JP3075303B2 - Protection method for power semiconductor devices - Google Patents

Protection method for power semiconductor devices

Info

Publication number
JP3075303B2
JP3075303B2 JP03255756A JP25575691A JP3075303B2 JP 3075303 B2 JP3075303 B2 JP 3075303B2 JP 03255756 A JP03255756 A JP 03255756A JP 25575691 A JP25575691 A JP 25575691A JP 3075303 B2 JP3075303 B2 JP 3075303B2
Authority
JP
Japan
Prior art keywords
power semiconductor
temperature
current
semiconductor device
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03255756A
Other languages
Japanese (ja)
Other versions
JPH0568331A (en
Inventor
沢  俊裕
司 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP03255756A priority Critical patent/JP3075303B2/en
Publication of JPH0568331A publication Critical patent/JPH0568331A/en
Application granted granted Critical
Publication of JP3075303B2 publication Critical patent/JP3075303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Protection Of Static Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、インバータ回路に用い
られるトランジスタやサイリスタ等の電力用半導体素子
の保護方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for protecting a power semiconductor device such as a transistor and a thyristor used in an inverter circuit.

【0002】[0002]

【従来の技術】従来は、たとえば特開昭62−1419
22などのように電力用半導体素子の保護のために、図
4に示すように、設定された温度で接点の開閉動作を行
うサーモスイッチ25を半導体近傍のヒートシンク上に
設置し、設定温度を超えるとサーモスイッチ25の接点
信号によりインバータ回路電流を遮断して、電力用半導
体素子の過熱保護を行うものがある。
2. Description of the Related Art Conventionally, for example, Japanese Patent Application Laid-Open No. Sho 62-1419
As shown in FIG. 4, a thermoswitch 25 that opens and closes contacts at a set temperature is installed on a heat sink near the semiconductor to protect the power semiconductor element such as 22 and so on, and the temperature exceeds the set temperature. In some cases, the inverter circuit current is shut off by a contact signal of the thermo switch 25 and the overheat protection of the power semiconductor element.

【0003】[0003]

【発明が解決しようとする課題】ところが従来技術で
は、連続負荷運転の場合は保護が可能であるが、ヒート
シンク熱時定数より短い断続負荷運転の場合は電力用半
導体素子の保護が十分に行えないという問題点があっ
た。そこで、本発明は、ヒートシンク熱時定数より短い
断続負荷運転の場合でも電力用半導体素子の保護が十分
に行える保護方式を確立することを目的とする。
However, in the prior art, protection is possible in the case of continuous load operation, but in the case of intermittent load operation shorter than the heat sink thermal time constant, the power semiconductor element cannot be sufficiently protected. There was a problem. Therefore, an object of the present invention is to establish a protection method capable of sufficiently protecting a power semiconductor element even in an intermittent load operation shorter than a heat sink thermal time constant.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、電力用半導体素子とこの電力用半導体素
子を駆動制御するPWM制御部を含むインバータ回路
と、前記電力用半導体素子を冷却するヒートシンクを備
えたインバータ装置において、前記ヒートシンク上にサ
ーミスタを設置し、前記サーミスタの抵抗値変化により
前記ヒートシンク温度を検出するとともに、前記PWM
制御部から送出され、前記電力用半導体素子のゲートを
オンオフするドライブ信号とインバータ出力電流から半
導体素子電流を計算し、この半導体素子電流から計算さ
れた前記電力用半導体素子の通電時損失とスイッチング
損失とから前記電力用半導体素子のヒートシンクとジャ
ンクション間の温度上昇を推定し、この推定された温度
上昇と前記ヒートシンク温度から計算される前記電力用
半導体素子のジャンクション温度が第一の設定温度を超
えると前記インバータ回路の電流制限動作を行い、前記
第一の設定温度より高い第二の設定温度を超えるとイン
バータ電流を遮断して、インバータ回路の電力用半導体
素子の過熱による破壊を防ぐものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a power semiconductor device, an inverter circuit including a PWM control unit for controlling the driving of the power semiconductor device, and cooling the power semiconductor device. In the inverter device provided with a heat sink, a thermistor is provided on the heat sink, and the heat sink temperature is detected based on a change in the resistance value of the thermistor.
It sent from the control unit, a drive signal to the semiconductor element current from the inverter output current for turning on and off the gate of the power semiconductor device to calculate, is calculated from the semiconductor element current
Loss and switching of the power semiconductor device
From the loss, the temperature rise between the heat sink and the junction of the power semiconductor element is estimated, and the estimated temperature
When the junction temperature of the power semiconductor element calculated from the rise and the heat sink temperature exceeds a first set temperature, the current limiting operation of the inverter circuit is performed, and a second set temperature higher than the first set temperature is set. If it exceeds, the inverter current is cut off to prevent the power semiconductor element of the inverter circuit from being damaged by overheating.

【0005】[0005]

【作用】上記手段により、ヒートシンク熱時定数より短
い断続負荷運転の場合でも電力用半導体素子の過熱保護
を行える。
According to the above-mentioned means, overheat protection of the power semiconductor element can be performed even in an intermittent load operation shorter than the heat sink thermal time constant.

【0006】[0006]

【実施例】以下、本発明の具体的実施例を図1に示して
説明する。図1において、1〜6はインバータ回路を構
成するトランジスタ、7はトランジスタ1〜6の冷却の
ためのヒートシンク、8はモータ、9はインバータ出力
電流検出のための変流器、10はトランジスタ1〜6の
近傍のヒートシンク7上に設置したサーミスタ、11は
インバータ直流母線電圧平滑用のコンデンサ、12は整
流用のダイオードである。13はインバータの制御部で
あり、14はV/f制御や電流指令に基づく電流制御か
らの指令によってトランジスタ1〜6をドライブするベ
ースドライバ23へ送出するオンオフ信号(PWM信
号)であるドライブ信号を発生するPWM制御部、15
はサーミスタ10の信号を温度情報に変換する温度検出
部、16は温度検出部15のヒートシンク温度情報とP
WM制御部14から送出される前記ドライブ信号と変流
器9で検出した出力電流からトランジスタ素子電流を計
算し、トランジスタの熱抵抗に基づいてトランジスタの
ジャンクション温度を計算するTj推定部、17は電流
制限に使用する第一の設定温度を設定する温度設定器、
18はインバータ電流の遮断に使用する第一の設定温度
より高い第二のトランジスタジャンクション温度の設定
を行う温度設定器、19、20はコンパレータ、21は
電流制限機能を有する電流制限器、22は電流遮断機能
を有する電流遮断器である。ヒートシンク温度Tは、ヒ
ートシンク7上に設置したサーミスタ10の抵抗値変化
により(1)式を用いて計算できる。 rT =rT0×exp{B×(1/T−1/T0 )} (1) ここで、rT0:基準抵抗値 B :サーミスタ定数 、T:サーミスタ使用温度 T0:基準抵抗値の時のサーミスタの絶対温度 また、トランジスタのヒートシンク−ジャンクション間
の温度上昇 J-F は、トランジスタの発生ロスPLとトラ
ンジスタのジャンクション−ヒートシンク間の熱抵抗R
J-F から(2)式によって求められる。 TJ-F =PL /RJ-F (2) トランジスタの発生ロスPLは、インバータ電流とPW
M制御部14から送出され、ベースドライバ23へ送出
されるオンオフ信号(PWM信号)であるドライブ信号
から素子電流を計算し、素子特性に基づいて通電時のロ
スとスイッチングロスを計算する。通電時の損失は次式
(3)で表わされる。 通電時の損失=検出した相電流から素子特性に基づいて計算された損失×ドライ ブ信号 (3) ドライブ信号はPWMキャリア周波数ごとに1回ずつP
WM制御部14から送出されるから、PWMキャリア1
周期毎の平均通電ロスは次式(4)で表わされる。 1周期毎の平均通電ロス=通電ロス×ドライブ信号が出力されている時間/PW Mキャリア周期 (4) また、スイッチングロスは次式(5)、(6)で表わさ
れる。 オン時スイッチングロス=ドライブ信号立ち上がり時の検出電流×トランジスタ に印加されていた電圧×スイッチング時間/2 (5) オフ時スイッチングロス=ドライブ信号立ち下がり時の検出電流×オフ後トラン ジスタに印加される電圧×スイッチング時間/2 (6) 従って、個々のトランジスタの発生ロスPLは(4)、
(5)、(6)式の和で表わされる。(2)式のTJ-F
とヒートシンク温度Tから、トランジスタのジャンクシ
ョン温度Tj(7)式で計算推定する。 j =T J-F +T (7) この温度は、トランジスタの熱破壊と密接な関係があ
り、トランジスタは許容範囲内で使用しなければならな
い。そこで、推定したトランジスタのジャンクション温
度が第一の設定温度を超えると、コンパレータ19が動
作し、電流制限器21がインバータの電流制限動作を行
い、第一の設定温度より高い第二の設定温度18を超え
ると、コンパレータ20が動作し、電流遮断器22がイ
ンバータ電流を遮断することで、トランジスタの熱破壊
を防ぐことが可能になる。 また、図2に示すように、
図1のコンパレータ19を演算増幅器24に変更し、電
流制限器21に図3に示す特性をもたせれば、連続的に
動作レベルを変化させて電流制限動作をさせることも可
能である。
FIG. 1 shows a specific embodiment of the present invention. In FIG. 1, 1 to 6 are transistors constituting an inverter circuit, 7 is a heat sink for cooling the transistors 1 to 6, 8 is a motor, 9 is a current transformer for detecting inverter output current, and 10 is a transistor 1 to A thermistor placed on the heat sink 7 near 6; 11, a capacitor for smoothing the inverter DC bus voltage; and 12, a rectifying diode. Reference numeral 13 denotes a control unit of the inverter. Reference numeral 14 denotes a drive signal which is an on / off signal (PWM signal) transmitted to a base driver 23 for driving the transistors 1 to 6 according to a command from V / f control or current control based on a current command. Generated PWM control unit, 15
Is a temperature detector for converting the signal of the thermistor 10 into temperature information, and 16 is the heat sink temperature information of the temperature detector 15 and P
A Tj estimating unit that calculates a transistor element current from the drive signal sent from the WM control unit 14 and the output current detected by the current transformer 9 and calculates a junction temperature of the transistor based on the thermal resistance of the transistor. A temperature setter that sets the first set temperature used for limiting,
Reference numeral 18 denotes a temperature setter for setting a second transistor junction temperature higher than a first set temperature used for interrupting inverter current, 19 and 20 are comparators, 21 is a current limiter having a current limiting function, and 22 is a current limiter. It is a current breaker having a breaking function. The heat sink temperature T can be calculated by using the equation (1) based on a change in the resistance value of the thermistor 10 installed on the heat sink 7. r T = r T0 × exp {B × (1 / T−1 / T 0 )} (1) where, r T0 : reference resistance value B: thermistor constant, T: thermistor operating temperature T 0 : reference resistance value The temperature rise T JF between the heat sink and the junction of the transistor depends on the loss P L generated in the transistor and the thermal resistance R between the junction and the heat sink of the transistor.
It is obtained from JF by equation (2). T JF = P L / R JF (2) Transistor generated loss P L is determined by inverter current and PW
An element current is calculated from a drive signal that is an on / off signal (PWM signal) transmitted from the M control unit 14 and transmitted to the base driver 23, and a loss at the time of conduction and a switching loss are calculated based on element characteristics. The loss during energization is represented by the following equation (3). Loss during energization = Loss calculated from detected phase current based on device characteristics x Drive signal (3) Drive signal is output once every PWM carrier frequency.
Since the signal is transmitted from the WM control unit 14, the PWM carrier 1
The average energization loss for each cycle is represented by the following equation (4). Average conduction loss per cycle = conduction loss x time during which drive signal is output / PWM carrier cycle (4) Further, the switching loss is represented by the following equations (5) and (6). On-state switching loss = Detected current when drive signal rises × Voltage applied to transistor × Switching time / 2 (5) Off-state switching loss = Detected current when drive signal falls × Applied to transistor after off voltage × switching time / 2 (6) Accordingly, the occurrence loss P L of each transistor (4),
It is represented by the sum of equations (5) and (6). T JF in equation (2)
And from the heat sink temperature T, calculates estimated junction temperature T j of the transistor (7). T j = T JF + T (7) This temperature is closely related to the thermal breakdown of the transistor, and the transistor must be used within an allowable range. Then, when the estimated junction temperature of the transistor exceeds the first set temperature, the comparator 19 operates, the current limiter 21 performs the current limiting operation of the inverter, and the second set temperature 18 higher than the first set temperature. Is exceeded, the comparator 20 operates, and the current breaker 22 cuts off the inverter current, thereby making it possible to prevent thermal breakdown of the transistor. Also, as shown in FIG.
If the comparator 19 in FIG. 1 is changed to an operational amplifier 24 and the current limiter 21 has the characteristics shown in FIG. 3, it is possible to continuously change the operation level to perform the current limiting operation.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば短い
断続負荷運転の場合でもサーミスタ信号とインバータ出
力電流信号を用いることで、トランジスタの熱破壊を生
じることなく能力を最大限に活用できる。また、個々の
トランジスタの損失をスイッチング損失まで含め計算し
て個々のジャンクション温度を求め、この温度をもとに
電流制限や電流遮断をおこなうものであるから、電流検
出値とドライブ信号を用いることにより、負荷力率が変
化しても損失計算精度が良いという効果がある。さら
に、モータを低速運転する場合、運転周波数が下がり、
個々のトランジスタの損失に差異を生じるが、各トラン
ジスタのドライブ信号と各相の電流検出値を用いて個々
のトランジスタの損失が計算できるから低速においても
確実な保護が可能になるという効果もある。
As described above, according to the present invention, even in the case of short intermittent load operation, by using the thermistor signal and the inverter output current signal, the capacity can be maximized without causing thermal breakdown of the transistor. . In addition, each junction temperature is calculated by calculating the loss of each transistor including the switching loss, and the current limit and current cutoff are performed based on this temperature.Therefore, by using the current detection value and the drive signal, Thus, there is an effect that the loss calculation accuracy is good even if the load power factor changes. Furthermore, when the motor is operated at low speed, the operating frequency decreases,
Although a difference occurs in the loss of each transistor, the loss of each transistor can be calculated using the drive signal of each transistor and the current detection value of each phase, so that there is an effect that reliable protection can be achieved even at low speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体的実施例を示す図である。FIG. 1 is a diagram showing a specific example of the present invention.

【図2】連続的に動作レベルを変化させて電流制限動作
をさせた場合の具体的実施例を示す図である。
FIG. 2 is a diagram showing a specific example in which a current limiting operation is performed by continuously changing the operation level.

【図3】電流制限特性を示す図である。FIG. 3 is a diagram showing current limiting characteristics.

【図4】従来のトランジスタ保護方式を示す図である。FIG. 4 is a diagram showing a conventional transistor protection system.

【符号の説明】[Explanation of symbols]

1〜6 トランジスタ 7 ヒートシンク 8 モータ 9 変流器 10 サーミスタ 11 コンデンサ 12 ダイオード 13 インバータの制御部 14 PWM制御部 15 温度検出部 16 Tj推定部 17、18 温度設定器 19、20 コンパレータ 21 電流制限器 22 電流遮断器 23 ベースドライバ 24 演算増幅器 1 to 6 Transistor 7 Heat sink 8 Motor 9 Current transformer 10 Thermistor 11 Capacitor 12 Diode 13 Inverter control unit 14 PWM control unit 15 Temperature detection unit 16 Tj estimation unit 17, 18 Temperature setting unit 19, 20 Comparator 21 Current limiter 22 Current breaker 23 Base driver 24 Operational amplifier

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02H 7/12 - 7/122 H02H 6/00 H02M 1/00 H02M 7/48 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02H 7 /12-7/122 H02H 6/00 H02M 1/00 H02M 7/48

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電力用半導体素子とこの電力用半導体素
子を駆動制御するPWM制御部を含むインバータ回路
と、前記電力用半導体素子を冷却するヒートシンクを備
えたインバータ装置において、前記ヒートシンク上にサ
ーミスタを設置し、前記サーミスタの抵抗値変化により
前記ヒートシンク温度を検出するとともに、前記PWM
制御部から送出され、前記電力用半導体素子のゲートを
オンオフするドライブ信号とインバータ出力電流から半
導体素子電流を計算し、この半導体素子電流から計算さ
れた前記電力用半導体素子の通電時損失とスイッチング
損失とから前記電力用半導体素子のヒートシンクとジャ
ンクション間の温度上昇を推定し、この推定された温度
上昇と前記ヒートシンク温度から計算される前記電力用
半導体素子のジャンクション温度が第一の設定温度を超
えると前記インバータ回路の電流制限動作を行い、前記
第一の設定温度より高い第二の設定温度を超えるとイン
バータ電流を遮断することを特徴とする電力用半導体素
子の保護方式。
1. An inverter device including a power semiconductor device, a PWM control unit for driving and controlling the power semiconductor device, and a heat sink for cooling the power semiconductor device, wherein a thermistor is provided on the heat sink. The heat sink temperature is detected by a change in the resistance value of the thermistor, and the PWM
It sent from the control unit, a drive signal to the semiconductor element current from the inverter output current for turning on and off the gate of the power semiconductor device to calculate, is calculated from the semiconductor element current
Loss and switching of the power semiconductor device
From the loss, the temperature rise between the heat sink and the junction of the power semiconductor element is estimated, and the estimated temperature
When the junction temperature of the power semiconductor element calculated from the rise and the heat sink temperature exceeds a first set temperature, the current limiting operation of the inverter circuit is performed, and a second set temperature higher than the first set temperature is set. A protection method for power semiconductor devices, characterized in that the inverter current is cut off when the voltage exceeds the threshold.
【請求項2】 前記電力用半導体素子のジャンクション
温度が前記第一の設定温度を超えた場合に、予め設定さ
れたジャンクション温度とインバータ回路の電流制限レ
ベルの関数に基づいて温度に対して連続的に電流制限レ
ベルを変えることを特徴とする請求項1記載の電力用半
導体素子の保護方式。
2. When the junction temperature of the power semiconductor device exceeds the first set temperature, the power semiconductor device continuously changes the temperature based on a function of a preset junction temperature and a current limit level of an inverter circuit. 2. The protection method for a power semiconductor device according to claim 1, wherein the current limit level is changed.
JP03255756A 1991-09-06 1991-09-06 Protection method for power semiconductor devices Expired - Fee Related JP3075303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03255756A JP3075303B2 (en) 1991-09-06 1991-09-06 Protection method for power semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03255756A JP3075303B2 (en) 1991-09-06 1991-09-06 Protection method for power semiconductor devices

Publications (2)

Publication Number Publication Date
JPH0568331A JPH0568331A (en) 1993-03-19
JP3075303B2 true JP3075303B2 (en) 2000-08-14

Family

ID=17283193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03255756A Expired - Fee Related JP3075303B2 (en) 1991-09-06 1991-09-06 Protection method for power semiconductor devices

Country Status (1)

Country Link
JP (1) JP3075303B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036095A (en) * 2009-08-05 2011-02-17 Mitsubishi Electric Corp Power converter and protection method of power converter
JP2017003342A (en) * 2015-06-08 2017-01-05 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device and electronic device
US9595908B2 (en) 2013-04-01 2017-03-14 Fuji Electric Co., Ltd. Power converter
DE102017205999A1 (en) 2016-04-12 2017-10-12 Mitsubishi Electric Corporation DC voltage conversion device
JP2018046647A (en) * 2016-09-14 2018-03-22 サンデン・オートモーティブコンポーネント株式会社 Inverter device and electrical compressor for vehicle equipped with the same
US10156482B2 (en) 2012-12-12 2018-12-18 Fuji Electric Co., Ltd. Semiconductor chip temperature estimation device and overheat protection device
US11201538B2 (en) 2019-05-31 2021-12-14 Mitsubishi Electric Corporation Power conversion device with temperature protection
DE102021214350A1 (en) 2021-12-15 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Detection of short-circuit currents in current-controlled output stages
US12047060B2 (en) 2020-12-17 2024-07-23 Fuji Electric Co., Ltd. Drive device for voltage-controlled semiconductor element

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333468A (en) * 1999-05-20 2000-11-30 Denso Corp Power switching apparatus and inverter apparatus
JP2005252090A (en) * 2004-03-05 2005-09-15 Hitachi Industrial Equipment Systems Co Ltd Method for detecting temperature of semiconductor element and semiconductor power converter
JP4642081B2 (en) * 2005-09-21 2011-03-02 三菱電機株式会社 Overheat detection method of motor control device
JP2007143327A (en) * 2005-11-21 2007-06-07 Toshiba Mitsubishi-Electric Industrial System Corp Controller of power converter
JP2008131722A (en) * 2006-11-20 2008-06-05 Nippon Reliance Kk Power element overheating protection device
CN102216198B (en) * 2008-11-18 2014-09-10 住友重机械工业株式会社 Working machine
JP5313000B2 (en) * 2009-03-19 2013-10-09 住友重機械工業株式会社 Construction machinery
JP5473399B2 (en) * 2009-05-15 2014-04-16 三菱電機株式会社 Overheat protection device
JP6323221B2 (en) * 2014-07-08 2018-05-16 株式会社豊田自動織機 Motor control device
JP6511345B2 (en) * 2015-06-18 2019-05-15 高周波熱錬株式会社 Power conversion apparatus and method for heat treatment
CN106533284B (en) * 2016-12-05 2019-01-22 广东美的制冷设备有限公司 The control device and air conditioner of permanent magnet synchronous motor
CN106533283B (en) * 2016-12-05 2019-01-22 广东美的制冷设备有限公司 The control device and air conditioner of permanent magnet synchronous motor
JP6926685B2 (en) * 2017-06-02 2021-08-25 株式会社デンソー Injection control device
JP6965077B2 (en) 2017-09-26 2021-11-10 キヤノンメディカルシステムズ株式会社 Inverter device, gradient magnetic field power supply, and magnetic resonance imaging device
KR102022967B1 (en) * 2017-10-10 2019-09-19 엘지전자 주식회사 Power module package
CN112042099A (en) * 2018-04-11 2020-12-04 日产自动车株式会社 Device protection apparatus and device protection method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036095A (en) * 2009-08-05 2011-02-17 Mitsubishi Electric Corp Power converter and protection method of power converter
US10156482B2 (en) 2012-12-12 2018-12-18 Fuji Electric Co., Ltd. Semiconductor chip temperature estimation device and overheat protection device
US9595908B2 (en) 2013-04-01 2017-03-14 Fuji Electric Co., Ltd. Power converter
JP2017003342A (en) * 2015-06-08 2017-01-05 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device and electronic device
US10175275B2 (en) 2015-06-08 2019-01-08 Renesas Electronics Corporation Semiconductor integrated circuit device and electronics device
JP2017192183A (en) * 2016-04-12 2017-10-19 三菱電機株式会社 Dc-dc voltage conversion device
US10090760B2 (en) 2016-04-12 2018-10-02 Mitsubishi Electric Corporation DC-DC voltage conversion device
DE102017205999A1 (en) 2016-04-12 2017-10-12 Mitsubishi Electric Corporation DC voltage conversion device
DE102017205999B4 (en) 2016-04-12 2024-01-11 Mitsubishi Electric Corporation DC voltage conversion device
WO2018051719A1 (en) * 2016-09-14 2018-03-22 サンデン・オートモーティブコンポーネント株式会社 Inverter apparatus and vehicle electric compressor provided with same
JP2018046647A (en) * 2016-09-14 2018-03-22 サンデン・オートモーティブコンポーネント株式会社 Inverter device and electrical compressor for vehicle equipped with the same
DE112017004631T5 (en) 2016-09-14 2019-05-29 Sanden Automotive Components Corporation Inverter apparatus and electric vehicle compressor provided therewith
CN109831931A (en) * 2016-09-14 2019-05-31 三电汽车部件株式会社 DC-to-AC converter and the Vehicular electric compressor for having the DC-to-AC converter
US11201538B2 (en) 2019-05-31 2021-12-14 Mitsubishi Electric Corporation Power conversion device with temperature protection
US12047060B2 (en) 2020-12-17 2024-07-23 Fuji Electric Co., Ltd. Drive device for voltage-controlled semiconductor element
DE102021214350A1 (en) 2021-12-15 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Detection of short-circuit currents in current-controlled output stages

Also Published As

Publication number Publication date
JPH0568331A (en) 1993-03-19

Similar Documents

Publication Publication Date Title
JP3075303B2 (en) Protection method for power semiconductor devices
US6114828A (en) Apparatus and method for preventing overload on switching device in inverter circuit for motor applicable to electric vehicle
US5923135A (en) Control apparatus and method for motor to prevent motor drive circuit from being overloaded
KR101398524B1 (en) Motor drive device, fluid compression system and air conditioner
US5737169A (en) Intrinsic element sensing integrated SOA protection for power MOSFET switches
JP3430773B2 (en) Overheating protection method of switching element in inverter device
JP5549505B2 (en) Temperature protection device, motor control device, and temperature protection method
WO2011074403A1 (en) Apparatus and method for protecting power semiconductor switch element
JPH07135731A (en) Overheat protective device for semiconductor element
JP2005143232A (en) Protection method for power semiconductor device
KR20200007295A (en) Inverter apparatus of electric vehicle
JP2000228882A (en) Protective device for variable speed inverter
JP2002186171A (en) Overheat-protecting device of switching element for regenerative power consuming resistor of voltage type inverter
JP3243922B2 (en) Thermal damage prevention method for power switch element
CN110556793B (en) Real-time IGBT overload protection method
US20220385207A1 (en) Inverter device for driving electric motor and control method thereof
US3646396A (en) Overload protection system for dc motors
JP3046147B2 (en) AC motor servo controller
JPH07170724A (en) Drive circuit for switching element
JP3951516B2 (en) Inverter
JPH099637A (en) Temperature protection circuit of power converting apparatus
JP3486037B2 (en) Inverter device
JPH0284011A (en) Temperature protection for power converter
KR100189293B1 (en) Electronic contactor control apparatus for an induction motor
JP2016140122A (en) Control method for electric power conversion system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees