JP3074800U - Seismic isolation bearing board - Google Patents

Seismic isolation bearing board

Info

Publication number
JP3074800U
JP3074800U JP2000005903U JP2000005903U JP3074800U JP 3074800 U JP3074800 U JP 3074800U JP 2000005903 U JP2000005903 U JP 2000005903U JP 2000005903 U JP2000005903 U JP 2000005903U JP 3074800 U JP3074800 U JP 3074800U
Authority
JP
Japan
Prior art keywords
spherical seat
displacement
seismic
steel ball
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000005903U
Other languages
Japanese (ja)
Inventor
泰彦 徳永
Original Assignee
泰彦 徳永
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰彦 徳永 filed Critical 泰彦 徳永
Priority to JP2000005903U priority Critical patent/JP3074800U/en
Application granted granted Critical
Publication of JP3074800U publication Critical patent/JP3074800U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

(57)【要約】 【課題】 基盤の球面座上に多数の鋼球自在輪を介在し
て構造物を支承し、同自在輪の転がり摩擦力を若干上回
る水平力相等の地震力を受けるだけで同自在輪の転がり
変位を起し、地震動を受け流して回避し、地震動終息時
には同変位を逓減して球面座の中央低位へ復元すると共
に、構造物の上向の変位を拘束し、構造耐力上安全な免
震支承盤を提供しようとするものである。 【解決手段】 基盤1の中央上位に開口した皿形環状の
球面座2を成形し、該球面座中央開口内位において、支
持筒4の上下端位に、一対の円板状フランジ板3,3を
球面座上下位に対向状に並設し、上位のフランジ板周辺
付近に、多数の鋼球自在輪5,5を環状に配設して球面
座上面に載設し、下位のフランジ板周辺付近には球面座
の下面直下に環状の周縁6を凸設し、支持筒の上位内に
は関節継手8を設け、同継手上位には、構造物を支承す
るため、支承板7を支設している。
(57) [Summary] [PROBLEMS] To support a structure with a large number of steel ball free wheels interposed on a spherical seat of a base, and to receive only a seismic force such as a horizontal force phase slightly exceeding the rolling friction force of the free wheels. Causes the rolling displacement of the free wheel, avoids the seismic motion and avoids it.At the end of the seismic motion, the displacement is gradually reduced and restored to the central low position of the spherical seat, and the upward displacement of the structure is restrained, and the structural strength It is intended to provide a safe and seismic base plate. SOLUTION: A plate-shaped annular spherical seat 2 which is opened at the center upper part of a base 1 is formed, and a pair of disk-shaped flange plates 3 are provided at upper and lower end positions of a support cylinder 4 inside the central opening of the spherical seat. 3 are arranged side by side on the spherical seat so as to face each other, and around the upper flange plate, a large number of steel ball free wheels 5 and 5 are annularly arranged and mounted on the spherical seat upper surface. In the vicinity of the periphery, an annular peripheral edge 6 protrudes directly below the lower surface of the spherical seat, and an articulated joint 8 is provided in the upper part of the support cylinder, and a bearing plate 7 is supported on the upper part of the joint to support a structure. Has been established.

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【考案の属する技術分野】[Technical field to which the invention belongs]

本考案は、構造物荷重に水平震度又は地震層剪断力係数を乗じた値として定義 される地震力を超える外力による構造物の破損ないし倒壊事故を防止するため、 構造物の受ける地震力又は水平外力を低減する免震手段に関するものである。 The purpose of the present invention is to prevent the structural damage or collapse caused by external force exceeding the seismic force defined as the value obtained by multiplying the structural load by the horizontal seismic intensity or the seismic layer shear force coefficient. The present invention relates to seismic isolation means for reducing external force.

【0002】[0002]

【従来の技術】[Prior art]

従来、地震動に対し、基礎上の摩擦支持面に構造物を支承し、摩擦面の摩擦力 を若干上回るだけの応答地震力で容易に滑り変位を起して地震動を受け流し状に 回避する、所謂スリップ方式又は絶縁方式と称する免震装置は、構造物を支承す る摩擦面の摩擦力を低減するため、テフロン、ステンレス鈑、青銅鈑、減摩材並 びにボールベアリングなど低摩擦係数の材料による支承手段を用いており、地震 動による滑り変位は比較的大きく、地震動の終息後も、そのまま残留変位になり 、原位置への復元機能を備えないものであった。 Conventionally, a structure is supported on the friction support surface on the foundation against earthquake motion, and a slip displacement is easily generated with a response seismic force that slightly exceeds the friction force of the friction surface, so that the seismic motion can be avoided in a flowing manner. A seismic isolation device called a slip system or an insulation system uses a low friction coefficient material such as Teflon, stainless steel plate, bronze plate, anti-friction material, and ball bearing to reduce the frictional force of the friction surface that supports the structure. Since the bearing means were used, the sliding displacement due to the seismic motion was relatively large, and it remained residual even after the seismic motion ended, and did not have the function of restoring the original position.

【0003】 そして、図5に示す、支持盤イの皿状球面上に、構造物支承板ロの下位に凸設 した関節状の滑子ハを支承し、地震力により滑子が支持盤の中心から滑り、振子 状に変位して地震動を受け流し状に回避し、地震動の減衰とともに、支持盤の中 心低位へ、求心的に復元するものや、図6に示す、支持盤イの皿状円錐面上に、 構造物を支承する支承具ニ内位に多数の小径鋼球ホを介して大径鋼球ヘを転がり 支承する大径鋼球自在輪トを支承し、地震動により同自在輪が支持盤の中心から 転がり変位して地震動を受け流し状に回避し、地震動の減衰とともに、同自在輪 ならびに構造物を支承する支承具が支持盤中央低位へ転がり復元するものが提案 されている。[0003] Then, an articulated slider C projecting below the structural support plate B is supported on the dish-shaped spherical surface of the support plate B shown in FIG. It slides from the center, displaces in a pendulum shape, avoids the seismic ground motion, avoids the seismic ground motion, and restores the seismic ground motion to the lower center of the support plate as well as the seismic ground motion. On the conical surface, a large-diameter steel ball free wheel is supported by rolling a large-diameter steel ball through a large number of small-diameter steel balls E to the inside of the bearings that support the structure. However, it has been proposed that the rolling wheel is displaced from the center of the support board to avoid the seismic motion in a flowing manner, and that the seismic motion is attenuated, and that the bearing that supports the universal wheel and the structure rolls back to the center of the support board and is restored.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the invention]

従来の技術で述べたもののうち、基礎上の摩擦支持面に構造物を固定しないで 支承する、所謂スリップ方式又は絶縁方式と称する免震装置は、地震動に対して 、摩擦面上において、構造物の摩擦力を若干上回るだけの水平力相等の応答地震 力により、容易に滑り変位を起こし、地震動を受け流して回避することができる が、そのときの滑り変位は地震動終息後も、残留変位となって、原位置へ復元す ることができず、また、図4及び図5に示すものは、皿状の支持盤上の摩擦面に 構造物の支承板又は支持具をそれぞれ載置しただけで、地震動に際し、摩擦面に おける摩擦力を若干上回るだけの応答地震力によって、支承板又は支持具は支持 盤中心位より変位して地震動を回避することができるが、両者とも、鉛直上方へ の変位に対する拘束手段がなくて、地震動による構造物の揺動現象即ちロッキン グ振動のおそれがあり、風荷重による構造物支承位の浮上変位が拘束されず、何 れも構造物の支承が構造耐力上不確実になるという問題点を有していた。 Among those described in the prior art, seismic isolation devices called so-called slip type or insulation type, which support the structure without fixing it to the friction support surface on the foundation, are designed to provide a structure on the friction surface against earthquake motion. Slip displacement can be easily caused by the response seismic force such as horizontal force phase slightly exceeding the friction force of, and the seismic motion can be avoided by avoiding the slip, but the slip displacement at that time becomes a residual displacement even after the seismic motion ends. 4 and 5 cannot be restored to the original position, and the structure shown in FIGS. 4 and 5 only requires that the bearing plate or the support of the structure be placed on the friction surface on the plate-like support plate. In response to seismic motion, the supporting plate or support can be displaced from the center of the support plate to avoid seismic motion by the response seismic force slightly exceeding the frictional force on the friction surface. Against displacement Since there is no bundling means, there is a risk of rocking vibration of the structure due to seismic motion, that is, rocking vibration, and the floating displacement of the structure supporting position due to wind load is not restricted, and any structural support is not possible due to structural strength. There was a problem that it became certain.

【0005】 また、図5のものは、大径の鋼球自在輪単独で構造物荷重を支承するので、鋼 球は支持盤と1箇所の接点に構造物の集中荷重を受け、ヘルツの静的剪断応力が 接触位の表面薄層に集中し、鋼球自在輪並びに支持盤の表面薄層に損傷を生じる 傾向があるという問題点を有している。[0005] In addition, the structure shown in Fig. 5 supports the structural load with the large-diameter steel ball free wheel alone. The problem is that the mechanical shear stress tends to concentrate on the surface layer at the contact point, which tends to damage the steel ball universal wheel and the surface layer of the support plate.

【0006】 本考案は、従来の技術におけるこのような問題点に鑑みてなされものであり、 その目的とするところは、基盤の球面座上に多数の鋼球自在輪を介在して構造物 を支承し、同自在輪の転がり摩擦力を若干上回る水平力相等の地震力を受けるだ けで同自在輪の転がり変位を起し、地震動を受け流して回避し、地震動終息時に は同変位を逓減して球面座の中央低位へ復元すると共に、構造物の上向の変位を 拘束し、構造耐力上安全な免震支承盤を提供しようとするものである。[0006] The present invention has been made in view of such problems in the prior art, and has as its object the purpose of interposing a structure by interposing a number of steel ball free wheels on a spherical seat of a base. When the bearing receives a seismic force, such as a horizontal force phase, that slightly exceeds the rolling friction force of the free wheel, the free wheel causes rolling displacement, avoids seismic motion and avoids it, and gradually reduces the displacement when the seismic motion ends. In addition to restoring the spherical seat to the central low position, the upward displacement of the structure is restrained, and a seismic isolation bearing board that is safe in terms of structural strength is provided.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、本考案の免震支承盤は、基礎上に敷設する基盤上 の中央位に開口した皿形環状の球面座を成形し、該球面座中央開口内位において 、支持筒の上下端位に、一対の円板状フランジ板を球面座上下位に対向状に並設 し、上位のフランジ板周辺付近に、多数の鋼球自在輪を環状に配設して球面座上 面に載設し、下位のフランジ板周辺付近には球面座の下面直下に環状の周縁を凸 設し、支持筒の上位内には関節継手を設け、同継手上位には、構造物を支承する ため、支承板を支設している。 In order to achieve the above object, the seismic isolation bearing plate of the present invention forms a dish-shaped annular spherical seat which is opened at the center position on the base laid on the foundation, and supports the spherical seat inside the center opening of the spherical seat. A pair of disk-shaped flange plates are arranged at the upper and lower ends of the cylinder so as to face each other on the upper and lower surfaces of the spherical seat, and a number of steel ball free wheels are annularly arranged around the upper flange plate. It is placed on the upper surface, and near the lower flange plate, an annular rim is protruded just below the lower surface of the spherical seat, an articulated joint is provided in the upper part of the support cylinder, and the structure is placed on the upper part of the joint. A support plate is provided for support.

【0008】 そして、関節継手は、支持筒上位内にソケットを設け、該ソケットに球関節を 嵌設して球面対偶とする球関節継手を適用してもよい。Further, as the joint joint, a socket may be provided in the upper portion of the support cylinder, and a ball joint may be fitted to the socket to form a spherical pair, and a spherical joint may be applied.

【0009】 また、関節継手は、支持筒上位に、一対のフォークを十字形ピンを介して交差 状に連結した所謂フックのユニバーサルジョイントを設けてもよい。Further, the joint joint may be provided with a so-called hook universal joint in which a pair of forks is connected in a cross shape via a cross-shaped pin above the support cylinder.

【0010】 そして、フランジ板の最大変位位置において、構造限界となる支持筒と球面座 の環状内位との間には、支持筒外囲にゴム弾性ブッシュを嵌設してもよい。[0010] At the maximum displacement position of the flange plate, a rubber elastic bush may be fitted around the support cylinder between the support cylinder, which is a structural limit, and the annular inner surface of the spherical seat.

【0011】 また、球面座上の鋼球自在輪を介して構造物を支承板に支承し、水平外力によ り、鋼球自在輪が球面座の球面に沿って転がり、回転変位するとき、球面座と鋼 球自在輪との接点における共通接平面の平均傾斜角、球面座と鋼球自在輪との転 がり摩擦係数、転がり摩擦角及び構造物荷重により定まる転がり摩擦力を、若干 上回る水平外力相等の地震力により、変位を起すとともに、この変位の最大値に 対応する鋼球自在輪の最大回転変位角を設定している。In addition, when the structure is supported on a support plate via a steel ball universal wheel on the spherical seat, and the steel ball universal wheel rolls along the spherical surface of the spherical seat due to a horizontal external force, and is rotationally displaced, The horizontal angle slightly exceeds the average inclination angle of the common tangent plane at the contact point between the spherical seat and the steel ball free wheel, the rolling friction coefficient between the spherical seat and the steel ball free wheel, the rolling friction angle, and the rolling friction force determined by the structural load. Displacement is caused by seismic force such as external force, and the maximum rotational displacement angle of the steel ball free wheel corresponding to the maximum value of this displacement is set.

【0012】[0012]

【考案の実施の形態】[Embodiment of the invention]

考案の実施の形態を実施例にもとづき図面を参照して説明すると、図1ないし 図3において、基礎上に敷設する基盤1上の中央位に開口した皿形環状硬質厚鈑 の球面座2を成形し、該球面座中央開口位内において、支持筒4の上下端位に、 一対の円板状フランジ板3,3を球面座上下位に対向状に並設し、上位のフラン ジ板周辺付近には、大径鋼球の外囲を小径鋼球により転がり支承した自在輪、所 謂ボールキャスターと称する低摩擦係数の、多数の鋼球自在輪5,5を環状に配 設して球面座の上面に載設し、下位のフランジ板の上向き変位を拘束するために 、同板周辺付近には環状の周縁6を、球面座の下面直下へ凸設し、支持筒4上位 内には関節状継手8の対偶の一方を内蔵して設け、同対偶の他方上位には、構造 物を支承する支承板7を支設している。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the invention will be described with reference to the drawings based on an embodiment. Referring to FIGS. 1 to 3, a spherical annular seat 2 of a dish-shaped annular hard thick plate opened at a central position on a base 1 laid on a foundation is shown. In the center opening of the spherical seat, a pair of disk-shaped flange plates 3 and 3 are arranged side by side on the upper and lower ends of the support cylinder 4 so as to face each other on the lower and upper surfaces of the spherical seat. In the vicinity, a large number of steel ball rolling wheels 5, 5 having a low coefficient of friction, so-called ball casters, with a large diameter steel ball rolling around the outer periphery of a large diameter steel ball, are arranged in a ring shape. In order to restrain the upward displacement of the lower flange plate mounted on the upper surface of the seat, an annular peripheral edge 6 is provided near the periphery of the lower plate, and protrudes directly below the lower surface of the spherical seat. One of the pair of articulated joints 8 is provided in a built-in manner, and a support for supporting a structure is provided above the other of the pair. The plate 7 is 支設.

【0013】 そして、図2において、関節状継手8は、支持筒4上位内にソケット10を設 けて支承板7を支設する球関節9を嵌合した球面対偶を適用してもよい。In FIG. 2, the articulated joint 8 may be a spherical pair in which a socket 10 is provided above the support cylinder 4 and a ball joint 9 for supporting the bearing plate 7 is fitted.

【0014】 また、図4において、関節状継手8は、十字形ピン11を介し、支持筒4上位 側と、支承板7下位側との一対のフォーク12,12を交差状に連結した、所謂 フックのユニバーサルジョイント13を適用してもよい。In FIG. 4, the articulated joint 8 is a so-called cross-shaped pin 11 in which a pair of forks 12, 12 on the upper side of the support cylinder 4 and the lower side of the support plate 7 are connected in an intersecting manner. The universal joint 13 of the hook may be applied.

【0015】 そして、鋼球自在輪の球面座上の転がり摩擦係数μ及び摩擦係数の逆正接とし ての転がり摩擦角をλとし、水平外力により自在輪が変位を開始するとき、球面 座上の登り変位側自在輪と下り変位側自在輪における鋼球と球面座との共通接平 面の平均傾斜角を、それぞれθ及び−θとし、構造物荷重をWとし、同登り変位 側自在輪と下り変位側自在輪との分担荷重をそれぞれ0.5Wとすれば、登り変 位側及び下り変位側自在輪における転がり摩擦力F並びにFは、それぞれ数 1及び数2となり、両摩擦力の和Fは数3となり、高次の正接の微小数の項を省 略すれば、傾斜角上θの影響がほぼ相殺され、近似的にW tan λ即ちμW となり、これを上回る水平力によって、転がり変位を生じる。When the rolling friction coefficient μ on the spherical seat of the steel ball free wheel and the rolling friction angle as the arc tangent of the friction coefficient are λ, when the free wheel starts to be displaced by a horizontal external force, The average inclination angle of the common tangent plane between the steel ball and the spherical seat on the upward displacement side free wheel and the downward displacement side free wheel is θ and −θ, respectively, the structural load is W, and the average displacement angle is W. Assuming that the load shared with the down displacement free wheel is 0.5 W, the rolling friction forces F 1 and F 2 on the up displacement side and the down displacement side free wheel are given by Formulas 1 and 2, respectively. If the term of a small number of a higher order tangent is omitted, the effect of θ on the tilt angle is almost canceled out, and becomes approximately W tan λ, that is, μW. , Causing rolling displacement.

【0016】[0016]

【数1】 (Equation 1)

【0017】[0017]

【数2】 (Equation 2)

【0018】[0018]

【数3】 (Equation 3)

【0019】 そして、数1〜数3の数値例として、球面座上の鋼球自在輪の登り面平均傾斜 角θを5°、下り面平均傾斜角−θを−5°とし、同自在輪との転がり摩擦係数 μを0.01とすると、その逆正接として転がり摩擦角λは0.57°となり、 例えば構造物荷重Wが100トンのとき、数3により、全自在輪の転がり摩擦力 μWは、球面座上の鋼球自在輪の登り面と下り面との平均傾斜角に関係なく、1 トンとなり、これを若干上回る水平力が転がり変位に要する水平外力となる。As an example of the numerical values of Equations 1 to 3, the average inclination angle θ of the ascending surface of the steel ball free wheel on the spherical seat is 5 °, and the average inclination angle −θ of the descending surface is −5 °. Assuming that the rolling friction coefficient μ is 0.01, the rolling tangent angle λ is 0.57 ° as the inverse tangent. For example, when the structural load W is 100 tons, the rolling friction force of all the universal wheels is calculated according to Equation 3. μW is 1 ton irrespective of the average inclination angle between the climbing surface and the descending surface of the steel ball free wheel on the spherical seat, and a horizontal force slightly exceeding this is a horizontal external force required for rolling displacement.

【0020】 また、構造物荷重W、球面座と鋼球自在輪との転がり摩擦係数μの逆正接とし て転がり摩擦角λとし、球面座上の登り変位側と下り変位側各自在輪における鋼 球と球面座との共通接平面の平均傾斜角をそれぞれθ及び−θとし、構造物荷重 をWとし、登り変位側と下り変位側との各自在輪の分担荷重をそれぞれ0.5W として、水平外力により、自在輪が球面座に沿って水平位より回転変位角αにお いて回転変位するとき、自在輪の登り変位側の水平外力Hは数4、下り変位側 の水平外力Hは数5により示され、両側の水平外力の和Hは数6となり、これ を若干上回る水平外力相等の許容地震力を設定している。The rolling friction angle λ is defined as the arc tangent of the structural load W, the rolling tangent of the rolling friction coefficient μ between the spherical seat and the steel ball free wheel, and the steel on each of the upward and downward displacement free wheels on the spherical seat. The average inclination angles of the common tangent plane of the sphere and the spherical seat are θ and −θ, respectively, the structural load is W, and the shared load of each free wheel on the ascending and descending displacement sides is 0.5 W, respectively. the horizontal external force, freely when wheel rotates displaced have you to the rotational displacement angle α from the horizontal position along the spherical seat, the horizontal external force climbs displacement side of the freely moving wheel H 1 is the number 4, the downlink displacement side horizontal force H 2 Is given by Equation 5, and the sum H of the horizontal external forces on both sides is given by Equation 6, and the allowable seismic force such as the horizontal external force slightly higher than this is set.

【0021】[0021]

【数4】 (Equation 4)

【0022】[0022]

【数5】 (Equation 5)

【0023】[0023]

【数6】 (Equation 6)

【0024】 そして、数4〜数6の数値例として、構造物荷重Wを100トン、初期の球面 座と鋼球自在輪との共通接平面の平均傾斜角θを5°、回転変位角αを5°、転 がり摩擦係数μを0.01、従って、転がり摩擦角λを0.57°とすると、数 6の全自在輪にかかる水平力Hは、9.8トンとなり、これに相等する地震力が かかるとき、水平震度を算出すると、0.098G、即ち96ガル(震度階級V 相当)の震度に相当し、回転変位角5°まで回転変位を生じることとなる。As numerical examples of Equations 4 to 6, the structure load W is 100 tons, the average inclination angle θ of the common tangent plane between the initial spherical seat and the steel ball free wheel is 5 °, and the rotational displacement angle α Is 5 °, the rolling friction coefficient μ is 0.01, and therefore the rolling friction angle λ is 0.57 °, the horizontal force H applied to all the universal wheels of Equation 6 is 9.8 tons, which is equivalent to When a horizontal seismic intensity is applied, the horizontal seismic intensity is calculated, which corresponds to a seismic intensity of 0.098 G, that is, 96 gal (corresponding to seismic intensity class V), and a rotational displacement occurs up to a rotational displacement angle of 5 °.

【0025】 そして、上記の回転変位角αを5°とし、球面上の変位を弦長で20cmに設 定するためには、球面座の曲率半径を229cmに設定することとなる。In order to set the rotational displacement angle α to 5 ° and to set the displacement on the spherical surface to 20 cm in chord length, the radius of curvature of the spherical seat is set to 229 cm.

【0026】 また、上記回転変位角αを、実用上支障のない角度に設定し、設定された応答 地震力を上回る水平力を受けるとき、球面座の環状内位と支持筒との接触位を構 造限界として、水平力を緩衝して受けるため、支持筒外囲に振動減衰性に富むゴ ム弾性ブッシュ14を嵌設している。Further, the rotational displacement angle α is set to an angle that does not hinder practical use, and when a horizontal force exceeding the set response seismic force is received, the contact position between the annular inner position of the spherical seat and the support cylinder is changed. As a structural limit, a rubber elastic bush 14 having a high vibration damping property is fitted around the support cylinder in order to buffer and receive the horizontal force.

【0027】 また、球面座と鋼球自在輪との転がり摩擦係数μの逆正接としての転がり摩擦 角をλとし、水平外力により、自在輪が球面座上に沿って回転変位し、水平位よ り回転変位角がβに達して水平外力が消失するとき、構造物荷重をWとし、自在 輪の上昇位側と下降位側との分担荷重をそれぞれ0.5Wとすると、同上昇位側 の水平力Qは数7により下り側へ変位する傾向を生じ、下降位側の水平力Q は数8により登り側へ変位する傾向を生じ、全自在輪にかかる水平力Qは、数9 の両水平力の和となり、負数は水平力Qの方向、即ち球面座中央低位への復元 力を示す。Further, the rolling friction angle as the arc tangent of the rolling friction coefficient μ between the spherical seat and the steel ball universal wheel is λ, and the universal wheel is rotationally displaced along the spherical seat by a horizontal external force, and When the horizontal external force disappears due to the rotation displacement angle reaching β, the structural load is W, and the shared load between the rising position and the descending position of the free wheel is 0.5 W, respectively. resulting tendency to be displaced to the downstream side by the horizontal force Q 1 is the number 7, results in a tendency to be displaced to the climb side by the horizontal force Q 2 is the number 8 of the descending position side, the horizontal force Q according to the total free wheel, the number 9 the sum of both the horizontal forces, negative numbers indicate a restoring force of the horizontal force Q 1 direction, i.e. to the spherical seat center low.

【0028】[0028]

【数7】 (Equation 7)

【0029】[0029]

【数8】 (Equation 8)

【0030】[0030]

【数9】 (Equation 9)

【0031】 そして、数7〜数9の数値例として、回転変位角βが5°にて地震動が終息す るとき、構造物荷重Wを100トン、球面座と鋼球自在輪との共通接平面の登り 変位側平均傾斜角θを5°、下り変位側平均傾斜角−θを−5°、転がり摩擦係 数μを0.01、従って転がり摩擦角λが0.57°のとき、数9の全自在輪に かかる水平力Qは−7.8トンとなり、この負数は球面座低位への復元力を示す 。As a numerical example of Equations 7 to 9, when the seismic motion ends at a rotational displacement angle β of 5 °, the structural load W is set to 100 tons, and the common contact between the spherical seat and the steel ball free wheel is performed. When the average inclination angle on the upward displacement side of the plane is 5 °, the average inclination angle on the downward displacement side −θ is −5 °, and the rolling friction coefficient μ is 0.01, therefore, when the rolling friction angle λ is 0.57 °, The horizontal force Q applied to all 9 free wheels is -7.8 tons, and this negative number indicates the restoring force to the lower spherical seat.

【0032】[0032]

【考案の効果】[Effect of the invention]

本考案は、上述のとおり構成されているので、次に記載する効果を奏する。 Since the present invention is configured as described above, the following effects can be obtained.

【0033】 請求項1の免震支承盤においては、基盤上の球面座に環状配列した多数の鋼球 自在輪を介して構造物を支承する支承板を載設しており、地震動又は風圧力の水 平外力により、球面座と自在輪の鋼球との転がり摩擦力に若干上回る水平力を受 けて、自在輪と共に構造物を支設した支承板を球面座上に偏心状に転がり変位す ることにより、同水平外力相等まで応答地震力を低減し、地震動を受け流し状に 回避することができる。In the seismic isolation bearing board of the first aspect, a bearing plate for supporting the structure via a large number of steel ball free wheels annularly arranged on a spherical seat on the base is mounted, and the seismic motion or wind pressure is applied. The horizontal force slightly exceeds the rolling friction force between the spherical seat and the steel ball of the universal wheel, and the bearing plate supporting the structure with the universal wheel rolls eccentrically on the spherical seat. By doing so, it is possible to reduce the response seismic force to the same level of horizontal external force, etc., and avoid the seismic ground motion.

【0034】 また、下位のフランジ板周辺付近の周縁6は、地震動による上下振動又は風荷 重による浮上力がかかるとき、球面座下面に当接して支承板の上向き変位を拘束 するので、支承板に支承する構造物の揺動現象、即ちロッキング振動並びに浮上 変位を抑制することができる。The peripheral edge 6 near the lower flange plate abuts against the lower surface of the spherical seat and restrains the upward displacement of the bearing plate when a vertical vibration due to seismic motion or a levitation force due to wind load is applied. The rocking vibration and the floating displacement of the structure supported by the above can be suppressed.

【0035】 そして、水平外力により球面座に沿って鋼球自在輪の回転変位を生じたときに 、水平外力が消失すると、構造物荷重及び鋼球自在輪と球面座との転がり摩擦角 並びに回転変位角に応じて変位を逓減する方向の水平力、即ち復元力を生じて構 造物及び支承板は球面座上の中央低位へ復元することができる。When the horizontal external force disappears when the horizontal external force causes a rotational displacement of the steel ball free wheel along the spherical seat, the structural load and the rolling friction angle between the steel ball free wheel and the spherical seat and the rotation A horizontal force in the direction of gradually decreasing the displacement in accordance with the displacement angle, that is, a restoring force is generated, so that the structure and the bearing plate can be restored to the central lower position on the spherical seat.

【0036】 また、球面座と、該座面上に支承する多数の自在輪の鋼球との接点において構 造物荷重を分担するので、接点位におけるヘルツの静的剪断応力を低減し、鋼球 自在輪並びに球面座の表面付近の薄層に損傷を生じることがない。In addition, since the structure load is shared at the contact point between the spherical seat and the steel balls of a large number of free wheels supported on the seat surface, the static shear stress of Hertz at the contact point is reduced, and the steel ball is reduced. The free wheel and the thin layer near the surface of the spherical seat are not damaged.

【0037】 さらに、上記転がり変位に要する水平外力の設定値を上回る地震力により、球 面座の環状内位と支持筒との構造限界まで変位すると、支持筒外囲に嵌設した振 動減衰性に富むゴム弾性ブッシュにより緩衝することができる。Furthermore, when the seismic force exceeds the set value of the horizontal external force required for the above-mentioned rolling displacement, the structure is displaced to the structural limit between the annular inner surface of the spherical seat and the support cylinder, and the vibration damping fitted to the outer periphery of the support cylinder is performed. It can be cushioned by a rubber elastic bush that is rich in properties.

【0038】 また、多数の小型の鋼球自在輪ユニットを使用し、大型の大径鋼球自在輪を使 用するものより比較的扁平な形状とするため、基礎上に構造物を支承する、所謂 支承層の高さを低くして構造物の施工を容易にし、構造耐力上安定性のよい構造 物が得られる。Further, in order to use a large number of small steel ball free wheels and make the shape relatively flatter than that using a large large diameter steel ball free wheel, the structure is supported on a foundation. The height of the so-called bearing layer is reduced to facilitate the construction of the structure, and a structure with good structural strength and stability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】免震支承盤の平面図である。FIG. 1 is a plan view of a base isolation bearing board.

【図2】図1のA−Aにおける、要部断面図である。FIG. 2 is a cross-sectional view of a main part along AA in FIG. 1;

【図3】図2のB部詳細を示す要部断面図である。FIG. 3 is a sectional view of a main part showing details of a part B in FIG. 2;

【図4】関節状継手に、ユニバーサルジョイントを適用
した実施例の要部断面図である。
FIG. 4 is a sectional view of a main part of an embodiment in which a universal joint is applied to an articulated joint.

【図5】従来の皿状球面を支持盤とする支承具に係る要
部断面図である。
FIG. 5 is a cross-sectional view of a main part of a conventional support having a dish-shaped spherical surface as a support plate.

【図6】従来の転がり支承具に係る要部断面図である。FIG. 6 is a sectional view of a main part of a conventional rolling bearing.

【符号の説明】[Explanation of symbols]

1 基礎盤 2 球面座 3 フランジ板 4 支持筒 5 鋼球自在輪 6 周縁 7 支承板 8 関節継手 9 球関節 10 ソケット 11 十字形ピン 12 フォーク 13 ユニバーサルジョイント 14 ゴム弾性ブッシュ イ 支持盤 ロ 構造物支承板 ハ 滑子 ニ 支承具 ホ 小径鋼球 ヘ 大径鋼球 ト 大径鋼球自在輪 以下数1〜数9における図示しない記号として、 W 構造物荷重 μ 転がり摩擦係数 λ 転がり摩擦角 θ 球面座と鋼球自在輪との共通接平面の平均傾斜角 α 回転変位角(球面座上の鋼球自在輪の回転変位の) β 回転変位角(水平外力が消失したときの回転変位
角) F 鋼球自在輪の登り変位側の転がり摩擦力 F 鋼球自在輪の下り変位側の転がり摩擦力 F 全鋼球自在輪の転がり摩擦力 H 鋼球自在輪の回転変位角αへの登り変位に要する
水平外力 H 鋼球自在輪の回転変位角αへの下り変位に要する
水平外力 H 全鋼球自在輪の回転変位角αへの変位に要する水
平外力 Q 回転変位角βにおける鋼球自在輪上昇位より下り
側への水平力 Q 回転変位角βにおける鋼球自在輪下降位より登り
側への水平力 Q 回転変位角βにおける全鋼球自在輪の水平力、即
ち復元力
DESCRIPTION OF SYMBOLS 1 Base board 2 Spherical seat 3 Flange plate 4 Support cylinder 5 Steel ball universal ring 6 Peripheral edge 7 Bearing plate 8 Joint joint 9 Ball joint 10 Socket 11 Cross pin 12 Fork 13 Universal joint 14 Rubber elastic bush A Support board B Structural support Plate C Slider D Supporting tool E Small-diameter steel ball F Large-diameter steel ball G Large-diameter steel ball swivel wheel As a symbol not shown in the following equations 1 to 9, W Structure load μ Rolling friction coefficient λ Rolling friction angle θ Spherical seat Average tilt angle of the common tangent plane between the ball and the steel ball free wheel α Rotational displacement angle (of the rotational displacement of the steel ball free wheel on the spherical seat) β Rotational displacement angle (the rotational displacement angle when the horizontal external force disappears) F 1 climb to α rotational displacement angle of the rolling friction force H 1 steel ball freely moving wheel of the rolling friction force F total steel ball freely moving wheel of the downlink displacement side of the rolling friction force F 2 steel ball freely moving wheel climb displacement side of the steel ball freely moving wheel Outside horizontal required for displacement Steel ball freely moving wheel raised position in the horizontal external force Q 1 rotation displacement angle β required to displacement of the H 2 rotational displacement angle of the horizontal external force H total steel ball freely moving wheel required for downlink displacement of the rotational displacement angle α of the steel ball freely moving wheel α Horizontal force on the downward side Q Horizontal force on the upward side from the descending position of the steel ball universal rotation at two rotational displacement angles β Q Horizontal force of all the steel ball universal wheels at the rotational displacement angle β

Claims (1)

【実用新案登録請求の範囲】[Utility model registration claims] 【請求項1】 基礎上に敷設する基盤(1)上の中央位
に開口した皿形環状の球面座(2)を成形し、該球面座
中央開口内位において、支持筒(4)の上下端位に、一
対の円板状フランジ板(3,3)を球面座上下位に対向
状に並設し、上位のフランジ板周辺付近に、多数の鋼球
自在輪(5,5)を環状に配設して球面座上面に載設
し、下位のフランジ板周辺付近には球面座の下面直下に
環状の周縁(6)を凸設し、支持筒の上位内には関節継
手(8)を設け、同継手上位には、構造物を支承するた
め、支承板(7)を支設してなる免震支承盤。
An annular plate-shaped spherical seat (2) opened at a central position on a base (1) laid on a foundation is formed, and the upper and lower sides of a support cylinder (4) are formed inside the central opening of the spherical seat. At the end position, a pair of disk-shaped flange plates (3, 3) are arranged side by side on the spherical seat so as to face each other. And mounted on the upper surface of the spherical seat, an annular rim (6) is protruded immediately below the lower surface of the spherical seat near the lower flange plate, and an articulated joint (8) is provided in the upper portion of the support cylinder. A seismic isolation bearing board with a bearing plate (7) installed above the joint to support the structure.
JP2000005903U 2000-07-11 2000-07-11 Seismic isolation bearing board Expired - Fee Related JP3074800U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000005903U JP3074800U (en) 2000-07-11 2000-07-11 Seismic isolation bearing board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005903U JP3074800U (en) 2000-07-11 2000-07-11 Seismic isolation bearing board

Publications (1)

Publication Number Publication Date
JP3074800U true JP3074800U (en) 2001-01-26

Family

ID=43207947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005903U Expired - Fee Related JP3074800U (en) 2000-07-11 2000-07-11 Seismic isolation bearing board

Country Status (1)

Country Link
JP (1) JP3074800U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504275A (en) * 2017-01-10 2020-02-06 ヨル キム、フン Seismic isolation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504275A (en) * 2017-01-10 2020-02-06 ヨル キム、フン Seismic isolation device

Similar Documents

Publication Publication Date Title
CN206204800U (en) A kind of Bridge Rotation Construction Technique rotary body device
KR101440878B1 (en) Friction pendulum bearing with cover plate and fixing jig
CN107090769A (en) Bridge pad
CN109488042A (en) A kind of civil engineering combined type support stake
JP3074800U (en) Seismic isolation bearing board
JP3976423B2 (en) Vibration suppression device
CN108301334B (en) Pier top swivel spherical hinge with beam falling prevention function and swivel method
CN202298454U (en) Auto-resetting seism reduction and insulation pot type rubber support seat
TW482848B (en) Shock proof sliding mechanism
CN109573829B (en) Self-balancing compensation heavy hydraulic lifting beam of monorail crane
JP2007297895A (en) Mechanical base isolation device
JP2000074138A (en) Slide type base isolation device for lightweight structure
CN106050940A (en) Bearing mounting buckle and bearing assembly
CN206928183U (en) A kind of spheroid shape girder falling vibration absorption and isolation support
CN210859657U (en) Variable-friction variable-frequency concave-curved-surface damping rolling ball shock insulation support
CN206204774U (en) A kind of bridge steel structure shock-resistant ball support
CN111535170B (en) Open climbing mechanism of robot of easy installation for building cable
CN206873281U (en) Bridge pad
JP2575283B2 (en) Seismic isolation device
JPH033729Y2 (en)
CN211547303U (en) Automatic leveling bridge beam supports
CN212670268U (en) Spherical wind-resistant support
CN206051248U (en) A kind of escalator anti-seismic structure
CN211472148U (en) Bridge steel structure spherical support of combatting earthquake
CN216999359U (en) Composite rotating body system rotating body support

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees