected by a flat test to observe whether the ERW weld 72 has a defect or not. I have.

【0003】上記へん平試験は、人的手段によって行わ
れるため、電縫溶接部の位置ずれにより溶接部が正確に
曲がらなくて試験にならなかったり、へん平に押圧した
後の電縫溶接部の観察も目視のため、判定結果に個人的
誤差が生じるという問題点を有している。
Since the flattening test is performed by human means, the welded portion does not bend accurately due to the displacement of the ERW welded portion, and the test cannot be performed. Has a problem that a personal error occurs in the determination result because the observation is also performed visually.

【0004】上記のような問題を解決する方法として
は、検査対象物に付着させた磁粉模様群を撮像管により
電気映像信号に変換し、この電気映像信号を明と暗の2
種類の信号に分類し、これとは別に撮像管の走査電子ビ
ームと同期した掃引電圧を得て画面上の座標を示させ、
この画面上の座標およびこれに対応する位置の映像信号
の出力値を明暗によって記憶させ、明に該当する座標を
画面上のいずれかの明点集合部に属する座標点集合また
は孤立明点に属する座標として分類し、前記分類毎に各
磁粉模様の面積と周長または周長と長さを同時に測定
し、前記測定値を基に(面積)/(周長)2または(周
長)/(長さ)の値を算出し、前記測定値が基準値より
大でかつ算出値が基準値より小であるもののみ表面疵と
判定する方法(特公昭58−57705号公報)、撮像
装置からのビデオ信号をサンプリングして材幅方向に多
数個のデジタル信号に変換し、次に材幅方向および材長
手方向の複数個のデジタル信号毎に、そのデジタル信号
を差分して代表値をそれぞれ求め、この各代表値を所要
数の走査線に対応して各走査線毎に記憶させておき、そ
の記憶した各代表値を検査対象物の表面上における所定
線分方向に所要数だけ加算し、この加算値がしきい値を
超えた時の疵信号により表面疵を検査する磁粉探傷方法
および装置(特公昭59−22895号公報)が提案さ
れている。
As a method for solving the above-mentioned problem, a magnetic powder pattern group attached to an inspection object is converted into an electric image signal by an image pickup tube, and the electric image signal is converted into a bright and dark image signal.
Classify the signals into different types, and separately obtain a sweep voltage synchronized with the scanning electron beam of the image pickup tube to show the coordinates on the screen,
The coordinates on the screen and the output value of the video signal at the position corresponding to the coordinates are stored by light and dark, and the coordinates corresponding to light belong to a coordinate point set or an isolated bright point belonging to any bright point set part on the screen. Classify as coordinates, measure the area and perimeter or perimeter and length of each magnetic powder pattern at the same time for each classification, and (area) / (perimeter) 2 or (perimeter) / ( Length), and only those for which the measured value is larger than the reference value and the calculated value is smaller than the reference value are determined to be surface flaws (Japanese Patent Publication No. 58-57705). The video signal is sampled and converted into a large number of digital signals in the width direction, and then, for each of a plurality of digital signals in the width direction and the length direction, the digital signals are subtracted to obtain representative values, respectively. These representative values correspond to the required number of scan lines. It is stored for each scanning line, and the stored representative values are added by a required number in the direction of a predetermined line segment on the surface of the inspection object, and a flaw signal when the added value exceeds a threshold value is used. A magnetic particle flaw detection method and device for inspecting surface flaws (Japanese Patent Publication No. 59-22895) has been proposed.

【0005】また、テレビカメラにより得られた画像デ
ータを2値化して解析するに際し、該画像データより画
素毎の輝度信号を得る画素分割手段と、画素毎の輝度信
号より輝度毎の画素数の分布を求める輝度分布変換手段
と、輝度毎の画素数の分布より画素数が最大である輝度
を求めるピーク検出手段と、該最大画素数輝度から定め
られる閾値により該画像データを2値化する2値化手段
とを備えた装置(特開平2−55948号公報)、テレ
ビカメラにより得られた画像データを2値化して表面疵
を検出するに際し、検査対象物表面の画像データの1画
面毎に任意の1ラインにおける輝度毎の画素数分布を求
めたのち、1ラインにおける輝度毎の画素数分布より画
素数が零となる最も低い輝度を求め、最も低い輝度より
定められる閾値により画像データを2値化する装置(特
開平6−43120号公報)が提案されている。
When binarizing and analyzing image data obtained by a television camera, a pixel dividing means for obtaining a luminance signal for each pixel from the image data, and a pixel number for each luminance based on the luminance signal for each pixel. Luminance distribution converting means for obtaining a distribution, peak detecting means for obtaining a luminance having the maximum number of pixels from the distribution of the number of pixels for each luminance, and binarizing the image data by a threshold determined from the maximum pixel number luminance A device provided with a digitizing means (Japanese Patent Laid-Open No. 55948/1990), for binarizing image data obtained by a television camera and detecting surface flaws, for each screen of image data of the surface of an inspection object; After obtaining the pixel number distribution for each luminance in one arbitrary line, the lowest luminance at which the number of pixels becomes zero is obtained from the pixel number distribution for each luminance in one line, and a threshold determined by the lowest luminance is obtained. Apparatus for binarizing the image data (JP-A-6-43120) have been proposed Ri.

【0006】[0006]

【発明が解決しようとする課題】上記従来公報に開示の
磁粉探傷方法および装置では、磁化電流を直流にして
も、原理的に検査対象物の表面および表面近傍に存在す
るペネトレータは検出できるが、表面より深い位置にあ
ったり、微小なペネトレータは検査対象物表面に漏洩磁
束が出にくく、磁粉探傷では検出し難いという問題点を
有している。
In the magnetic particle flaw detection method and apparatus disclosed in the above-mentioned conventional publication, although the magnetizing current is DC, the penetrator existing on the surface of the inspection object and in the vicinity of the surface can be detected in principle. A penetrator at a position deeper than the surface or a minute penetrator has a problem that it is difficult for a leakage magnetic flux to appear on the surface of the inspection object and is difficult to detect by magnetic particle flaw detection.

【0007】この発明の目的は、上記従来技術の欠点を
解消し、磁粉探傷の欠陥検出能を大幅に向上させ、さら
に磁粉探傷を自動検査するうえで欠陥以外の磁粉模様を
自動除去できる磁粉探傷装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art, to greatly improve the defect detection capability of magnetic particle flaw detection, and to automatically remove magnetic particle patterns other than defects in automatically inspecting magnetic particle flaw detection. It is to provide a device.

【0008】[0008]

【課題を解決するための手段】この発明の磁粉探傷装置
は、検査対象物を磁化するに先立ち、検査対象物の欠陥
が広がる方向にへん平化するへん平化手段を有してい
る。このように、検査対象物を磁化するに先立ち、検査
対象物をへん平化手段により欠陥が広がる方向にへん平
化することによって、欠陥が表面より深い位置にあった
り、また、微小な欠陥でも欠陥がより大きくなり表面に
漏洩磁束が多く出るようになるため、磁粉探傷の検出能
が大幅に向上するのである。
The magnetic particle flaw detector according to the present invention has flattening means for flattening in the direction in which defects of the inspection object spread before magnetizing the inspection object. As described above, prior to magnetizing the inspection target, the inspection target is flattened in a direction in which the defect spreads by the flattening means, so that the defect is at a position deeper than the surface, and even a minute defect. Since the defect becomes larger and more magnetic flux leaks out on the surface, the detectability of magnetic particle flaw detection is greatly improved.

【0009】また、この発明の磁粉探傷装置は、検査対
象物を磁化するに先立ち、検査対象物の欠陥が広がる方
向にへん平化するへん平化手段と、テレビカメラにより
得られた検査対象物表面の画像データから検査領域を設
定し、その領域内画像データを予め定めたしきい値によ
り2値化画像とし、その2値化画像の(縦長さ/横長
さ)を演算し、その演算値が基準値より小さいときのみ
欠陥と判定する欠陥判定手段とを有している。このよう
に、検査対象物を磁化するに先立ち、検査対象物をへん
平化手段により欠陥が広がる方向にへん平化することに
よって、欠陥が表面より深い位置にあったり、また、微
小な欠陥でも欠陥がより大きくなり表面に漏洩磁束が多
く出るようになるため、磁粉探傷の検出能が大幅に向上
するのである。また、テレビカメラにより得られた検査
対象物表面の画像データから検査領域を設定し、その領
域内画像データを予め定めたしきい値により2値化画像
とした画像には、欠陥による画像のほかに、磁粉の塊や
検査対象物表面疵による磁粉の溜まりなど欠陥以外の画
像も含まれている。欠陥画像は横に長く、これらのノイ
ズ画像は縦にも長くなる特徴があるので、2値化画像の
(縦長さ)/(横長さ)を算出し、その値が基準値より
小さいとき、すなわち横に長い時のみ欠陥として検出す
ることによって、ノイズが除去され、欠陥のみを自動検
査することができる。
Further, the magnetic particle flaw detector according to the present invention has a flattening means for flattening in a direction in which a defect of the inspection object spreads before magnetizing the inspection object, and an inspection object obtained by a television camera. An inspection area is set from the surface image data, the image data in the area is converted into a binarized image by a predetermined threshold, (vertical length / horizontal length) of the binarized image is calculated, and the calculated value is calculated. And a defect judging means for judging a defect only when is smaller than the reference value. As described above, prior to magnetizing the inspection target, the inspection target is flattened in a direction in which the defect spreads by the flattening means, so that the defect is at a position deeper than the surface, and even a minute defect. Since the defect becomes larger and more magnetic flux leaks out on the surface, the detectability of magnetic particle flaw detection is greatly improved. Further, an inspection area is set from image data of the surface of the inspection object obtained by the television camera, and the image data in the area is binarized by a predetermined threshold value. In addition, images other than defects, such as a lump of magnetic particles and accumulation of magnetic particles due to surface defects of the inspection object, are also included. Since the defective image is long horizontally and these noise images are also long vertically, the (vertical length) / (horizontal length) of the binarized image is calculated, and when the value is smaller than the reference value, that is, By detecting a defect only when it is long horizontally, noise is removed and only the defect can be automatically inspected.

【0010】[0010]

【発明の実施の形態】この発明の磁粉探傷装置における
へん平化手段は、へん平シリンダ、へん平金具、へん平
先端金具から構成される。検査対象物のへん平化は、へ
ん平シリンダによりへん平金具を押出し、検査対象物を
へん平化する。この場合の押出し寸法は、へん平先端金
具を取替えることによって調節する。最適なへん平量
は、例えば電縫鋼管の場合であると、外径Dに対してへ
ん平化後は外径Dの80〜95%にすることである。こ
のへん平量は、後の磁粉探傷の検出能を確保し、へん平
化し過ぎによる欠陥の視認性悪化を防止するのに効果的
な数値である。例えば電縫鋼管の溶接部にペネトレータ
がある場合は、へん平化することによって欠陥をより大
きくすることになり、磁粉探傷での検出能を大幅に向上
させることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The flattening means in the magnetic particle flaw detector of the present invention comprises a flat cylinder, a flat metal fitting, and a flat tip metal fitting. The flattening of the inspection object is performed by pushing out a flat metal fitting by a flat cylinder and flattening the inspection object. The extrusion size in this case is adjusted by replacing the flat tip metal fitting. The optimum flattening amount is, for example, in the case of an electric resistance welded steel pipe, 80 to 95% of the outer diameter D after the flattening with respect to the outer diameter D. The flattening amount is an effective value for securing the detectability of the subsequent magnetic particle flaw detection and preventing deterioration of the visibility of defects due to excessive flattening. For example, when there is a penetrator at the welded portion of the electric resistance welded steel pipe, the flattening makes the defect larger, and can greatly improve the detection ability in magnetic particle flaw detection.

【0011】この発明の磁粉探傷装置におけるテレビカ
メラにより得られた検査対象物表面の画像データから検
査領域の設定は、検査対象物の形状、寸法、検出すべき
欠陥の方向ならびに種類によって決定されるもので、例
えば、電縫鋼管の溶接部欠陥検出の場合には、電縫溶接
部の溶接線を特定し、検査領域を溶接線を中心として所
定幅、ビードを切削した溶接部分のみに限定することに
よって、常にバックグラウンドが一定となり、誤検出を
防止し、かつ高精度で電縫鋼管の溶接部の欠陥を判定す
ることができる。
The setting of the inspection area from the image data of the surface of the inspection object obtained by the television camera in the magnetic particle inspection apparatus of the present invention is determined by the shape and size of the inspection object, the direction and type of the defect to be detected. For example, in the case of detecting a weld defect of an ERW steel pipe, the welding line of the ERW weld is specified, and the inspection area is limited to a predetermined width centering on the welding line and only a welded portion obtained by cutting a bead. Thus, the background is always constant, erroneous detection can be prevented, and a defect in the welded portion of the ERW steel pipe can be determined with high accuracy.

【0012】この発明の欠陥判定手段は、検査領域内画
像データを予め定めたしきい値により2値化画像とし、
その2値化画像の(縦長さ/横長さ)を演算し、その演
算値が基準値より小さいときのみ欠陥と判定する。すな
わち、検査領域内画像データを予め定めたしきい値によ
り2値化画像とした画像には、欠陥による画像のほか
に、磁粉の塊や製品としては問題とされない程度の検査
対象物表面疵による磁粉の溜まりなど欠陥以外の画像も
含まれている。例えば、図5に示すとおり、電縫鋼管の
溶接部51のペネトレータ欠陥F1、F2の画像は、撮像
方向を横、撮像方向に直交する方向を縦とすれば、横に
長く、前記の磁粉の塊M1や製品としては問題とされな
い程度の検査対象物表面疵による磁粉の溜まりM2
3、M4など溶接欠陥以外のノイズ画像は縦にも長くな
る特徴があるので、2値化画像の(縦長さ)/(横長
さ)を算出し、その値が基準値より小さいとき、すなわ
ち横に長い時のみ欠陥として検出する。2値化画像の
(縦長さ)/(横長さ)の基準値rは、図6に示すとお
り、例えば、電縫鋼管溶接部のペネトレータ欠陥の場合
には、(縦長さ)/(横長さ)=0.4以下に分布し、
溶接欠陥以外のノイズの場合には、(縦長さ)/(横長
さ)=0.6〜1に分布する。したがって、電縫鋼管の
溶接部欠陥検出の場合には、2値化画像の(縦長さ)/
(横長さ)を算出し、その値を基準値、例えばr≦0.
5と比較することによって、溶接欠陥以外のノイズを除
去して溶接部欠陥のみを検出することができる。
The defect determining means of the present invention converts the image data in the inspection area into a binary image by a predetermined threshold value,
The (vertical length / horizontal length) of the binarized image is calculated, and a defect is determined only when the calculated value is smaller than the reference value. That is, in the image obtained by converting the image data in the inspection area into a binarized image based on a predetermined threshold value, in addition to the image due to the defect, there is a mass of magnetic powder or a surface flaw of the inspection object that is not a problem as a product. Images other than defects such as accumulation of magnetic particles are also included. For example, as shown in FIG. 5, the images of the penetrator defects F 1 and F 2 of the welded portion 51 of the electric resistance welded steel pipe are long horizontally if the imaging direction is horizontal and the direction perpendicular to the imaging direction is vertical. Lumps of magnetic powder M 1 and accumulation of magnetic powder M 2 due to surface defects of the inspection object to the extent that they are not a problem as a product,
Since noise images other than welding defects, such as M 3 and M 4 , have the feature of being elongated vertically, the (vertical length) / (horizontal length) of the binarized image is calculated, and when the value is smaller than the reference value, That is, it is detected as a defect only when it is long horizontally. As shown in FIG. 6, the reference value r of (vertical length) / (horizontal length) of the binarized image is (vertical length) / (horizontal length), for example, in the case of a penetrator defect at the welded portion of the ERW steel pipe. = 0.4 or less,
In the case of noise other than welding defects, the distribution is (vertical length) / (horizontal length) = 0.6 to 1. Therefore, in the case of detecting a weld defect of the ERW steel pipe, the (vertical length) /
(Horizontal length) is calculated, and the calculated value is used as a reference value, for example, r ≦ 0.
By comparing with No. 5, it is possible to remove noises other than welding defects and detect only welding portion defects.

【0013】[0013]

【実施例】【Example】

実施例1 以下にこの発明の磁粉探傷装置の詳細を実施の一例を示
す図1ないし図2に基づいて説明する。図1はこの発明
の磁粉探傷装置のへん平化装置によるへん平化動作を示
すもので、(a)図はへん平化前、(b)図はへん平化
時、(c)図はへん平化完了後の磁粉探傷時の模式図、
図2はこの発明の磁粉探傷装置の全体構成説明図であ
る。
Embodiment 1 Hereinafter, details of a magnetic particle flaw detector according to the present invention will be described with reference to FIGS. 1 and 2 showing an embodiment. FIGS. 1A and 1B show the flattening operation of the magnetic particle flaw detector according to the present invention by the flattening device, wherein FIG. 1A shows a flattened state, FIG. 1B shows a flattened state, and FIG. Schematic diagram at the time of magnetic particle flaw detection after completion of flattening,
FIG. 2 is an explanatory view of the entire configuration of the magnetic particle flaw detector according to the present invention.

【0014】図1ないし図2において、1は採取された
長さ1mの検査対象物である電縫鋼管、2は電縫鋼管1
の溶接部、3、4は電縫鋼管1を磁化するための電極
で、電縫鋼管1は表面の油分を洗浄除去されたのち溶接
線Wを時計の12時方向にして長手方向を両端を電極
3、4間にセットされる。5、6は電縫鋼管1の長手方
向と直交する方向の水平対向位置に設けたへん平シリン
ダ7、8、へん平金具9、10、へん平先端金具11、
12からなるへん平化装置で、へん平シリンダ7、8を
操作してへん平金具9、10を押出し、電縫鋼管1を両
側からへん平金具9、10により押圧してへん平化す
る。この時のへん平化寸法は、へん平先端金具11、1
2を取替えることによって調整する。したがって、図1
(b)に示すP寸法までへん平化する場合は、へん平先
端金具11、12の電縫鋼管1の長手方向と直交する方
向長さはP/2となる。
1 and 2, reference numeral 1 denotes an electric resistance welded steel pipe which is a 1 m-long sample to be inspected, and 2 denotes an electric resistance welded steel pipe 1.
The welded portions 3, 4 are electrodes for magnetizing the ERW pipe 1. The ERW pipe 1 is cleaned and removed of oil on the surface, and then the welding line W is set at 12:00 of the timepiece, and the longitudinal direction is at both ends. It is set between the electrodes 3 and 4. 5, 6 are flat cylinders 7, 8, flat metal fittings 9, 10, flat flat metal fittings 11, provided at horizontal opposing positions in a direction orthogonal to the longitudinal direction of the ERW steel pipe 1.
The flattening device 12 is used to operate the flattening cylinders 7 and 8 to push out the flattening fittings 9 and 10, and to flatten the ERW steel pipe 1 from both sides by the flattening fittings 9 and 10. The flattening dimensions at this time are the flattened tip fittings 11, 1
Adjust by replacing 2. Therefore, FIG.
When flattening to the P dimension shown in (b), the length of the flat end metal fittings 11 and 12 in the direction orthogonal to the longitudinal direction of the ERW steel pipe 1 is P / 2.

【0015】13、14は電縫鋼管1の上方に電縫鋼管
1に沿って平行に配設したスクリュー軸、15、16は
スクリュー軸13、14を回転させるモータ、17はス
クリュー軸13の回転により電縫鋼管1に沿って平行に
移動自在の磁粉液散布装置で、電極3、4間にセットさ
れへん平化された電縫鋼管1に所定の電流値および定め
られた時間通電して磁化させたのち、モータ15を駆動
してスクリュー軸13を回転させて磁粉液散布装置17
を移動させ、電縫鋼管1の溶接部2全長に亘って定めら
れた濃度の磁粉液を散布するよう構成されている。
Reference numerals 13 and 14 denote screw shafts arranged in parallel above the ERW steel pipe 1 along the ERW pipe 1, 15 and 16 motors for rotating the screw shafts 13 and 14, and 17 a rotation of the screw shaft 13. The magnetized liquid spraying device is movable along the ERW steel pipe 1 in parallel, and a predetermined current value and a predetermined time are supplied to the flattened ERW pipe 1 set between the electrodes 3 and 4 to magnetize the magnet. After that, the motor 15 is driven to rotate the screw shaft 13 so that the magnetic powder liquid spraying device 17 is rotated.
Is moved to spray a magnetic powder solution having a predetermined concentration over the entire length of the welded portion 2 of the ERW steel pipe 1.

【0016】18はスクリュー軸14の回転により電縫
鋼管1に沿って平行に移動自在のテレビカメラ、19、
20はテレビカメラ18と共にスクリュー軸14の回転
により電縫鋼管1に沿って平行に移動自在の紫外線ラン
プで、紫外線ランプ19、20から紫外線を照射しつ
つ、モータ16を駆動してスクリュー軸14を回転させ
てテレビカメラ18および紫外線ランプ19、20を移
動させ、電縫鋼管1の溶接部2全長をテレビカメラ18
によって撮影するよう構成されている。21はテレビカ
メラ18で撮像されA/D変換器22で変換された画像
を映し出すテレビモニタ、23はA/D変換器22で変
換された画像信号の信号処理装置で、A/D変換器22
で変換されテレビモニタ21に表示された生画像から検
査領域であるウインドウを座標によって指定する検査領
域設定部24、検査領域の画像をその輝度によって2値
化する2値化処理部25、2値化された画像から電縫鋼
管1の溶接部2の欠陥判定を行う欠陥判定部26および
欠陥判定部26で欠陥と判定された溶接欠陥を集計する
欠陥計数部27からなる。28は検査領域、しきい値お
よびr値を検査領域設定部24、2値化処理部25およ
び欠陥判定部26に入力設定するための操作卓、29は
欠陥計数部27で計測した欠陥数を出力するプリンター
である。
Reference numeral 18 denotes a television camera which is movable in parallel along the electric resistance welded steel pipe 1 by rotation of the screw shaft 14, 19,
Reference numeral 20 denotes an ultraviolet lamp which is movable in parallel along the electric resistance welded steel pipe 1 by rotating the screw shaft 14 together with the television camera 18. The ultraviolet lamps 19 and 20 emit ultraviolet light while driving the motor 16 to drive the screw shaft 14. By rotating the TV camera 18 and the ultraviolet lamps 19 and 20, the entire length of the welded portion 2 of the ERW steel pipe 1 is moved by the TV camera 18.
It is configured to shoot. Reference numeral 21 denotes a television monitor for displaying an image captured by the television camera 18 and converted by the A / D converter 22; 23, a signal processing device for the image signal converted by the A / D converter 22;
An inspection area setting unit 24 for specifying a window as an inspection area by coordinates from a raw image converted and displayed on the television monitor 21, a binarization processing unit 25 for binarizing the image of the inspection area by its luminance, binary The defect determination unit 26 performs a defect determination of the welded portion 2 of the electric resistance welded steel pipe 1 from the digitized image, and a defect counting unit 27 that counts welding defects determined as defects by the defect determination unit 26. Reference numeral 28 denotes a console for inputting and setting an inspection area, a threshold value, and an r value to the inspection area setting unit 24, the binarization processing unit 25, and the defect determination unit 26, and 29 denotes the number of defects measured by the defect counting unit 27. It is a printer that outputs.

【0017】電縫鋼管1の溶接部2の欠陥を検出する場
合は、電縫鋼管1を磁化させるに先立ち、へん平シリン
ダ7、8を操作して図1(b)に示すようにへん平金具
9、10を押出し、電縫鋼管1を両側からへん平金具
9、10により押圧し、電縫鋼管1の外径Dの80〜9
0%にへん平化させたのち、へん平シリンダ7、8を操
作してへん平金具9、10を図1(c)に示すように後
退させる。電縫鋼管1の溶接部2の欠陥は、このへん平
化処理によってより大きくなる。ついで、電極3、4間
に所定の磁化電流を所定時間通電して電縫鋼管1を磁化
させる。しかるのち、モータ15を駆動して磁粉液散布
装置17を磁化させた電縫鋼管1に沿って移動させ、電
縫鋼管1の溶接部2全長に亘って定められた濃度の磁粉
液を散布する。磁化させた電縫鋼管1の溶接部2全長に
亘って散布された磁粉液は、溶接部2表面の溶接線Wに
溶接欠陥がある場合には、そこから磁束が漏れるため、
磁粉液が他の部分より多量に付着する。また、磁粉液
は、塊となったり、製品としては問題とされない程度の
材料表面疵部分にも他の部分より多量に付着する。
When detecting a defect in the welded portion 2 of the ERW pipe 1, prior to magnetizing the ERW pipe 1, the flat cylinders 7 and 8 are operated to flatten the flat pipe as shown in FIG. The metal fittings 9 and 10 are extruded, and the ERW steel pipe 1 is pressed from both sides by the flat metal fittings 9 and 10, and the outer diameter D of the ERW steel pipe 1 is 80 to 9
After flattening to 0%, the flat cylinders 7, 8 are operated to retract the flat metal fittings 9, 10 as shown in FIG. 1 (c). Defects in the welded portion 2 of the electric resistance welded steel pipe 1 are increased by the flattening process. Next, a predetermined magnetizing current is applied between the electrodes 3 and 4 for a predetermined time to magnetize the ERW steel pipe 1. Thereafter, the motor 15 is driven to move the magnetic powder liquid spraying device 17 along the magnetized ERW pipe 1, and the magnetic powder liquid having a predetermined concentration is sprayed over the entire length of the welded portion 2 of the ERW pipe 1. . The magnetic powder liquid sprayed over the entire length of the welded portion 2 of the magnetized electric resistance welded steel pipe 1 leaks magnetic flux from the welding line W on the surface of the welded portion 2 if the welding line W has a welding defect.
Magnetic powder liquid adheres more than other parts. In addition, the magnetic powder liquid adheres more to a material surface flaw portion which is not a problem as a lump or a product as compared with other portions.

【0018】次いでモータ16を駆動して紫外線ランプ
19、20で照射しつつテレビカメラ18を電縫鋼管1
に沿って移動させ、電縫鋼管1の溶接部2を含む全長を
撮影する。電縫鋼管1の溶接部2は、紫外線ランプ1
9、20で照射すると、溶接欠陥や磁粉の塊ならび製品
としては問題とされない程度の材料表面疵部分は他の部
分より明るく現れ、また、溶接線Wはモニタテレビ21
の生画像に薄いが他の部分より若干明るく現れる。テレ
ビカメラ18で撮影された画像信号は、A/D変換器2
2で変換されたのち信号処理装置23に出力される。信
号処理装置23は、A/D変換器22から入力される画
像信号に対して所定の処理を行い、電縫鋼管1の溶接部
2の溶接欠陥の有無を判定する。
Next, the television camera 18 is driven by the motor 16 while irradiating with the ultraviolet lamps 19 and 20, and
And photograph the entire length of the ERW steel pipe 1 including the welded portion 2. The welded portion 2 of the electric resistance welded steel pipe 1
When irradiation is performed at 9 and 20, welding defects, a lump of magnetic powder, and a material surface flaw portion that does not pose a problem as a product appear brighter than other portions.
Appears thinner in the raw image but slightly brighter than the other parts. The image signal photographed by the television camera 18 is transmitted to the A / D converter 2
After the conversion in 2, the signal is output to the signal processing device 23. The signal processing device 23 performs a predetermined process on the image signal input from the A / D converter 22 and determines whether or not there is a welding defect in the welded portion 2 of the ERW steel pipe 1.

【0019】信号処理装置23は、検査領域設定部24
に予め入力設定されている検査領域の4点の座標
(X1、Y1)、(X2、Y2)、(X3、Y3)、(X4
4)と、A/D変換器22から入力される所定の周期
で量子化され、各画素のデジタル化された輝度に基づい
て電縫鋼管1の管軸方向の各画素ラインの平均輝度を算
出し、溶接線W検出のための第1のしきい値によって2
値化処理し、溶接線Wの画素ラインを特定し、溶接線W
の上下に検査領域であるウインドウを撮影領域中に4点
の座標(X1、Y1)、(X2、Y2)、(X3、Y3)、
(X4、Y4)で設定する。
The signal processing unit 23 includes an inspection area setting unit 24
(X 1 , Y 1 ), (X 2 , Y 2 ), (X 3 , Y 3 ), (X 4 , Y 3 )
Y 4 ), the average luminance of each pixel line in the tube axis direction of the ERW pipe 1 is quantized at a predetermined period inputted from the A / D converter 22 and is based on the digitized luminance of each pixel. Calculated by the first threshold value for welding line W detection,
Value processing to specify the pixel line of the welding line W,
A window, which is an inspection area, is placed above and below the coordinates of four points (X 1 , Y 1 ), (X 2 , Y 2 ), (X 3 , Y 3 ),
(X 4 , Y 4 ).

【0020】ついで信号処理装置23は、前記により設
定された検査領域、すなわちウインドウ内の画素毎の輝
度を予め入力設定されている溶接欠陥検出のための第2
のしきい値によって2値化処理部25で2値化する。前
記2値化によって溶接線Wを中心とするウインドウ内に
は、溶接線W上のペネトレータ欠陥のほかに磁粉の塊や
製品としては問題とされない程度の材料表面疵による磁
粉の溜まりのノイズ画像が存在する。ペネトレータ欠陥
は、溶接線W方向に細長く、磁粉の塊や磁粉の溜まりの
ノイズは、丸くなる傾向を示すので、弁別のため溶接線
W方向、すなわち横寸法に対する縦寸法の比(r)を、
欠陥判定部26でr=(縦長さ)/(横長さ)により算
出し、予め入力設定されている基準値、例えばr=0.
5と比較し、r≦0.5を選別することによって、磁粉
の塊や磁粉の溜まりのノイズが除去され、ペネトレータ
欠陥のみを取出すことができる。取出されたペネトレー
タ欠陥は、欠陥計数部27でその個数と欠陥長さの総和
寸法が演算され、プリンター29に出力される。
Next, the signal processing unit 23 inputs the luminance of each pixel in the inspection area set as described above, that is, the window, into the second set for detecting the welding defect which is set in advance.
Is binarized by the binarization processing unit 25 according to the threshold value. In the window centering on the welding line W due to the binarization, in addition to the penetrator defect on the welding line W, a noise image of a magnetic particle pool due to a lump of magnetic particles and a material surface flaw that is not a problem as a product. Exists. The penetrator defect is elongated in the direction of the welding line W, and the noise of the lump of magnetic particles and the accumulation of the magnetic particles tends to be rounded. Therefore, for discrimination, the ratio (r) of the vertical dimension to the horizontal dimension in the welding line W direction, that is,
The defect determination unit 26 calculates r = (vertical length) / (horizontal length), and a reference value set in advance, for example, r = 0.
By selecting r ≦ 0.5 as compared with No. 5, the noise of the lump of the magnetic powder and the accumulation of the magnetic powder is removed, and only the penetrator defect can be extracted. The total number of the extracted penetrator defects is calculated by the defect counting unit 27 and the defect length is output to the printer 29.

【0021】実施例2 前記実施例1の磁粉探傷装置を用い、外径31.8m
m、肉厚2.0mm、長さ1mの炭素鋼電縫鋼管につい
て、磁化前にへん平化処理した場合とへん平化処理しな
かった場合のそれぞれについた、直流電流2000Aで
5秒間磁化したのち、粒子径1〜2μmの蛍光磁粉液を
散布して付着させ、テレビカメラの倍率10倍で、ペネ
トレータ欠陥とノイズとの判別は、横寸法に対する縦寸
法の比r≦0.5で実施し、ペネトレータ欠陥の検出能
を比較した。その結果を図4に示す。なお、図4の横軸
の欠陥長さは、図3に示す溶接線W方向の長さLで、縦
軸の欠陥深さは、図3に示す電縫鋼管表面からの深さD
eで、ミクロ顕微鏡写真により測定したものである。
Example 2 The magnetic particle flaw detector of Example 1 was used, and the outer diameter was 31.8 m.
A carbon steel ERW steel pipe having a thickness of 2.0 m, a thickness of 2.0 mm, and a length of 1 m was magnetized for 5 seconds with a DC current of 2000 A for each of the cases where the flattening treatment was performed before the magnetization and the case where the flattening treatment was not performed. Thereafter, a fluorescent magnetic powder having a particle diameter of 1 to 2 μm is sprinkled and adhered, and discrimination between a penetrator defect and noise is performed at a ratio r ≦ 0.5 of a vertical dimension to a horizontal dimension at a magnification of 10 times of a television camera. And the penetrator defect detection ability was compared. FIG. 4 shows the results. The defect length on the horizontal axis in FIG. 4 is the length L in the weld line W direction shown in FIG. 3, and the defect depth on the vertical axis is the depth D from the surface of the ERW steel pipe shown in FIG.
e, measured by a microscopic micrograph.

【0022】図4に示すとおり、磁化前にへん平化処理
した場合は、ペネトレータ欠陥の検出限界は欠陥長さ
0.1mmの場合、欠陥深さ0.1mm、欠陥長さ0.
6mmの場合、欠陥深さ1.2mmまで可能であるのに
対し、磁化前にへん平化処理しなかった場合は、欠陥長
さ0.35mmが限界で、それ以下の微小な欠陥は、表
面疵であっても検出できず、欠陥長さ0.6mmの場合
で、欠陥深さ約0.7mmが限度であった。すなわち、
ペネトレータ欠陥の検出能は、へん平化処理しなかった
場合の検出可能限界の欠陥長さ0.35mm、欠陥深さ
約0.7mmに対し、へん平化処理することによって、
検出可能限界が欠陥長さ0.1mm、欠陥深さ1.2m
mと大幅に向上している。
As shown in FIG. 4, when the flattening process is performed before the magnetization, the detection limit of the penetrator defect is 0.1 mm, the defect depth is 0.1 mm, and the defect length is 0.1 mm.
In the case of 6 mm, the defect depth can be up to 1.2 mm, whereas when the flattening treatment is not performed before the magnetization, the defect length is limited to 0.35 mm. Even if it was a flaw, it could not be detected, and the defect depth was about 0.7 mm when the defect length was 0.6 mm. That is,
The penetrator defect detectability is determined by performing a flattening process on a defect length of 0.35 mm and a defect depth of approximately 0.7 mm, which are detectable limits when the flattening process is not performed.
Detection limit is defect length 0.1mm, defect depth 1.2m
m and greatly improved.

【0023】[0023]

【発明の効果】この発明の磁粉探傷装置は、検査対象物
を磁化するに先立ち、へん平化手段によって欠陥が広が
る方向にへん平化処理すると共に、ノイズによる磁粉模
様を自動的に除去することによって、磁粉探傷の検出能
を大幅に向上することができる。
According to the magnetic particle flaw detector of the present invention, prior to magnetizing the inspection object, the flattening means performs flattening processing in the direction in which the defect spreads, and automatically removes the magnetic particle pattern due to noise. Thereby, the detection capability of magnetic particle flaw detection can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の磁粉探傷装置のへん平化装置による
へん平化動作を示すもので、(a)図はへん平化前、
(b)図はへん平化時、(c)図はへん平化完了後の磁
粉探傷時の模式図である。この発明の磁粉探傷装置の全
体構成説明図である。
FIG. 1 shows a flattening operation by a flattening device of a magnetic particle flaw detector according to the present invention, wherein FIG.
(B) is a schematic diagram at the time of flattening, and (c) is a schematic diagram at the time of magnetic particle flaw detection after the flattening is completed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of the entire configuration of a magnetic particle flaw detector of the present invention.

【図2】この発明の磁粉探傷装置の全体構成説明図であ
る。
FIG. 2 is an explanatory diagram of the entire configuration of a magnetic particle flaw detector according to the present invention.

【図3】実施例2における電縫鋼管溶接部の欠陥長さと
欠陥深さの説明のための一部切り欠き斜視図である。
FIG. 3 is a partially cutaway perspective view for explaining a defect length and a defect depth of a welded portion of an electric resistance welded steel pipe in Example 2.

【図4】実施例2における磁化前のへん平化処理の有無
によるペネトレータ欠陥検出能(欠陥長さと欠陥深さ)
の比較を示すグラフである。
FIG. 4 shows penetrator defect detection ability (defect length and defect depth) depending on the presence or absence of flattening before magnetization in Example 2.
3 is a graph showing a comparison.

【図5】2値化後の画像データの一例図である。FIG. 5 is an example of image data after binarization.

【図6】2値化後の画像データのペネトレータ欠陥と磁
粉の塊および磁粉の溜まりと縦横寸法分布との関係を示
すグラフである。
FIG. 6 is a graph showing a relationship between a penetrator defect of the binarized image data, a lump of magnetic powder, a pool of magnetic powder, and a vertical and horizontal dimension distribution.

【図7】従来の電縫鋼管溶接部のへん平試験の説明図
で、(a)図はへん平化前、(b)図はへん平化後を示
す。
7A and 7B are explanatory views of a flattening test of a conventional welded portion of an electric resistance welded steel pipe. FIG. 7A shows a state before flattening, and FIG. 7B shows a state after flattening.

【符号の説明】[Explanation of symbols]

1、71 電縫鋼管 2、51 溶接部 3、4 電極 5、6 へん平化装置 7、8 へん平シリンダ 9、10 へん平金具 11、12 へん平先端金具 13、14 スクリュー軸 15、16 モータ 17 磁粉液散布装置 18 テレビカメラ 19、20 紫外線ランプ 21 テレビモニタ 22 A/D変換器 23 信号処理装置 24 検査領域設定部 25 2値化処理部 26 欠陥判定部 27 欠陥計数部 28 操作卓 29 プリンター 72 電縫溶接部 73 平板 W 溶接線 F1、F2 ペネトレータ欠陥 M1 磁粉の塊 M2、M3、M4 磁粉の溜まり L 欠陥長さ De 欠陥深さ1,71 ERW steel pipe 2,51 Weld 3,4 Electrode 5,6 Flattening device 7,8 Flat cylinder 9,10 Flat metal fitting 11,12 Flat metal tip 13,14 Screw shaft 15,16 Motor 17 Magnetic powder liquid spraying device 18 TV camera 19, 20 UV lamp 21 TV monitor 22 A / D converter 23 Signal processing device 24 Inspection area setting unit 25 Binarization processing unit 26 Defect judgment unit 27 Defect counting unit 28 Operation console 29 Printer 72 electric-resistance welded portion 73 flat W weld line F 1, F 2 penetrator defect M 1 mass magnetic powder M 2, M 3, M 4 reservoir L defect length De defect depth of the magnetic powder

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/91 G01N 27/84 G06T 7/00 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 21/91 G01N 27/84 G06T 7/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 検査対象物を磁化する手段と、磁化させ
た検査対象物の表面に磁粉液を付着させる手段と、検査
対象物表面に光を照射する手段と、該手段により照射さ
れた部分を撮像するテレビカメラと、テレビカメラによ
り得られた検査対象物表面の画像データを2値化して解
析し、検査対象物の欠陥を判定する手段とからなる磁粉
探傷装置において、検査対象物を磁化するに先立ち、検
査対象物の欠陥が広がる方向にへん平化するへん平化手
段を有することを特徴とする自動磁粉探傷装置。
1. Means for magnetizing an inspection object, means for attaching a magnetic powder solution to the surface of the magnetized inspection object, means for irradiating light to the surface of the inspection object, and a portion irradiated by the means In a magnetic particle flaw detection device comprising a television camera for imaging the object and means for binarizing and analyzing image data of the surface of the inspection object obtained by the television camera and determining a defect of the inspection object, the inspection object is magnetized. An automatic magnetic particle flaw detection apparatus having flattening means for flattening in a direction in which a defect of an inspection object spreads before performing the inspection.
【請求項2】 検査対象物を磁化する手段と、磁化させ
た検査対象物の表面に磁粉液を付着させる手段と、検査
対象物表面に光を照射する手段と、該手段により照射さ
れた部分を撮像するテレビカメラと、テレビカメラによ
り得られた検査対象物表面の画像データを2値化して解
析し検査対象物の欠陥を判定する手段とからなる磁粉探
傷装置において、検査対象物を磁化するに先立ち、検査
対象物の欠陥が広がる方向にへん平化するへん平化手段
と、テレビカメラにより得られた検査対象物表面の画像
データから検査領域を設定し、その領域内画像データを
予め定めたしきい値により2値化画像とし、その2値化
画像の(縦長さ)/(横長さ)を算出し、その算出値が
基準値より小さいときのみ欠陥と判定する欠陥判定手段
とを有することを特徴とする自動磁粉探傷装置。
2. A means for magnetizing a test object, a means for attaching a magnetic powder solution to a surface of a magnetized test object, a means for irradiating light to the surface of the test object, and a portion irradiated by the means Magnetizing the inspection object in a magnetic particle flaw detection device comprising a television camera for imaging the object and means for binarizing and analyzing the image data of the surface of the inspection object obtained by the television camera to determine a defect of the inspection object Prior to this, an inspection area is set from flattening means for flattening in the direction in which the defect of the inspection object spreads, and image data of the surface of the inspection object obtained by the TV camera, and image data in the area is determined in advance. A binarized image based on the threshold value, calculate (vertical length) / (horizontal length) of the binarized image, and determine a defect only when the calculated value is smaller than a reference value. Specially Automatic magnetic particle inspection equipment.
JP08067208A 1996-02-27 1996-02-27 Automatic magnetic particle inspection equipment Expired - Fee Related JP3077793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08067208A JP3077793B2 (en) 1996-02-27 1996-02-27 Automatic magnetic particle inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08067208A JP3077793B2 (en) 1996-02-27 1996-02-27 Automatic magnetic particle inspection equipment

Publications (2)

Publication Number Publication Date
JPH09229876A JPH09229876A (en) 1997-09-05
JP3077793B2 true JP3077793B2 (en) 2000-08-14

Family

ID=13338270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08067208A Expired - Fee Related JP3077793B2 (en) 1996-02-27 1996-02-27 Automatic magnetic particle inspection equipment

Country Status (1)

Country Link
JP (1) JP3077793B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019887A (en) * 2007-07-10 2009-01-29 Nippon Steel Corp Method and device for inspecting weld zone defect of electric resistance welded steel pipe

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4909686B2 (en) * 2006-09-08 2012-04-04 学校法人東京理科大学 Epidermal tissue quantification apparatus and program
JP5922556B2 (en) * 2012-11-01 2016-05-24 日立Geニュークリア・エナジー株式会社 Welding inspection apparatus and welding inspection method
CN103698392B (en) * 2013-12-09 2016-04-27 眉山南车紧固件科技有限公司 Pulling rivet group magnetic group method of detection and device
JP6697302B2 (en) * 2016-03-25 2020-05-20 マークテック株式会社 Flaw detection device and defect detection method using flaw detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019887A (en) * 2007-07-10 2009-01-29 Nippon Steel Corp Method and device for inspecting weld zone defect of electric resistance welded steel pipe

Also Published As

Publication number Publication date
JPH09229876A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
WO2003093761A1 (en) Method and instrument for measuring bead cutting shape of electric welded tube
JP4618502B2 (en) Fluorescence flaw detector and fluorescent flaw detection method
CN111521626A (en) X-ray detection method for welding quality of pressure pipeline
WO2000060344A1 (en) Method and apparatus for non destructive testing
JP3077793B2 (en) Automatic magnetic particle inspection equipment
JP3156140B2 (en) Metal member damage inspection method and damage inspection device
KR100987158B1 (en) A method for detecting defects of the weld using digital radiography
JP7132894B2 (en) Magnetic particle flaw detector and magnetic particle flaw detection method
JP3440569B2 (en) Magnetic particle flaw detection method and apparatus
JPH05180781A (en) Method and apparatus for surface defect inspection
JP2000258398A (en) Defect inspection method and device and defect inspection support method
JPH09210969A (en) Automatic magnetic particle inspection device
JPH08184580A (en) Automatic magnetic particle inspection apparatus of seam-welded steel pipe welded part
Aoki et al. Intelligent image processing for abstraction and discrimination of defect image in radiographic film
JP2955618B2 (en) Inspection method for weld surface defects of UO steel pipe
JPH10176994A (en) Inside inspection apparatus for cylindrical body
JP2877776B2 (en) Method and apparatus for measuring off-seam amount of double-sided butt weld of metal member
JP3435224B2 (en) Inspection equipment for non-metallic inclusions
JP3362981B2 (en) Defect inspection method for transparent body with edge
JP3389692B2 (en) Magnetic particle flaw detection method and apparatus
JP2001141664A (en) Inspection support method in surface inspection
JP2564737B2 (en) Automatic magnetic particle flaw detector
JP2002250694A (en) Method and device for contactless visual inspection
JPH0469512A (en) X-ray fluoroscopic inspection method
JPH05332995A (en) Inspection device for inner surface of pipe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees