JP3069743B2 - Two-stage catalytic combustion reformer for fuel cells - Google Patents

Two-stage catalytic combustion reformer for fuel cells

Info

Publication number
JP3069743B2
JP3069743B2 JP2271701A JP27170190A JP3069743B2 JP 3069743 B2 JP3069743 B2 JP 3069743B2 JP 2271701 A JP2271701 A JP 2271701A JP 27170190 A JP27170190 A JP 27170190A JP 3069743 B2 JP3069743 B2 JP 3069743B2
Authority
JP
Japan
Prior art keywords
stage
tube
fuel
reaction
catalytic combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2271701A
Other languages
Japanese (ja)
Other versions
JPH04149003A (en
Inventor
哲朗 岡野
健吾 植松
Original Assignee
溶融炭酸塩型燃料電池発電システム技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 溶融炭酸塩型燃料電池発電システム技術研究組合 filed Critical 溶融炭酸塩型燃料電池発電システム技術研究組合
Priority to JP2271701A priority Critical patent/JP3069743B2/en
Publication of JPH04149003A publication Critical patent/JPH04149003A/en
Application granted granted Critical
Publication of JP3069743B2 publication Critical patent/JP3069743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池用二段触媒燃焼型改質器に係り、簡
潔な構造で二段目燃料の均一分散を確保するのに好適な
改質器に関する。
The present invention relates to a two-stage catalytic combustion type reformer for a fuel cell, and has a simple structure suitable for ensuring uniform dispersion of the second-stage fuel. Regarding porcelain.

〔従来の技術〕[Conventional technology]

従来技術による二段触媒燃焼型改質器の構造を第13A
図、第13B図に示す。
The structure of the conventional two-stage catalytic combustion type reformer is 13A
This is shown in FIG. 13B.

この改質器において、原料の炭化水素は原料入口ノズ
ル1から改質器内に入り、まず改質器一端部を占める原
料ヘッダー2を通り、原料ヘッダ2を仕切る管板から林
立し、外管3と内管4との二重管からなる反応管の外管
3と内管4の間の改質触媒層5を通過し、改質反応によ
り水素リッチの改質ガスを発生する。発生した改質ガス
は外管3先端から流れ方向を反転し内管4内を自己熱回
収しながら通過して、改質器一端に設けられた出口ノズ
ル7から改質器外へ取り出される。
In this reformer, the raw material hydrocarbon enters the reformer through the raw material inlet nozzle 1, first passes through the raw material header 2 occupying one end of the reformer, and stands up from a tube sheet that partitions the raw material header 2. It passes through a reforming catalyst layer 5 between an outer tube 3 and an inner tube 4 of a reaction tube composed of a double tube of a tube 3 and an inner tube 4, and generates a hydrogen-rich reformed gas by a reforming reaction. The generated reformed gas reverses the flow direction from the end of the outer tube 3 and passes through the inner tube 4 while recovering self-heat, and is taken out of the reformer from an outlet nozzle 7 provided at one end of the reformer.

改質反応に必要な熱は、次に示す二段の触媒燃焼によ
り与えられる。すなわち、燃料は一段目と二段目の燃料
に二分され、一段目燃料は燃焼用空気と混合されて、改
質器他端に設けられた入口ノズル8より改質器内に入
り、入口ノズル8の上流側に設けられた一段目燃焼触媒
層10で燃焼する。そこで燃焼した一段目燃焼ガスは、外
管3の周囲に充填された伝熱粒子層11を介して反応管に
熱を与えた後、外管3の中間部で外管3の周囲の空間か
らなる二段目予混合ゾーン12に入る。
The heat required for the reforming reaction is provided by the following two-stage catalytic combustion. That is, the fuel is divided into the first stage fuel and the second stage fuel, and the first stage fuel is mixed with the combustion air and enters the reformer through the inlet nozzle 8 provided at the other end of the reformer. The fuel is combusted in the first-stage combustion catalyst layer 10 provided on the upstream side of the fuel cell 8. The first-stage combustion gas thus burned gives heat to the reaction tube through the heat transfer particle layer 11 filled around the outer tube 3, and then, from the space around the outer tube 3 at an intermediate portion of the outer tube 3. Into the second stage premix zone 12.

一方、二段目燃料は一段目燃料の入口ノズル8とは反
対側である改質器一端の入口ノズル13から連絡管14を通
って、外管3相互の間に並行して設けられた燃料供給管
15を通り、燃料供給管15の先端の二段目燃料ノズル16か
ら予混合ゾーン12に噴出する。二段目燃料は前述の予混
合ゾーン12から改質器の一端方向に流れ、外管3回り二
段目燃焼触媒層17で燃焼し、さらに外管3の回りに形成
された二段目伝熱粒子層18を一段目燃焼ガスと一緒に通
過しながら反応管に熱を与え、それから改質器一端部に
設けられた燃焼ガス出口ノズル19から改質器の外部に出
る。
On the other hand, the second-stage fuel passes through the connecting pipe 14 from the inlet nozzle 13 at one end of the reformer opposite to the inlet nozzle 8 of the first-stage fuel, and is provided in parallel between the outer pipes 3. Supply pipe
After passing through the fuel supply pipe 15, the fuel is jetted from the second-stage fuel nozzle 16 at the tip of the fuel supply pipe 15 to the premixing zone 12. The second-stage fuel flows from the premixing zone 12 toward one end of the reformer, burns around the outer tube 3 in the second-stage combustion catalyst layer 17, and further forms the second-stage transmission formed around the outer tube 3. Heat is applied to the reaction tube while passing through the hot particle layer 18 together with the first stage combustion gas, and then exits the reformer through a combustion gas outlet nozzle 19 provided at one end of the reformer.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記の従来技術による二段触媒燃焼型改質器は装置構
造の簡素化、及び二段目燃料の予混合ゾーンにおける分
散の点について充分に配慮されていなかった。
The two-stage catalytic combustion type reformer according to the prior art described above does not sufficiently consider the simplification of the device structure and the dispersion of the second-stage fuel in the premix zone.

すなわち、第13Bの反応管・燃料供給管の平面配置図
に示す通り、燃料供給管15の数は千鳥に配列された反応
管3の間に1本づつ存在する。
That is, as shown in the plan view of the 13B reaction tube / fuel supply tube, the number of fuel supply tubes 15 is one between the reaction tubes 3 arranged in a staggered manner.

このため燃料供給管15は反応管3の員数以上必要とな
り部品点数が増加し装置構造が複雑化するという問題が
あった。
For this reason, the fuel supply pipe 15 needs more than the number of the reaction pipes 3, so that the number of parts increases and the structure of the apparatus becomes complicated.

本発明の目的は燃料電池用二段触媒燃焼型改質器の構
造を簡素化すると共に、一段目燃焼ガス流れに対する二
段目燃料の良好な混合性、分散性を確保することにあ
る。
An object of the present invention is to simplify the structure of a two-stage catalytic combustion type reformer for a fuel cell and to ensure good mixing and dispersibility of the second-stage fuel with respect to the first-stage combustion gas flow.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、燃料電池に供給する水素を液化天然ガス
等の炭化水素の水蒸気改質反応により生成する改質器で
あって、容器の一端側から供給される一段目燃料を燃焼
させる一段目触媒燃焼部と、該一段目触媒燃焼部と空間
部を隔てて設けられた二段目触媒燃焼部と、該二段目触
媒燃焼部を貫通し前記二段目触媒燃焼部内に達して林立
し改質触媒を内蔵する二重管型の反応管と、該反応管と
平行に設けられ前記空間部に二段目燃料を軸直角方向に
噴出する燃料供給管とを備え、前記反応管には炭化水素
を供給し、前記一段目及び二段目燃料として前記燃料電
池の排ガスを供給し、かつ前記反応管を構成する二重管
の外管内を流れる炭化水素は前記一段目及び二段目触媒
燃焼部の燃焼ガスとは反対方向に流れる燃料電池用二段
触媒燃焼型改質器において、前記反応管及び燃料供給管
の配列として、反応管を千鳥配列に配置し、該燃料供給
管と同一管径の反応管を該燃料供給管の回りに角度60度
ピッチで配置し、かつ隣り合う反応管と燃料供給管との
距離及び最も近接して隣り合う反応管同士の距離を等し
くし、燃料供給管を正六角形の中心に配置し反応管を正
六角形の各角点に配置した管組体の複数を千鳥配列した
ことを特徴とする燃料電池用二段触媒燃焼型改質器によ
って達成される。
An object of the present invention is to provide a reformer that generates hydrogen supplied to a fuel cell by a steam reforming reaction of a hydrocarbon such as liquefied natural gas, and a first-stage catalyst that burns a first-stage fuel supplied from one end of a container. A combustion section, a second-stage catalytic combustion section provided with a space portion separated from the first-stage catalytic combustion section, and a forest that penetrates through the second-stage catalytic combustion section and reaches the inside of the second-stage catalytic combustion section. A double-tube type reaction tube containing a porous catalyst, and a fuel supply tube which is provided in parallel with the reaction tube and jets a second-stage fuel into the space in a direction perpendicular to the axis. Hydrogen is supplied, the exhaust gas of the fuel cell is supplied as the first-stage and second-stage fuel, and the hydrocarbon flowing through the outer tube of the double tube constituting the reaction tube is subjected to the first-stage and second-stage catalytic combustion. To the two-stage catalytic combustion reformer for fuel cells flowing in the opposite direction to the combustion gas As the arrangement of the reaction tube and the fuel supply tube, the reaction tubes are arranged in a staggered arrangement, reaction tubes having the same diameter as the fuel supply tube are arranged around the fuel supply tube at a pitch of 60 degrees, and The distance between the adjacent reaction tubes and the fuel supply tube and the distance between the closest reaction tubes were made equal, the fuel supply tube was placed at the center of the regular hexagon, and the reaction tubes were placed at each corner of the regular hexagon. This is achieved by a two-stage catalytic combustion type reformer for a fuel cell, wherein a plurality of pipe assemblies are arranged in a staggered manner.

上記目的はまた、燃料電池に供給する水素を液化天然
ガス等の炭化水素の水蒸気改質反応により生成する改質
器であって、容器の一端側から供給される一段目燃料を
燃焼させる一段目触媒燃焼部と、該一段目触媒燃焼部と
空間部を隔てて設けられた二段目触媒燃焼部と、該二段
目触媒燃焼部を貫通し前記二段目触媒燃焼部内に達して
林立し改質触媒を内蔵する二重管型の反応管と、該反応
管と平行に設けられ前記空間部に二段目燃料を軸直角方
向に噴出する燃料供給管とを備え、前記反応管には炭化
水素を供給し、前記一段目及び二段目燃料として前記燃
料電池の排ガスを供給し、かつ前記反応管を構成する二
重管の外管内を流れる炭化水素は前記一段目及び二段目
触媒燃焼部の燃焼ガスとは反対方向に流れる燃料電池用
二段触媒燃焼型改質器において、前記反応管及び燃料供
給管の配列として、反応管を千鳥配列に配置し、該燃料
供給管と同一管径の反応管を該燃料供給管の回りに角度
60度ピッチで配置し、かつ隣り合う反応管と燃料供給管
との距離及び最も近接して隣り合う反応管同士の距離を
等しくし、燃料供給管を正六角形格子の中心に配置し反
応管を正六角形格子の各角点に配置した格子配列の外側
に、燃料供給管を正六角形の中心に配置し反応管を正六
角形の各角点に配置した管組体を配置し、格子配列中の
反応管と管組体中の反応管を一部重複させたことを特徴
とする燃料電池用二段触媒燃焼型改質器によって達成さ
れる。
The above object is also a reformer for generating hydrogen to be supplied to a fuel cell by a steam reforming reaction of a hydrocarbon such as liquefied natural gas, and the first stage for burning the first stage fuel supplied from one end side of the container. A catalytic combustion section, a second-stage catalytic combustion section provided with a space separated from the first-stage catalytic combustion section, and penetrating through the second-stage catalytic combustion section to reach the inside of the second-stage catalytic combustion section and stand. A double-tube type reaction tube containing a reforming catalyst, and a fuel supply tube provided in parallel with the reaction tube and ejecting a second-stage fuel to the space in a direction perpendicular to the axis. The hydrocarbon is supplied, the exhaust gas of the fuel cell is supplied as the first and second stage fuels, and the hydrocarbon flowing in the outer tube of the double tube constituting the reaction tube is the first and second stage catalyst. Two-stage catalytic combustion reforming for fuel cells flowing in the opposite direction to the combustion gas in the combustion section Angle in, as an array of the reaction tube and the fuel supply tube, the reaction tube was placed in a staggered arrangement, the reaction tube of the same pipe diameter as the fuel supply tube around the fuel supply pipe
Arrange at a 60 degree pitch, equalize the distance between adjacent reaction tubes and the fuel supply tube and the distance between the closest adjacent reaction tubes, arrange the fuel supply tube at the center of the regular hexagonal lattice, and arrange the reaction tubes. Outside the grid array arranged at each corner point of the regular hexagonal lattice, a pipe assembly in which the fuel supply pipe is arranged at the center of the regular hexagon and the reaction tube is arranged at each square point of the regular hexagon is arranged. This is achieved by a two-stage catalytic combustion type reformer for a fuel cell, wherein the reaction tube and the reaction tube in the tube assembly are partially overlapped.

前記反応管及び燃料供給管の配列として、最も近接し
て隣り合う反応管の距離を反応管外径の1.1〜1.3倍とす
ることが好ましい。
In the arrangement of the reaction tubes and the fuel supply tubes, it is preferable that the distance between the closest reaction tubes is 1.1 to 1.3 times the outer diameter of the reaction tube.

前記二段目燃料の噴出速度を前記空間部を流れる一段
目燃焼ガス流速の30倍以上とすることが好ましい。
It is preferable that the ejection speed of the second-stage fuel be 30 times or more the flow speed of the first-stage combustion gas flowing through the space.

〔作用〕[Action]

管径を同一とする反応管及び燃料供給管の配列とし
て、燃料供給管の回りに角度60度ピッチで等距離に反応
管を配置した場合、すなわち正六角形格子の中心に燃料
供給管を配置し各角点に反応管を配置する格子配列、ま
たは正六角形の中心に燃料供給管を配置し各角点に反応
管を配置した管組体を千鳥配列した場合、高密度で均一
な配列が可能になる。
As an arrangement of the reaction tubes and the fuel supply tubes having the same tube diameter, when the reaction tubes are arranged at an equal distance around the fuel supply tubes at a pitch of 60 degrees, that is, the fuel supply tubes are arranged at the center of the regular hexagonal lattice. High-density and uniform arrangement is possible when a grid arrangement where reaction tubes are arranged at each corner, or a staggered arrangement of pipes where fuel supply tubes are arranged at the center of a regular hexagon and reaction tubes are arranged at each corner become.

また上記の各配列で、二段目供給燃料の噴出速度を空
間部での一段目燃料ガスの流速の30倍以上にすることに
より、二段目燃料は燃料供給管から最も近接する反応管
までの距離の2倍程度の位置まで到達する。
In each of the above arrangements, the second-stage fuel is supplied from the fuel supply pipe to the closest reaction pipe by setting the ejection speed of the second-stage supply fuel to 30 times or more the flow rate of the first-stage fuel gas in the space. To a position about twice the distance of

〔実施例〕〔Example〕

以下、本発明による実施例の燃料電池用二段燃料型改
質器を図面により説明する。第1図は実施例の全体構造
図である。
Hereinafter, a two-stage fuel reformer for a fuel cell according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall structural view of the embodiment.

第1図において、原料の炭化水素は円筒形の容器の下
部に設けられた原料入口ノズル1から容器下端部を占め
る原料ヘッダー2を通り、原料ヘッダー2を仕切る管板
から上方へ並列して延び外管3と内管4との二重管から
なる複数の反応管の外管3と内管4の間に充填された改
質触媒層5を通過し、改質反応により水素リッチの改質
ガスを発生する。発生した改質ガスは外管3上端の閉塞
部から流れ方向を反転し内管4内を自己熱回収しながら
降下して、内管4に接続する連絡管20から改質ガスヘッ
ダー6を介して容器下端に設けられた改質ガス出口ノズ
ル7から容器外へ取り出される。
In FIG. 1, raw material hydrocarbons extend from a raw material inlet nozzle 1 provided at a lower portion of a cylindrical container, through a raw material header 2 occupying a lower end portion of the container, and upward in parallel from a tube sheet partitioning the raw material header 2. A plurality of reaction tubes comprising a double tube of an outer tube 3 and an inner tube 4 pass through a reforming catalyst layer 5 filled between the outer tube 3 and the inner tube 4 and reform in a hydrogen-rich manner by a reforming reaction. Generates gas. The generated reformed gas reverses the flow direction from the obstruction at the upper end of the outer tube 3, descends while recovering the heat inside the inner tube 4, and flows from the connecting tube 20 connected to the inner tube 4 via the reformed gas header 6. From the container through a reformed gas outlet nozzle 7 provided at the lower end of the container.

改質反応に必要な熱は、二段で起こす触媒燃焼により
与えられる。触媒燃焼させる燃料としては、この燃料電
池用二段触媒燃焼型改質器が水素を供給する燃料電池
(図示なし)からの排ガスが用いられる。この排ガスの
燃料は一段目と二段目の燃料に二分され、一段目燃料は
燃焼用空気と共に容器の上部に設けられた一段目燃料/
空気入口ノズル8より容器内に入り、その入口ノズル8
の下流側に設けられた予混合器9で混合され、次に一段
目燃焼触媒層10に入って燃焼する。そこで燃焼した一段
目燃焼ガスは下方に流れ、外管3の上部で外管3の周囲
に充填された一段目伝熱粒子層11を介して反応管に熱を
与えた後、外管3の中間部で外管3の周囲の空間からな
る二段目予混合ゾーン12に入る。ここで、一段目燃焼触
媒層10と一段目伝熱粒子層11とで一段目触媒燃焼部を構
成する。
The heat required for the reforming reaction is provided by catalytic combustion occurring in two stages. Exhaust gas from a fuel cell (not shown) to which hydrogen is supplied by the two-stage catalytic combustion reformer for a fuel cell is used as fuel for catalytic combustion. The fuel of this exhaust gas is divided into first-stage and second-stage fuels, and the first-stage fuel is combined with combustion air at the first-stage fuel /
The air enters the container through the air inlet nozzle 8 and the inlet nozzle 8
Are mixed by a premixer 9 provided downstream of the first stage, and then enter the first-stage combustion catalyst layer 10 and burn. Then, the first-stage combustion gas burned flows downward and gives heat to the reaction tube via the first-stage heat transfer particle layer 11 filled around the outer tube 3 at the upper part of the outer tube 3. In the middle part, it enters the second premixing zone 12 consisting of the space around the outer tube 3. Here, the first-stage combustion catalyst layer 10 and the first-stage heat transfer particle layer 11 constitute a first-stage catalytic combustion section.

一方、二段目燃料は容器下部に設けられた二段目燃料
入口ノズル13から連絡管14を通って外管3相互の間に並
行して上方に延びる二段目燃料供給管15の通り、二段目
燃料供給管15の先端に設けられ二段目予混合ゾーン12に
位置する二段目燃料ノズル16から予混合ゾーン12に水平
方向に噴出し、一段目燃焼ガスと混合、拡散する。この
二段目燃料と一段目燃焼ガスとの混合ガスは、予混合ゾ
ーン12の直下に形成された二段目燃焼触媒層17で燃焼し
て二段目燃焼ガスとなり、その二段目燃焼ガスはさらに
外管3下部でその外管3の回りに形成された二段目伝熱
粒子層18を降下しながら反応管に熱を与え、それから容
器下部に設けられた燃焼ガス出口ノズル19から出る。こ
こで、二段目燃焼触媒層17と二段目伝熱粒子層18とで二
段目触媒燃焼部を構成する。なお、二段目燃料供給管15
は、外管と内管の二重管構造をとり、外管と内管の間に
は例えばセラミックファイバの断熱材が充填されてい
る。
On the other hand, the second-stage fuel flows from the second-stage fuel inlet nozzle 13 provided at the lower part of the container through the communication tube 14 to the second-stage fuel supply tube 15 extending upward between the outer tubes 3 in parallel with each other, A second-stage fuel nozzle 16 provided at the end of the second-stage fuel supply pipe 15 and located in the second-stage premixing zone 12 horizontally jets into the premixing zone 12, and mixes and diffuses with the first-stage combustion gas. The mixed gas of the second-stage fuel and the first-stage combustion gas is burned in the second-stage combustion catalyst layer 17 formed immediately below the premixing zone 12 to become the second-stage combustion gas. Heats the reaction tube while descending the second stage heat transfer particle layer 18 formed around the outer tube 3 at the lower portion of the outer tube 3 and then exits from the combustion gas outlet nozzle 19 provided at the lower portion of the container. . Here, the second-stage combustion catalyst layer 17 and the second-stage heat transfer particle layer 18 constitute a second-stage catalytic combustion section. The second stage fuel supply pipe 15
Has a double-pipe structure of an outer pipe and an inner pipe, and a space between the outer pipe and the inner pipe is filled with a heat insulating material such as a ceramic fiber.

まず、本実施例の方式の二段触媒燃焼型改質器におい
て、一段目燃焼ガス及び二段目燃焼ガスは反応管内に形
成された改質触媒層のプロセスガスの流れと対向して流
れる。
First, in the two-stage catalytic combustion type reformer of the present embodiment, the first-stage combustion gas and the second-stage combustion gas flow in opposition to the flow of the process gas in the reforming catalyst layer formed in the reaction tube.

次に反応管3と燃料供給管15の最適配置について説明
する。
Next, the optimum arrangement of the reaction tube 3 and the fuel supply tube 15 will be described.

まず本方式の二段触媒燃焼型改質器において、一段目
燃焼ガス及び二段目燃焼ガスは反応管内プロセスガスの
流れと対向して流れる。従って燃焼ガス流速を上げ伝熱
を向上するための反応管配列としては正三角形の格子状
の千鳥配列が最も適している。
First, in the two-stage catalytic combustion type reformer of the present system, the first-stage combustion gas and the second-stage combustion gas flow in opposition to the flow of the process gas in the reaction tube. Therefore, an equilateral triangular lattice staggered arrangement is most suitable as the arrangement of the reaction tubes for increasing the combustion gas flow rate and improving the heat transfer.

一方、二段目燃料は供給ノズル16より燃焼ガス流と直
角方向に供給される。
On the other hand, the second-stage fuel is supplied from the supply nozzle 16 in a direction perpendicular to the combustion gas flow.

二段目燃料を均一に混合、分散させるための燃料供給
管15の配置方法としては、自由噴流の理論式及びこの理
論に基づいて行なった流動試験の結果によれば、第3A〜
3C図に示す3種類の基本パターンを組み合わせた第4〜
11図に示す各種の配列が最適であることが分った。
As a method of arranging the fuel supply pipe 15 for uniformly mixing and dispersing the second-stage fuel, according to the theoretical formula of the free jet and the result of the flow test performed based on this theory, the fuel supply pipes 3A to 3F
4th to 4th combinations of the three basic patterns shown in Fig. 3C
Various sequences shown in FIG. 11 were found to be optimal.

第3A図に示す基本パターンAは中央に燃料供給管22を
置きその周囲に60゜ピッチで等距離に6本の反応管21を
並行して配置する方式でこれが全ての配置方法の基本と
なる。
The basic pattern A shown in FIG. 3A is a system in which a fuel supply pipe 22 is placed at the center and six reaction tubes 21 are arranged in parallel at equal intervals at a pitch of 60 °, which is the basis of all the arrangement methods. .

第3B図に示す基本パターンBは中央に反応管21、1本
を置き、その周囲に120゜ピッチで等距離に3本の燃料
供給管22を平行配置する方式である。
The basic pattern B shown in FIG. 3B is a system in which one reaction tube 21 is placed at the center, and three fuel supply tubes 22 are arranged in parallel at equal intervals at 120 ° around it.

第3C図に示す基本パターンCは順次4本、3本、2
本、1本と10本の管を並行して正三角形に配置し、正三
角形の頂点に位置する3本を燃料供給管22とし、残り7
本を反応管21とする方式である。
The basic pattern C shown in FIG.
One, ten, and ten pipes are arranged in a regular triangle in parallel, three at the vertices of the regular triangle are designated as fuel supply pipes 22, and the remaining seven
In this method, a book is used as a reaction tube 21.

反応管の配置方法、管員数の増加方法としては中央に
パターンA,B,Cのいずれかを定め、その周囲にパターン
Aの配列を拡張する方式で行なう。
As a method of arranging the reaction tubes and increasing the number of members, any one of the patterns A, B, and C is determined in the center, and the arrangement of the pattern A is extended around the center.

一方、燃料電池用改質器は改質反応が行われる反応
部、反応部に熱を与える燃焼部ともに加圧された状態で
運転されることも多く、円筒型の圧力容器に対応させる
ためには、反応管、燃料供給管をなるべく円に近づける
形で配置する必要がある。
On the other hand, a reformer for a fuel cell is often operated in a state where both a reaction section in which a reforming reaction is performed and a combustion section for applying heat to the reaction section are pressurized. It is necessary to arrange the reaction tube and the fuel supply tube as close as possible to the circle.

また、改質器構造を簡素化し、部品点数を低減するた
めには基本パターンAの単独使用又は第4〜11図に示す
配列1〜8のいずれかの配列が最適である。
In order to simplify the reformer structure and reduce the number of parts, it is optimal to use the basic pattern A alone or any of the arrangements 1 to 8 shown in FIGS.

第4図に示す配列1は基本パターンBの周囲に基本パ
ターンAを3ヶ部分的に重ね合わせて配置したものであ
る。
In the arrangement 1 shown in FIG. 4, three basic patterns A are arranged so as to partially overlap each other around the basic pattern B.

第5,6図にそれぞれ示す配列2,3は基本パターンAの周
囲に基本パターンAを6ヶ部分的に重ね合わせて配置し
たものである。
Arrays 2 and 3 shown in FIGS. 5 and 6, respectively, are arranged such that six basic patterns A are partially overlapped around the basic pattern A.

第7図に示す配列4は配列1の周囲に基本パターンA
を9ヶ部分的に重ね合わせて配置したものである。
The array 4 shown in FIG.
9 are partially overlapped and arranged.

第8図に示す配列5は基本パターンA3個を独立して並
べて配置したものである。
The array 5 shown in FIG. 8 is one in which three basic patterns A3 are independently arranged.

第9図に示す配列6は基本パターンAの周囲に基本パ
ターン6ヶを独立して配置したものである。
The array 6 shown in FIG. 9 has six basic patterns independently arranged around the basic pattern A.

第10図に示す配列7は基本パターンA3ヶを部分的に重
ね合わせて並べ、その周囲に基本パターンA6ヶを独立的
に配置したものである。
The array 7 shown in FIG. 10 is one in which three basic patterns A are partially overlapped and arranged, and six basic patterns A are independently arranged therearound.

第11図に示す配列8は基本パターンCの周囲に基本パ
ターンAを3ヶ配置したものである。
The array 8 shown in FIG. 11 has three basic patterns A arranged around the basic pattern C.

配列にあたっては、第4〜7図それぞれに示す配列1
〜4の様に管の中心線を重ねて配置する方法と、第8〜
10図に示す配列5〜7の様に管の中心線を重ねずにパタ
ーンを独立的に配置する方法の2通りがある。
In the arrangement, the arrangement 1 shown in each of FIGS.
A method of arranging the center lines of the tubes in an overlapping manner,
There are two methods of independently arranging the patterns without overlapping the center lines of the tubes as in arrangements 5 to 7 shown in FIG.

配列1〜4では1本の反応管に対し、3方向から加熱
されることができ、配列5〜7と比較して反応管をより
均一に加熱することができる。
In the arrangements 1 to 4, one reaction tube can be heated from three directions, and the reaction tubes can be heated more uniformly than in the arrangements 5 to 7.

しかし、一方配列1〜4では、配列5〜7と比較して
反応管員数に比べて燃料供給管の員数が増加し、ヘッダ
ー部の構造が複雑化する。
On the other hand, in the arrangements 1 to 4, the number of the fuel supply pipes is increased as compared with the arrangements 5 to 7 in comparison with the number of the reaction tubes, and the structure of the header portion is complicated.

配列5〜7では配列上反応管2本をおいて燃料供給管
を配置するため一本の反応管を均等に加熱することはで
きない。しかし流動試験結果や自由噴流の理論式では二
段目燃料の均一分散による燃焼温度は充分均一であるう
え、二段目燃料ヘッダの構造を簡素化できること、単位
断面積当りに反応管を多く配置できる利点をもつ。
In arrangements 5 to 7, one reaction tube cannot be heated evenly because the fuel supply tube is arranged with two reaction tubes in the arrangement. However, according to the flow test results and the theoretical formula of free jet, the combustion temperature due to the uniform dispersion of the second-stage fuel is sufficiently uniform, the structure of the second-stage fuel header can be simplified, and many reaction tubes are arranged per unit cross-sectional area. Has the advantages that can be.

自由噴流の理論式において、一段目の燃焼ガスに直角
に供給された二段目燃料が完全に混合するために必要な
距離Xは(1)式で示される。
In the theoretical formula of the free jet, the distance X required for completely mixing the second-stage fuel supplied at right angles to the first-stage combustion gas is represented by the following expression (1).

ここで、w1:一段目燃焼ガス流量 w2:二段目燃料量 r1:一段目燃焼ガス密度 r2:二段目燃料密度 v1:一段目燃焼ガス流速 v2:二段目燃料流速 d0:ノズル口径 である。 Where: w 1 : First stage combustion gas flow rate w 2 : Second stage fuel amount r 1 : First stage combustion gas density r 2 : Second stage fuel density v 1 : First stage combustion gas flow rate v 2 : Second stage fuel flow rate d 0: a nozzle orifice.

また二段目燃料がX進む間に一段目燃焼ガスによって
流される距離Yは(2)式で示される。
Further, the distance Y that is flowed by the first-stage combustion gas while the second-stage fuel advances by X is expressed by equation (2).

燃焼部に分子量30〜35、発熱量400〜600kcal/m3N(LH
V)を用いる燃料電池用改質器において、Yの距離をで
きるだけ短くとるためには、二段目燃料の噴出速度を一
段目燃焼ガス流速の30倍以上とる必要がある。またこの
条件で二段目燃料を均一に混合、分散するためには、二
段目燃料ノズル間隔は反応管ピッチの2倍以下にする必
要がある。
The molecular weight is 30-35 and the calorific value is 400-600kcal / m 3 N (LH
In the fuel cell reformer using V), in order to keep the distance of Y as short as possible, the injection speed of the second-stage fuel needs to be 30 times or more the flow velocity of the first-stage combustion gas. Further, in order to uniformly mix and disperse the second-stage fuel under these conditions, the interval between the second-stage fuel nozzles needs to be twice or less the reaction tube pitch.

上記の運転条件に基づいた流動試験における二段目燃
焼部の推定燃焼温度分布を第2A、2B図に示す。
FIGS. 2A and 2B show the estimated combustion temperature distribution of the second stage combustion section in the flow test based on the above operating conditions.

二段目の燃料供給管を反応管ピッチの約2倍に配置し
て行なった流動試験結果によると、二段目の推定燃焼温
度は平均温度に近く均一になった。(第2B図参照)。
According to the flow test result performed by disposing the second stage fuel supply pipe at about twice the pitch of the reaction tubes, the estimated combustion temperature of the second stage became uniform near the average temperature. (See Figure 2B).

これに対し、燃料供給管の間隔を反応管ピッチの4倍
とした場合、推定燃焼温度は平均温度に対し均一に保持
できなかった。(第2A図参照)。
On the other hand, when the interval between the fuel supply pipes was four times the pitch of the reaction pipes, the estimated combustion temperature could not be kept uniform with respect to the average temperature. (See Figure 2A).

また、改質器の各負荷に対する二段目燃料と一段目燃
焼ガスの流速設定値の一例を第12図に示す。
FIG. 12 shows an example of the set values of the flow rates of the second-stage fuel and the first-stage combustion gas for each load of the reformer.

反応管、燃料供給管の配置は第3A〜3C図〜第11図に示
す通りであるが、改質器容量を更に拡張する必要がある
場合、第4図〜第11図に示す配列3,4,5,6,7の外周に第3
A図に示すパターンAを配列する方法で対応する。
The arrangement of the reaction tube and the fuel supply tube is as shown in FIGS. 3A to 3C to FIG. 11, but if it is necessary to further expand the reformer capacity, the arrangement 3, 3 shown in FIG. 4 to FIG. No.3 on the outer circumference of 4,5,6,7
This corresponds to a method of arranging patterns A shown in FIG.

〔発明の効果〕〔The invention's effect〕

本発明によれば、燃料用二段触媒燃焼型改質器におい
て、管径を同一とする反応管及び燃料供給管の配列とし
て、正六角格子の中心に燃料供給管を配置し各角点に反
応管を配置する格子配列を用いるか、または六角形の中
心に燃料供給管を配置し各角点に反応管を配置した管組
体の千鳥配列を用いるか、または正六角形格子の配列と
管組体を合わせた配列を用い、隣り合う燃料供給管と反
応管の中心距離及び隣り合う反応管同志の中心距離を反
応管の管径の1.1〜1.3倍とし、さらに二段目供給燃料の
噴出速度を空間部での一段目燃焼ガスの流速の30倍以上
にすることにより、二段目燃料は燃料供給管から最も近
接する反応管までの距離の2倍程度の位置まで到達する
ので、以下に記載する効果を奏する。
According to the present invention, in the two-stage catalytic combustion reformer for fuel, as the arrangement of the reaction tube and the fuel supply tube having the same tube diameter, the fuel supply tube is arranged at the center of the regular hexagonal lattice, and at each corner point. Use a grid arrangement to arrange the reaction tubes, or use a staggered arrangement of pipe assemblies in which the fuel supply pipes are arranged at the center of the hexagon and the reaction tubes are arranged at each corner, or an array of regular hexagonal lattices and tubes Using a combined arrangement, the center distance between adjacent fuel supply pipes and reaction tubes and the center distance between adjacent reaction pipes are set to 1.1 to 1.3 times the diameter of the reaction tubes, and the second stage supply fuel is injected. By setting the velocity to be at least 30 times the flow rate of the first stage combustion gas in the space, the second stage fuel reaches a position about twice as long as the distance from the fuel supply pipe to the nearest reaction pipe. The effects described in (1) are provided.

(1) 燃料供給管からの二段目燃料を各反応管回りに
均一に分散させることができ、一段目燃焼ガスとの混合
性を向上させることができる。
(1) The second-stage fuel from the fuel supply pipe can be uniformly dispersed around each reaction tube, and the mixing property with the first-stage combustion gas can be improved.

(2) 二段目触媒燃焼部の燃料供給管と反応管との構
成を簡素化できる。
(2) The configuration of the fuel supply pipe and the reaction pipe of the second-stage catalytic combustion section can be simplified.

(3) 供給管と反応管の数を増加することによる燃料
電池用二段触媒燃焼型改質器のスケールアップへの適応
性を向上させることができる。
(3) The adaptability of the two-stage catalytic combustion reformer for fuel cells to scale-up can be improved by increasing the number of supply pipes and reaction tubes.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による実施例の燃料電池用二段触媒燃焼
型改質器の全体構造図、第2A図、第2B図はガス流動試験
による二段目燃料の混合性を示す図、第3A図〜3C図はそ
れぞれ反応管・燃料供給管配置の基本パターンを示す
図、第4図〜第11図はそれぞれ反応管・燃料供給管の配
列1〜8を示す図、第12図は二段触媒燃焼型改質器の負
荷に対する一段目燃焼ガスの流速及び二段目燃料の噴出
流速の一例を示す図、第13A図は従来の二段触媒燃焼型
改質器の全体構造図、第13B図は第13A図に示す反応管・
燃料供給管の配置図である。 1……原料入口ノズル、2……原料ヘッダー、3……外
管(反応管)、4……内管(反応管)、5……改質触媒
層、6……改質ガスヘッダー、7……改質ガス出口ノズ
ル、8……一段目燃料/空気流入ノズル、9……予混合
器、10……一段目燃焼触媒層、11……一段目伝熱粒子
層、12……二段目予混合ゾーン、13……二段目燃料入口
ノズル、14……連絡管、15……二段目燃料供給管、16…
…二段目燃料供給ノズル、17……二段目燃焼触媒層、18
……二段目伝熱粒子層、19……燃焼ガス出口ノズル、20
……連絡管。
FIG. 1 is an overall structural view of a two-stage catalytic combustion type reformer for a fuel cell according to an embodiment of the present invention. FIGS. 2A and 2B are diagrams showing the mixing performance of a second-stage fuel by a gas flow test. 3A to 3C show the basic patterns of the reaction tube / fuel supply tube arrangement, FIGS. 4 to 11 show the arrangements 1 to 8 of the reaction tube / fuel supply tube, respectively, and FIG. FIG. 13A shows an example of the flow rate of the first-stage combustion gas and the ejection velocity of the second-stage fuel with respect to the load of the two-stage catalytic combustion type reformer. Figure 13B shows the reaction tube shown in Figure 13A.
It is an arrangement view of a fuel supply pipe. DESCRIPTION OF SYMBOLS 1 ... Material inlet nozzle, 2 ... Material header, 3 ... Outer tube (reaction tube), 4 ... Inner tube (reaction tube), 5 ... Reforming catalyst layer, 6 ... Reformed gas header, 7 ... reformed gas outlet nozzle, 8 ... first stage fuel / air inflow nozzle, 9 ... premixer, 10 ... first stage combustion catalyst layer, 11 ... first stage heat transfer particle layer, 12 ... second stage Eye premixing zone, 13 …… Second stage fuel inlet nozzle, 14 …… Communication tube, 15 …… Second stage fuel supply tube, 16…
… Second stage fuel supply nozzle, 17 …… Second stage combustion catalyst layer, 18
… Second heat transfer particle layer, 19… Combustion gas outlet nozzle, 20
…… A communication pipe.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 3/38 H01M 8/06 B01J 8/06 301 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C01B 3/38 H01M 8/06 B01J 8/06 301

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料電池に供給する水素を液化天然ガス等
の炭化水素の水蒸気改質反応により生成する改質器であ
って、容器の一端側から供給される一段目燃料を燃焼さ
せる一段目触媒燃焼部と、該一段目触媒燃焼部と空間部
を隔てて設けられた二段目触媒燃焼部と、該二段目触媒
燃焼部を貫通し前記二段目触媒燃焼部内に達して林立し
改質触媒を内蔵する二重管型の反応管と、該反応管と平
行に設けられ前記空間部に二段目燃料を軸直角方向に噴
出する燃料供給管とを備え、前記反応管には炭化水素を
供給し、前記一段目及び二段目燃料として前記燃料電池
の排ガスを供給し、かつ前記反応管を構成する二重管の
外管内を流れる炭化水素は前記一段目及び二段目触媒燃
焼部の燃焼ガスとは反対方向に流れる燃料電池用二段触
媒燃焼型改質器において、前記反応管及び燃料供給管の
配列として、反応管を千鳥配列に配置し、該燃料供給管
と同一管径の反応管を該燃料供給管の回りに角度60度ピ
ッチで配置し、かつ隣り合う反応管と燃料供給管との距
離及び最も近接して隣り合う反応管同士の距離を等しく
し、燃料供給管を正六角形の中心に配置し反応管を正六
角形の各角点に配置した管組体の複数を千鳥配列したこ
とを特徴とする燃料電池用二段触媒燃焼型改質器。
1. A reformer for producing hydrogen supplied to a fuel cell by a steam reforming reaction of a hydrocarbon such as liquefied natural gas, wherein a first-stage fuel supplied from one end of a container is burned. A catalytic combustion section, a second-stage catalytic combustion section provided with a space separated from the first-stage catalytic combustion section, and penetrating through the second-stage catalytic combustion section to reach the inside of the second-stage catalytic combustion section and stand. A double-tube type reaction tube containing a reforming catalyst, and a fuel supply tube provided in parallel with the reaction tube and ejecting a second-stage fuel to the space in a direction perpendicular to the axis. The hydrocarbon is supplied, the exhaust gas of the fuel cell is supplied as the first and second stage fuels, and the hydrocarbon flowing in the outer tube of the double tube constituting the reaction tube is the first and second stage catalyst. A two-stage catalytic combustion reformer for fuel cells that flows in the opposite direction to the combustion gas in the combustion section As the arrangement of the reaction tube and the fuel supply tube, the reaction tubes are arranged in a staggered arrangement, reaction tubes having the same diameter as the fuel supply tube are arranged around the fuel supply tube at a pitch of 60 degrees, and The distance between the adjacent reaction tubes and the fuel supply tube and the distance between the closest reaction tubes were made equal, the fuel supply tube was placed at the center of the regular hexagon, and the reaction tubes were placed at each corner of the regular hexagon. A two-stage catalytic combustion type reformer for a fuel cell, wherein a plurality of pipe assemblies are arranged in a staggered manner.
【請求項2】燃料電池に供給する水素を液化天然ガス等
の炭化水素の水蒸気改質反応により生成する改質器であ
って、容器の一端側から供給される一段目燃料を燃焼さ
せる一段目触媒燃焼部と、該一段目触媒燃焼部と空間部
を隔てて設けられた二段目触媒燃焼部と、該二段目触媒
燃焼部を貫通し前記二段目触媒燃焼部内に達して林立し
改質触媒を内蔵する二重管型の反応管と、該反応管と平
行に設けられ前記空間部に二段目燃料を軸直角方向に噴
出する燃料供給管とを備え、前記反応管には炭化水素を
供給し、前記一段目及び二段目燃料として前記燃料電池
の排ガスを供給し、かつ前記反応管を構成する二重管の
外管内を流れる炭化水素は前記一段目及び二段目触媒燃
焼部の燃焼ガスとは反対方向に流れる燃料電池用二段触
媒燃焼型改質器において、前記反応管及び燃料供給管の
配列として、反応管を千鳥配列に配置し、該燃料供給管
と同一管径の反応管を該燃料供給管の回りに角度60度ピ
ッチで配置し、かつ隣り合う反応管と燃料供給管との距
離及び最も近接して隣り合う反応管同士の距離を等しく
し、燃料供給管を正六角形格子の中心に配置し反応管を
正六角形格子の各角点に配置した格子配列の外側に、燃
料供給管を正六角形の中心に配置し反応管を正六角形の
各角点に配置した管組体を配置し、格子配列中の反応管
と管組体中の反応管を一部重複させたことを特徴とする
燃料電池用二段触媒燃焼型改質器。
2. A reformer for producing hydrogen supplied to a fuel cell by a steam reforming reaction of a hydrocarbon such as liquefied natural gas, wherein a first-stage fuel supplied from one end of a container is burned. A catalytic combustion section, a second-stage catalytic combustion section provided with a space separated from the first-stage catalytic combustion section, and penetrating through the second-stage catalytic combustion section to reach the inside of the second-stage catalytic combustion section and stand. A double-tube type reaction tube containing a reforming catalyst, and a fuel supply tube provided in parallel with the reaction tube and ejecting a second-stage fuel to the space in a direction perpendicular to the axis. The hydrocarbon is supplied, the exhaust gas of the fuel cell is supplied as the first and second stage fuels, and the hydrocarbon flowing in the outer tube of the double tube constituting the reaction tube is the first and second stage catalyst. A two-stage catalytic combustion reformer for fuel cells that flows in the opposite direction to the combustion gas in the combustion section As the arrangement of the reaction tube and the fuel supply tube, the reaction tubes are arranged in a staggered arrangement, reaction tubes having the same diameter as the fuel supply tube are arranged around the fuel supply tube at a pitch of 60 degrees, and Equalize the distance between the adjacent reaction tubes and the fuel supply tube and the distance between the closest adjacent reaction tubes, arrange the fuel supply tube at the center of the regular hexagonal lattice, and place the reaction tubes at each corner of the regular hexagonal lattice. Outside the arranged grid arrangement, a tube assembly in which the fuel supply pipe is arranged at the center of the regular hexagon and the reaction tubes are arranged at each corner point of the regular hexagon is arranged, and the reaction tubes in the lattice arrangement and the tube assembly in the tube assembly are arranged. A two-stage catalytic combustion type reformer for fuel cells, characterized in that the reaction tubes are partially overlapped.
【請求項3】前記反応管及び燃料供給管の配列として、
最も近接して隣り合う反応管の距離を反応管外径の1.1
〜1.3倍としたことを特徴とする請求項1又は2のいず
れか記載の燃料電池用二段触媒燃焼型改質器。
3. An arrangement of said reaction tube and fuel supply tube,
Set the distance between the closest and adjacent reaction tubes to 1.1
The two-stage catalytic combustion type reformer for a fuel cell according to claim 1 or 2, wherein the ratio is set to 1.3 times.
【請求項4】前記二段目燃料の噴出速度を前記空間部を
流れる一段目燃焼ガス流速の30倍以上としたことを特徴
とする請求項3記載の燃料電池用二段触媒燃焼型改質
器。
4. The two-stage catalytic combustion type reforming for a fuel cell according to claim 3, wherein the injection speed of the second-stage fuel is 30 times or more the flow speed of the first-stage combustion gas flowing through the space. vessel.
JP2271701A 1990-10-09 1990-10-09 Two-stage catalytic combustion reformer for fuel cells Expired - Fee Related JP3069743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2271701A JP3069743B2 (en) 1990-10-09 1990-10-09 Two-stage catalytic combustion reformer for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2271701A JP3069743B2 (en) 1990-10-09 1990-10-09 Two-stage catalytic combustion reformer for fuel cells

Publications (2)

Publication Number Publication Date
JPH04149003A JPH04149003A (en) 1992-05-22
JP3069743B2 true JP3069743B2 (en) 2000-07-24

Family

ID=17503644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2271701A Expired - Fee Related JP3069743B2 (en) 1990-10-09 1990-10-09 Two-stage catalytic combustion reformer for fuel cells

Country Status (1)

Country Link
JP (1) JP3069743B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591609B2 (en) 2009-12-24 2013-11-26 Samsung Sdi Co., Ltd. Reformer with high durability
KR101929012B1 (en) 2017-08-30 2018-12-13 고등기술연구원 연구조합 Module type reforming reactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924407B2 (en) * 1999-10-13 2007-06-06 株式会社日立製作所 Fuel reformer and fuel cell system
JP5224651B2 (en) * 2006-03-31 2013-07-03 Jx日鉱日石エネルギー株式会社 Solid oxide fuel cell
US8617267B2 (en) 2009-12-24 2013-12-31 Samsung Sdi Co., Ltd. Reformer with high durability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591609B2 (en) 2009-12-24 2013-11-26 Samsung Sdi Co., Ltd. Reformer with high durability
KR101929012B1 (en) 2017-08-30 2018-12-13 고등기술연구원 연구조합 Module type reforming reactor
WO2019045444A1 (en) * 2017-08-30 2019-03-07 고등기술연구원 연구조합 Modular reforming reactor

Also Published As

Publication number Publication date
JPH04149003A (en) 1992-05-22

Similar Documents

Publication Publication Date Title
EP0991587B1 (en) Method and device for reforming hydrocarbons autothermally
US6609562B2 (en) Heat exchange apparatus and method of use
CA1095696A (en) Catalytic reaction apparatus
US5228847A (en) Catalytic combustion process
US3958951A (en) Convective power reformer equipment and system
US4047877A (en) Combustion method and apparatus
DE112008001062T5 (en) Compact reformer
CA2285973A1 (en) Multi-injector autothermal reforming process and apparatus for producing synthesis gas
DE60112861T2 (en) Apparatus and process for hydrocarbon reforming
CA2286324A1 (en) Distributed injection catalytic partial oxidation process and apparatus for producing synthesis gas
US6284206B1 (en) Compact selective oxidizer assemblage for a fuel cell power plant
CA2286322A1 (en) Rapid injection catalytic partial oxidation process and apparatus for producing synthesis gas
CN101432075A (en) Reactor with primary and secondary channels
EP1861657A1 (en) Method and device for combusting hydrogen in a premix burner
JP3069743B2 (en) Two-stage catalytic combustion reformer for fuel cells
JPS63282410A (en) Method and device for forming high-temperature pressurized gas flow by catalyst type combustion
US20070183949A1 (en) Hydrocarbon reformer system including a pleated static mixer
US6767376B1 (en) Selectively controllable modular auto-thermal reformer and method for same
US5362453A (en) Reformer for the generation of synthesis gas
EP0770269B1 (en) Fuel processing apparatus having a furnace for fuel cell power plant
JPH07507863A (en) catalytic combustion
KR102315289B1 (en) Steam Reformer with Multi Reforming Reactor
DE3806536C2 (en) Device and method for generating hydrogen
US20020015931A1 (en) Conduit positioner
DE10320965B4 (en) Device for the reactive conversion of gas streams

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees