JP3074694B2 - Charging device - Google Patents

Charging device

Info

Publication number
JP3074694B2
JP3074694B2 JP02050360A JP5036090A JP3074694B2 JP 3074694 B2 JP3074694 B2 JP 3074694B2 JP 02050360 A JP02050360 A JP 02050360A JP 5036090 A JP5036090 A JP 5036090A JP 3074694 B2 JP3074694 B2 JP 3074694B2
Authority
JP
Japan
Prior art keywords
voltage
charging
battery
current
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02050360A
Other languages
Japanese (ja)
Other versions
JPH03253232A (en
Inventor
浩二 梅津
真義 笹木
次男 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP02050360A priority Critical patent/JP3074694B2/en
Publication of JPH03253232A publication Critical patent/JPH03253232A/en
Application granted granted Critical
Publication of JP3074694B2 publication Critical patent/JP3074694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二次電池の電圧、充電量、充電終了等を検出
するために用いて好適な充電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a charging device suitable for detecting a voltage, a charge amount, a charge end, and the like of a secondary battery.

〔発明の概要〕[Summary of the Invention]

本発明は二次電池の電圧、充電量、充電終了等を検出
するために用いて好適な充電装置に関し二次電池を定電
流充電制御及び定電圧充電制御する充電装置において、
充電電流を所定の周期にて間欠的に切り換える充電制御
手段と、間欠時に充電電流を微小電流に制御する出力制
御手段と、間欠時に電池電圧を検出する電圧検出手段と
を具備し、電圧検出手段により検出された電圧値から上
記二次電池の電池充電量を設定すると共に、間欠状態前
の電池電圧と間欠状態の電池電圧との電圧を検出し、電
圧差が所定の電圧値以下になったときに充電終了するこ
とで電池電圧検出時の精度を高めて充電量及び充電終了
検出等を行なえる充電装置が得られる様にしたものであ
る。
The present invention relates to a charging device suitable for use in detecting the voltage of a secondary battery, the amount of charge, the end of charging, and the like, with respect to a charging device that performs constant current charging control and constant voltage charging control on a secondary battery,
A voltage control means for intermittently switching the charging current at a predetermined cycle; an output control means for controlling the charging current to a very small current during the intermittent operation; and a voltage detecting means for detecting the battery voltage during the intermittent operation. The battery charging amount of the secondary battery is set from the voltage value detected by the above, the voltage between the battery voltage before the intermittent state and the battery voltage in the intermittent state is detected, and the voltage difference becomes equal to or less than the predetermined voltage value. A charging device capable of detecting the amount of charge and detecting the end of charging by increasing the accuracy of battery voltage detection by occasionally ending charging is provided.

〔従来の技術〕[Conventional technology]

一般に、充電可能な二次電池等では、この二次電池充
電中の充電量を計測する場合、二次電池の開放電圧
(V)と充電量(%)との間に図4の曲線(20)に示さ
れる様な相関関係があれば二次電池の開放電圧V1,V2
‥V4を計測することで、この二次電池の充電量を検出す
ることが出来る。ここで、図6Aの回路図に示す様に、例
えば、商用AC電源のコンセントに挿入されるプラグ
(1)を有する充電器(21)の出力端にスイッチング手
段(22)を介して充電すべき二次電池(12)を接続して
充電中の開放電圧を計測する場合にはスイッチング手段
(22)を“オフ”状態にして、電圧計(23)等で二次電
池(12)の開放電圧を計測する様にしている。一般に、
二次電池(12)を急速充電する場合、定電流充電が行な
われ、例えば比較的大きい1A〜2Aの充電電流を二次電池
(12)に供給するため、この大電流を“オン”“オフ”
させるスイッチング手段(22)としては大電流用スイッ
チが必要となり、この様なスイッチはコストが上昇する
だけでなく、信頼性も劣化する問題があった。更に、こ
の様に大電流で急速充電を行なっている場合、充電器
(21)と二次電池(12)間の配線抵抗、接点抵抗、二次
電池(12)の内部抵抗で電圧降下が発生する。特に二次
電池をケーシング内に収納し、一つの付属部品として扱
う。ビデオカメラ等では電池着脱時の正及び負極端子は
接点構造と成され、充電器(21)に接点構造を介し接続
される形となる。この部分の接点抵抗は通常は50mΩ〜1
00mΩ程度であるが着脱を繰返していると、その値は200
mΩ程度迄変化する。即ち、二次電池の着脱毎に接点抵
抗が変化し、充電中の二次電池の開放電圧の変化量は、
例えば、充電電流2A、接点抵抗200mΩでは0.4Vである
が、同じ充電電流2A、接点抵抗100mΩでは0.2Vとなり、
電圧変化量は大きくなる。即ち、図5の充電特性曲線に
示す様に、急速充電時の電池電圧特性曲線(25)に対
し、二次電池(12)の開放電圧特性曲線(26)は破線で
示される様に電圧差が発生してしまう。尚、(27)は急
速充電時の充電電流特性曲線を示している。この様な開
放電圧の電圧変化の影響を受けずに開放電圧を検出する
ために上述した図6Aに示す様にスイッチ手段(22)を
“オフ”にしこの時の開放電圧を検出すれば大容量のス
イッチング手段(22)を必要とする弊害が発生する。そ
こで図6Bに示す様に、二次電池(12)を収納するケーシ
ング(24)に多くの接点群(13)(14)(13a)(14a)
を設け接点群のうち接点(13)(14)間に二次電池を接
続して大電流を流し、接点(13a)(14a)間に電圧計
(23)等を接続して電圧を検出することも行なわれてい
る。
Generally, in a rechargeable secondary battery or the like, when measuring the charge amount during the charging of the secondary battery, the curve (20) in FIG. 4 is used between the open voltage (V) and the charge amount (%) of the secondary battery. If there is a correlation as shown in), the open-circuit voltages V 1 , V 2の of the secondary battery
‥ V 4 By measuring, it is possible to detect the amount of charge of the secondary battery. Here, as shown in the circuit diagram of FIG. 6A, for example, the output terminal of a charger (21) having a plug (1) inserted into an outlet of a commercial AC power supply should be charged via a switching means (22). To measure the open voltage during charging by connecting the secondary battery (12), set the switching means (22) to the "OFF" state, and use a voltmeter (23) or the like to open the open voltage of the secondary battery (12). Is measured. In general,
When the secondary battery (12) is rapidly charged, constant current charging is performed. For example, in order to supply a relatively large charging current of 1A to 2A to the secondary battery (12), this large current is turned on and off. "
A high-current switch is required as the switching means (22) for making such a switch, and such a switch has a problem that not only the cost is increased but also the reliability is deteriorated. Furthermore, when rapid charging is performed with such a large current, a voltage drop occurs due to wiring resistance, contact resistance between the charger (21) and the secondary battery (12), and the internal resistance of the secondary battery (12). I do. In particular, the secondary battery is housed in a casing and handled as one accessory part. In a video camera or the like, the positive and negative terminals when the battery is attached / detached have a contact structure, and are connected to the charger (21) via the contact structure. The contact resistance of this part is usually 50mΩ ~ 1
Although it is about 00mΩ, the value is 200
It changes to about mΩ. That is, the contact resistance changes each time the secondary battery is attached or detached, and the amount of change in the open-circuit voltage of the secondary battery during charging is:
For example, when the charging current is 2A and the contact resistance is 200mΩ, the voltage is 0.4V. However, when the charging current is 2A and the contact resistance is 100mΩ, the voltage is 0.2V.
The voltage change amount increases. That is, as shown in the charging characteristic curve of FIG. 5, the open-circuit voltage characteristic curve (26) of the secondary battery (12) is different from the battery voltage characteristic curve (25) at the time of quick charging as shown by the broken line. Will occur. Incidentally, (27) shows a charging current characteristic curve at the time of rapid charging. In order to detect the open-circuit voltage without being affected by such a change in the open-circuit voltage, the switch means (22) is turned off as shown in FIG. An adverse effect that requires the switching means (22) occurs. Therefore, as shown in FIG. 6B, a large number of contact groups (13) (14) (13a) (14a) are provided in a casing (24) for accommodating the secondary battery (12).
A secondary battery is connected between the contacts (13) and (14) of the contact group to allow a large current to flow, and a voltmeter (23) is connected between the contacts (13a) and (14a) to detect voltage. Things have also been done.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来例で説明した様に、図6Aに示す構成の充電装置で
は急速充電時の大電流1A〜2Aの電流を“オン”“オフ”
させるための大容量のスイッチング手段(22)を必要と
し、この様な大電流に耐え得るスイッチング手段はコス
トが高いだけでなく、信頼性も劣る問題があった。更に
図6Bに示す構成の充電装置ではスペース,コストの面で
不利であるだけでなく二次電池の内部抵抗を含んだまま
測定するために開放電圧測定時の精度も劣化する問題が
あった。
As described in the conventional example, in the charging device having the configuration shown in FIG. 6A, the large current 1A to 2A at the time of rapid charging is turned on and off.
A large-capacity switching means (22) is required for the switching, and a switching means capable of withstanding such a large current has a problem that the cost is high and the reliability is poor. Furthermore, the charging device having the configuration shown in FIG. 6B is disadvantageous not only in terms of space and cost, but also has a problem in that the accuracy of the open-circuit voltage measurement is deteriorated because the measurement is performed while including the internal resistance of the secondary battery.

本発明は叙上の問題点を解決するために成されたもの
で、その目的とするところは上記した各種抵抗分の電圧
降下による誤差を少くするために充電時電流が小さい所
で電圧を検出する様にし、電池電圧検出精度を向上させ
た充電装置を得る様にしたものである。
The present invention has been made in order to solve the above-mentioned problems, and has as its object to detect a voltage at a place where a charging current is small in order to reduce an error due to a voltage drop of the above-described various resistors. Thus, a battery charger with improved battery voltage detection accuracy is obtained.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の充電装置はその例が図1及び図2に示されて
いる様に、二次電池を定電流充電制御及び定電圧充電制
御する充電装置において、充電電流を所定の周期にて間
欠的に切り換える充電制御手段と、間欠時に充電電流を
微小電流に制御する出力制御手段と、間欠時に電池電圧
を検出する電圧検出手段とを具備し、電圧検出手段によ
り検出された電圧値から上記二次電池の電池充電量を設
定すると共に、間欠状態前の電池電圧と間欠状態の電池
電圧との電圧を検出し、電圧差が所定の電圧値以下にな
ったときに充電終了するように成したものである。
As shown in FIG. 1 and FIG. 2, the charging device of the present invention is a charging device that performs constant current charging control and constant voltage charging control on a secondary battery. And a voltage control means for controlling the charging current to a very small current when intermittent, and a voltage detecting means for detecting the battery voltage during intermittent operation. In addition to setting the battery charge amount of the battery, detecting the voltage between the battery voltage before the intermittent state and the battery voltage in the intermittent state and terminating the charging when the voltage difference falls below a predetermined voltage value. It is.

〔作用〕[Action]

本発明の充電装置によれば、出力電流誤差検出手段
(17)の基準電圧源REF1及びREF2の基準電圧を制御手段
(10)で切換えることで切換時の二次電池(12)の電圧
を検出し、この検出時の電池開放電圧の検出精度を高め
ると共に充電量、充電終了検出をも可能としたものであ
る。
According to the charging device of the present invention, the output current error reference voltage source REF 1 and the voltage of the secondary battery (12) that is switching to switch control means a reference voltage REF 2 (10) of the detecting means (17) Is detected, the detection accuracy of the battery open-circuit voltage at the time of this detection is improved, and the charge amount and the charge end can be detected.

〔実施例〕〔Example〕

以下、本発明の充電装置の一実施例を図1乃至図3に
ついて説明する。図1は本例の全体的な系統図を示すも
のであり、図2は図1の要部の回路図で充電の為の制御
回路をCPUで行なう場合の回路例であり、図3は本例の
充電特性曲線説明図である。
Hereinafter, an embodiment of the charging device of the present invention will be described with reference to FIGS. FIG. 1 shows an overall system diagram of the present embodiment, FIG. 2 is a circuit diagram of a main part of FIG. 1, and is a circuit example when a control circuit for charging is performed by a CPU, and FIG. It is a charge characteristic curve explanatory view of an example.

図1で商用交流電源のコンセントに挿入された交流プ
ラグ(1)からの交流電圧は入力フィルタ(2)、整流
回路(3)、変換トランス(4)並に整流平滑回路
(5)を介して直流化されて、この直流電圧は二次電池
(12)の陽極端子が接続され、充電が行なわれる正端子
(13)に供給される。負端子(14)には二次電池(12)
の陰極端子が接続されると共に充電電流検出用の抵抗器
(15)が負端子(14)と接地間に接続され充電電流検出
用の抵抗器(15)と負端子(14)の接続点から取り出さ
れた充電電流は出力制御回路(8)に供給される。平滑
回路(5)から正端子(13)を介して二次電池(12)に
供給される充電電圧は充電電圧検出回路(9)にも供給
され、充電電圧検出回路(9)で検出された検出電圧は
充電制御回路(10)に供給される。充電制御回路(10)
には表示部(11)が接続される。この表示部(11)で例
えば、図4で説明した様に電池開放電圧を計測すること
で充電量表示が行なわれる。充電用の制御回路(10)は
マイクロコンピュータ(以下CPUと記す)等で構成さ
れ、出力制御回路(8)を制御する。出力制御回路
(8)内には後述するも、充電電流検出用抵抗器(15)
のホット端子から供給される充電電流と基準電流とを比
較する定電流制御手段とを有する。CPU(10)は出力制
御回路(8)内の定電流制御手段の基準電圧を切換制御
する制御信号を出力する。出力制御回路(8)の出力は
フォトカプラ(7)の発光素子に供給される。この発光
素子から発光された光は受光素子で電気信号に変換され
てPWM(パルス幅変調)制御回路(6)に供給され、整
流回路(3)から変換トランジスタに供給される直流出
力をトランジスタ(16)を介してPWMする。
In FIG. 1, an AC voltage from an AC plug (1) inserted into an outlet of a commercial AC power supply is input through an input filter (2), a rectifier circuit (3), a conversion transformer (4) and a rectifier / smoothing circuit (5). This DC voltage is supplied to the positive terminal (13) where the anode terminal of the secondary battery (12) is connected and charging is performed. Rechargeable battery (12) at negative terminal (14)
Is connected between the negative terminal (14) and the ground, and the charge current detecting resistor (15) is connected to the negative terminal (14). The extracted charging current is supplied to the output control circuit (8). The charging voltage supplied from the smoothing circuit (5) to the secondary battery (12) via the positive terminal (13) is also supplied to the charging voltage detection circuit (9) and detected by the charging voltage detection circuit (9). The detection voltage is supplied to the charge control circuit (10). Charge control circuit (10)
Is connected to the display unit (11). For example, the display unit (11) displays the amount of charge by measuring the battery open voltage as described with reference to FIG. The charging control circuit (10) is constituted by a microcomputer (hereinafter, referred to as CPU) or the like, and controls the output control circuit (8). In the output control circuit (8), a charging current detecting resistor (15)
And a constant current control means for comparing a charging current supplied from the hot terminal with a reference current. The CPU (10) outputs a control signal for switching and controlling the reference voltage of the constant current control means in the output control circuit (8). The output of the output control circuit (8) is supplied to the light emitting element of the photocoupler (7). The light emitted from the light emitting element is converted to an electric signal by a light receiving element and supplied to a PWM (pulse width modulation) control circuit (6), and the DC output supplied from the rectifying circuit (3) to the conversion transistor is converted to a transistor ( 16) Via PWM.

上述の系統図の要部の具体的回路を図2で説明する。
図1と対応部分には同一符号を付して説明する。変換ト
ランス(4)の1次側巻線の一端は整流回路(3)の一
端に他端はPWM制御回路(6)を構成する出力トランジ
スタ(16)のコレクタに接続され、エミッタは接地され
る。トランジスタ(16)のベースはPWM制御回路(6)
の出力端に接続されている。PWM制御回路(6)の入力
端にはフォトカプラ(7)を構成するフォトトランジス
タの如き受光素子Tr2のコレクタが接続され、エミッタ
は接地され、ベースは発光素子CD2からの光を受光す
る。フォトカプラ(7)を構成する発光ダイオード等か
ら成る発光素子CD2のアノードは充電する二次電池(1
2)の陽極が接続される正端子(13)に抵抗器R1を介し
て接続され、発光素子CD2のカソードは出力制御回路
(8)を構成する出力電流誤差検出用のオペアンプ(1
7)の出力端に接続されている。変換トランス(4)の
二次巻線側にはダイオードCD1とコンデンサC1等からな
る整流、平滑回路(5)が設けられている。変換トラン
ス(4)の二次巻線の一端は接地され、他端はダイオー
ドCD1のアノードに接続され、ダイオードCD1のカソード
はコンデンサC1の一端に接続されると共に二次電池(1
2)の接続される正端子(13)に接続されている。コン
デンサC1の他端は接地される。二次電池(12)の陰極の
接続される負端子(14)には充電電流検出用抵抗器(1
5)が接続され、この抵抗器(15)の一端は接地されて
いる。抵抗器(15)と負端子(14)の接続中点から取り
出された充電電流は定電流制御手段を構成する出力電流
誤差検出用のオペアンプ(17)の非反転入力端子に供給
される。このオペアンプ(17)の反転入力端子はスイッ
チSWの可動接片aに接続され、スイッチSWの固定接点b,
cは二つの基準電圧源REF1及びREF2に接続されている。
基準電圧源REF1及びREF2の他端は各々接地されている。
この基準電圧源REF1及びTEF2の電圧はスイッチSWを介し
て切換選択するだけでなく、1つの基準電圧源の電圧を
連続的に可変する電圧可変手段を設ける様にしてもよ
い。このスイッチSW又は電圧可変手段はCPU(10)の出
力で制御される。CPU(10)内にはデジタル−アナログ
変換手段及びアナログ−デジタル変換手段等を含みスイ
ッチSWを制御する制御信号(10a)をアナログ信号に変
換して出力すると共にアナログ的な充電電流をデジタル
変換してCPU(10)に供給する。
A specific circuit of a main part of the above system diagram will be described with reference to FIG.
Parts corresponding to those in FIG. 1 will be described with the same reference numerals. One end of the primary winding of the conversion transformer (4) is connected to one end of a rectifier circuit (3) and the other end is connected to the collector of an output transistor (16) constituting a PWM control circuit (6), and the emitter is grounded. . The base of the transistor (16) is a PWM control circuit (6)
Connected to the output end of the The input end of the PWM control circuit (6) the collectors of such light-receiving element T r2 of the phototransistor constituting the photocoupler (7) is connected, the emitter is grounded, the base receives light from the light emitting element CD 2 . Secondary battery anode of the light emitting element CD 2 consisting of a light emitting diode or the like constituting a photocoupler (7) for charging (1
Is connected through a resistor R 1 to the positive terminal of the anode 2) is connected (13), the output current error detecting operational amplifier cathode of the light emitting element CD 2 constituting the output control circuit (8) (1
7) is connected to the output end. Conversion transformer (4) of the secondary winding side rectifying consisting diode CD 1 and the capacitor C 1 and the like, a smoothing circuit (5) is provided. One end of the secondary winding of the converter transformer (4) is grounded, the other end is connected to the anode of the diode CD 1, the secondary battery with the cathode of the diode CD 1 is connected to one end of the capacitor C 1 (1
It is connected to the positive terminal (13) to be connected in 2). The other end of the capacitor C 1 is grounded. The negative terminal (14) to which the cathode of the secondary battery (12) is connected has a resistor (1
5) is connected, and one end of this resistor (15) is grounded. The charging current extracted from the midpoint of the connection between the resistor (15) and the negative terminal (14) is supplied to the non-inverting input terminal of an output current error detecting operational amplifier (17) constituting a constant current control means. The inverting input terminal of the operational amplifier (17) is connected to the movable contact a of the switch SW, and the fixed contacts b,
c is connected to two reference voltage sources REF 1 and REF 2.
The other end of reference voltage source REF 1 and REF 2 are each connected to ground.
Voltage of the reference voltage source REF 1 and TEF 2 is not only selected by switching over the switch SW, it may be as provided voltage varying means for varying the voltage of one of the reference voltage source continuously. This switch SW or voltage varying means is controlled by the output of the CPU (10). The CPU (10) includes digital-to-analog conversion means and analog-to-digital conversion means, etc., converts the control signal (10a) for controlling the switch SW into an analog signal and outputs it, and also converts the analog charging current to digital. To the CPU (10).

上述の構成に於ける本例の動作を図3の充電特性曲線
図と共に説明する。
The operation of this example in the above configuration will be described with reference to the charging characteristic curve diagram of FIG.

図1及び図2で商用AC電源を入力フィルタ(2)、整
流回路(3)、PWM制御回路(6)、変換トランス
(4)、整流、平滑回路(5)を介して充電電圧が二次
電池(12)に供給される。オペアンプ(17)は抵抗器
(15)に流れる充電電流を基準電圧源REF1と比較し、そ
の出力誤差電流をフォトカプラ用の発光素子CD2に流
し、図3Aに示す急速充電電流特性曲線(27)の定電流曲
線(27a)で示す様に例えば、2Aになる様に定電流駆動
する。
In FIG. 1 and FIG. 2, the charging voltage is changed to secondary through the input filter (2), the rectifier circuit (3), the PWM control circuit (6), the conversion transformer (4), the rectifier, and the smoothing circuit (5). Supplied to the battery (12). Operational amplifier (17) compares the charging current flowing through the resistor (15) and the reference voltage source REF 1, flow the output error current to the light emitting element CD 2 of photocoupler, fast-charge current characteristic curve shown in FIG. 3A ( For example, as shown by the constant current curve (27a) of 27), the constant current drive is performed so that the current becomes 2A.

この定電流制御が行なわれる期間I(図3A参照)では
急速充電時間電池電圧特性曲線(25)及び電池開放電圧
特性曲線(26)は徐々に電圧を上昇させ、飽和領域IIで
はこれらの電圧が一定となり、充電電流は徐々に降下し
て行く。一般にはこのI及びII領域ではスイッチングレ
ギレータは定電流及び定電圧制御を行なうことになる。
In the period I (see FIG. 3A) in which the constant current control is performed, the battery voltage characteristic curve (25) and the battery open-circuit voltage characteristic curve (26) of the quick charging time gradually increase the voltage. It becomes constant, and the charging current gradually decreases. Generally, in the I and II regions, the switching regulator performs constant current and constant voltage control.

本例では定電流制御手段のみを示している。 In this example, only the constant current control means is shown.

上述のオペアンプ(17)の誤差信号はフォトカプラ
(7)の発光素子CD2→受光素子Tr2を介してPWM制御回
路(6)に供給され、トランジスタ(16)と変換トラン
ス(4)並に整流、平滑回路(5)を介して二次電池
(12)に供給する充電電流(図示していないが充電電圧
も含めて)の出力を一定に制御する。本例では電池電圧
を測定するときは、CPU(10)からスイッチSWに制御信
号を出力しスイッチSWの可動接片aを基準電圧源REF2
に切換える。この基準電圧源REF2の基準電圧V1は図3A及
びその拡大波形図の図3B及びCに示す様に急速充電電流
特性曲線(27)及び定電流曲線(27a)に於いて、スイ
ッチング時の定電流が例えば、微小電流の0.1A以下(0
を含む)になる様に設定する。この様な0.1Aのスイッチ
ング定電流制御時の急速充電時電池電圧特性曲線(25)
の急速充電2A電池電圧(25a)は電池開放電圧特性曲線
(26)の0.1A充電時電池電圧≒電池開放電圧となる。こ
の時の二次電池の電圧を充電電圧検出回路(9)で検出
し、この検出電圧をCPU(10)に供給し、図4に示した
関係に基づき表示部(11)上のLED(例えば25%充電量
を表示する表示素子)を点灯させることで25%の充電が
完了したことを表示することが出来る。この様な制御信
号(10a)による急速充電と電圧検出充電を行なう為の
基準電圧源REF1及びREF2の切換は例えば1分〜5分の間
に1回程度の周期で行なわれる。定電圧制御領域IIに入
っても、この様なスイッチングを行なえば図3Cに示す様
に電池の充電終了状態をも検出することが出来る。即
ち、急速充電2A電池電圧(25a)と0.1A充電時電池電圧
(26a)の電圧差=ΔVを電圧測定し、この−ΔVが所
定の電圧値以下となった時に充電終了とする様にすれば
よい。
The error signal of the above operational amplifier (17) is supplied to the PWM control circuit (6) via the light-emitting element CD 2 → light receiving element T r2 of the photocoupler (7), and conversion transformer (4) to the parallel transistor (16) The output of a charging current (including a charging voltage, not shown) supplied to the secondary battery (12) via the rectification and smoothing circuit (5) is controlled to be constant. When in this example of measuring the battery voltage, and outputs a control signal from the CPU (10) to the switch SW switches the movable contact piece a of the switch SW to the reference voltage source REF 2 side. Reference voltages V 1 of the reference voltage source REF 2 is at the fast charge current characteristic curve (27) and the constant current curves (27a) as shown in FIG. 3B and C of FIG. 3A and the enlarged waveform chart, at the time of switching The constant current is, for example, 0.1 A or less (0
). Battery voltage characteristic curve at the time of quick charge under such 0.1A switching constant current control (25)
The quick-charge 2A battery voltage (25a) of the battery is the battery open-circuit voltage characteristic curve (26) when the battery voltage at the time of 0.1A charging is divided by the battery open-circuit voltage. The voltage of the secondary battery at this time is detected by the charging voltage detection circuit (9), and the detected voltage is supplied to the CPU (10), and the LED (eg, By lighting the display element that displays the 25% charge amount, it is possible to indicate that the 25% charge is completed. Such control signal (10a) fast charge and voltage detecting charging of the reference voltage source REF 1 and REF 2 for performing switching according to is carried out in a cycle of about once, for example, between 1 to 5 minutes. Even in the constant voltage control region II, if such a switching is performed, it is possible to detect the charge end state of the battery as shown in FIG. 3C. That is, the voltage difference between the fast-charge 2A battery voltage (25a) and the battery voltage at the time of 0.1A charging (26a) = ΔV is measured, and the charging is terminated when the −ΔV falls below a predetermined voltage value. I just need.

この様な充電装置によれば電池電圧の検出精度は大幅
に改善される。即ち、微小電流が実施例の様に0.1Aであ
れば接点抵抗が200mΩと大きく変化しても、0.1A×200m
Ω=0.02Vと成り、2Aの充電電流切換に比べ20倍近くに
二次電池電圧検出精度を上げることができる。
According to such a charging device, the detection accuracy of the battery voltage is greatly improved. In other words, if the minute current is 0.1 A as in the embodiment, even if the contact resistance greatly changes to 200 mΩ, it is 0.1 A × 200 m
Ω = 0.02V, and the detection accuracy of the rechargeable battery voltage can be increased to nearly 20 times compared to the switching of the charging current of 2A.

更に図6Aで説明した様な大容量のスイッチ(22)が不
用となって小型化が出来る様になり、充電量を表示する
ことや充電終了状態を検出することの出来る充電装置が
得られる。
Further, the large-capacity switch (22) as described with reference to FIG. 6A is not required, so that the size can be reduced, and a charging device capable of displaying the charge amount and detecting the state of completion of charging can be obtained.

尚本発明は叙上の実施例に限定されることなく本発明
の要旨を逸脱しない範囲で種々変更し得ることは明らか
である。
It is apparent that the present invention is not limited to the above-described embodiments, but can be variously modified without departing from the gist of the present invention.

〔発明の効果〕〔The invention's effect〕

本発明の充電装置によれば電池電圧検出精度が向上
し、回路も簡単となり、充電量の表示や充電終了検出の
出来るものが得られる。
ADVANTAGE OF THE INVENTION According to the charging device of this invention, the accuracy of battery voltage detection improves, a circuit becomes simple, and the thing which can display the charge amount and can detect the end of charge is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の充電装置の一実施例を示す系統図である。FIG. 1 is a system diagram showing one embodiment of a charging device of the present invention.

【図2】 本発明の充電装置の一実施例を示す要部の回路図であ
る。
FIG. 2 is a circuit diagram of a main part showing an embodiment of the charging device of the present invention.

【図3】 本発明の充電特性曲線説明図である。FIG. 3 is an explanatory diagram of a charging characteristic curve of the present invention.

【図4】 従来の電池電圧−充電量特性曲線図である。FIG. 4 is a conventional battery voltage-charge amount characteristic curve diagram.

【図5】 従来の充電特性曲線説明図である。FIG. 5 is an explanatory diagram of a conventional charging characteristic curve.

【図6】 従来の充電装置の構成図である。FIG. 6 is a configuration diagram of a conventional charging device.

【符号の説明】[Explanation of symbols]

7……フォトカプラ、8……出力制御回路、9……充電
電圧検出回路、10……CPU、11……表示部、12……二次
電池、17……オペアンプ
7 photocoupler, 8 output control circuit, 9 charging voltage detection circuit, 10 CPU, 11 display unit, 12 rechargeable battery, 17 operational amplifier

フロントページの続き (56)参考文献 特開 昭49−133843(JP,A) 特開 昭63−209436(JP,A) 実開 平1−162738(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 - 7/10 H02J 7/34 - 7/35 Continuation of the front page (56) References JP-A-49-133843 (JP, A) JP-A-63-209436 (JP, A) JP-A-1-162738 (JP, U) (58) Fields studied (Int .Cl. 7 , DB name) H02J 7/ 00-7/10 H02J 7 /34-7/35

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二次電池を定電流充電制御及び定電圧充電
制御する充電装置において、 充電電流を所定の周期にて間欠的に切り換える充電制御
手段と、 間欠時に充電電流を微小電流に制御する出力制御手段
と、 間欠時に電池電圧を検出する電圧検出手段とを具備し、 上記電圧検出手段により検出された電圧値から上記二次
電池の電池充電量を設定すると共に、 上記間欠状態前の電池電圧と間欠状態の電池電圧との電
圧を検出し、 該電圧差が所定の電圧値以下になったときに充電終了す
ることを 特徴とする充電装置。
1. A charging device for controlling constant current charging and constant voltage charging of a secondary battery, a charging control means for intermittently switching the charging current at a predetermined cycle, and controlling the charging current to a very small current when intermittent. Output control means, and voltage detecting means for detecting a battery voltage at the time of intermittent operation. The battery charge of the secondary battery is set from the voltage value detected by the voltage detecting means, and the battery before the intermittent state is provided. A charging device comprising: detecting a voltage between a voltage and a battery voltage in an intermittent state; and terminating charging when the voltage difference becomes equal to or less than a predetermined voltage value.
【請求項2】上記充電装置によって得られた電池充電容
量を 表示部手段により表示することを特徴とする第1項記載
の充電装置。
2. The charging device according to claim 1, wherein the battery charging capacity obtained by the charging device is displayed on a display unit.
JP02050360A 1990-03-01 1990-03-01 Charging device Expired - Fee Related JP3074694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02050360A JP3074694B2 (en) 1990-03-01 1990-03-01 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02050360A JP3074694B2 (en) 1990-03-01 1990-03-01 Charging device

Publications (2)

Publication Number Publication Date
JPH03253232A JPH03253232A (en) 1991-11-12
JP3074694B2 true JP3074694B2 (en) 2000-08-07

Family

ID=12856727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02050360A Expired - Fee Related JP3074694B2 (en) 1990-03-01 1990-03-01 Charging device

Country Status (1)

Country Link
JP (1) JP3074694B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235332A (en) * 1994-02-24 1995-09-05 Sanyo Electric Co Ltd Method for charging secondary battery
JP3291402B2 (en) * 1994-10-20 2002-06-10 三洋電機株式会社 Rechargeable battery charging method
US5789924A (en) * 1997-03-20 1998-08-04 Sanyo Electric Co., Ltd. Method of calculating rechargeable battery charge capacity
JP2008029154A (en) * 2006-07-24 2008-02-07 Sanyo Electric Co Ltd Charger

Also Published As

Publication number Publication date
JPH03253232A (en) 1991-11-12

Similar Documents

Publication Publication Date Title
EP0448235B1 (en) Battery charging apparatus
US8035347B2 (en) Battery charger
RU2141155C1 (en) Method and device for determining type of external power supply
JPH1032938A (en) Battery charger
JPS5925533A (en) Quick charging circuit
US4290002A (en) Method and apparatus for controlling battery recharging
JP3074694B2 (en) Charging device
TWI669885B (en) Battery charge and discharge management method and system
JP3019353B2 (en) Charging device
KR100201445B1 (en) Display apparatus of charge amount
JP3505747B2 (en) Charging device
EP1202429B1 (en) An emergency lighting unit usable with different types of batteries
JP3175839B2 (en) Charging device and charging method
JPH08322157A (en) Charger
KR960010369Y1 (en) Charging circuit using voltage comparing circuit
JP2635346B2 (en) Charge control device
JPS596732A (en) Charger
JPS5999938A (en) Charger
KR900003185Y1 (en) Circuit controlling quick charging of battery
JP3426616B2 (en) Battery charger
JPH0576140A (en) Battery charger
JPH06213981A (en) Charge and discharge system
JP3040081U (en) Charging device
JPH0633649Y2 (en) Charger
JPS63242139A (en) Charge/discharge circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees