JP3067241B2 - Sewage treatment equipment - Google Patents

Sewage treatment equipment

Info

Publication number
JP3067241B2
JP3067241B2 JP3078791A JP7879191A JP3067241B2 JP 3067241 B2 JP3067241 B2 JP 3067241B2 JP 3078791 A JP3078791 A JP 3078791A JP 7879191 A JP7879191 A JP 7879191A JP 3067241 B2 JP3067241 B2 JP 3067241B2
Authority
JP
Japan
Prior art keywords
oxidation
rotating disk
inflow
bod
biofilm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3078791A
Other languages
Japanese (ja)
Other versions
JPH04313394A (en
Inventor
旭 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP3078791A priority Critical patent/JP3067241B2/en
Publication of JPH04313394A publication Critical patent/JPH04313394A/en
Application granted granted Critical
Publication of JP3067241B2 publication Critical patent/JP3067241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は汚水処理装置に係り、特
に回転円板を用いて汚水を処理する汚水処理装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sewage treatment apparatus, and more particularly to a sewage treatment apparatus for treating sewage using a rotating disk.

【0002】[0002]

【従来の技術】従来、一般に下水およびその他の有機性
排水の処理には活性汚泥法が採用されてきたが、最近、
回転円板法が注目され実用化されてきている。回転円板
法は円板の表面に付着・繁殖した微生物群を利用して排
水を浄化する生物学的排水処理技術の一種であり活性汚
泥法とは有機性汚濁物質の生物酸化という点においては
同一基本原理に基づいているが、両者は有機物の摂取の
方法および酸素吸収の方法が根本的に異なっている。す
なわち、活性汚泥法ではブロワーによる強制曝気等の手
段により、微生物と有機物の接触および酸素の供給をは
かるのに対し、回転円板法は微生物を排水を大気に交互
に接触させることによりこの目的を果たしている。
2. Description of the Related Art Conventionally, activated sludge has been generally used for treating sewage and other organic wastewater.
The rotating disk method has attracted attention and has been put to practical use. The rotating disk method is a type of biological wastewater treatment technology that purifies wastewater by using microorganisms that have adhered and propagated on the surface of the disk.The activated sludge method is not suitable for the biological oxidation of organic pollutants. Although they are based on the same basic principle, they differ fundamentally in the method of ingesting organic matter and the method of absorbing oxygen. In other words, the activated sludge method aims to contact microorganisms and organic substances and supply oxygen by means such as forced aeration with a blower, whereas the rotating disk method achieves this purpose by alternately bringing microorganisms into contact with wastewater to the atmosphere. Play.

【0003】酸化槽に面積の約40%が浸漬するように
円板を取りつけ、この円板をゆっくり回転させながら通
水を続けると、円板の表面に各種の微生物が付着・生育
して、いわゆる生物膜を形成する円板の回転に伴い生物
膜は酸化槽中で排水と接触し、有機性汚染物質を吸収す
るとともに排水を空気中に運び上げる。これらの排水は
膜状となって生物膜表面を落下する間に酸素を吸収し、
生物膜はこの膜状液から酸素および有機性汚染物を吸収
する。このような生物膜の作用によって排水は浄化さ
れ、また一方、吸収された有機性汚染物質は酸化分解さ
れ安定化される。
[0003] When a disk is mounted so that about 40% of its area is immersed in an oxidation tank, and water is continuously supplied while slowly rotating the disk, various microorganisms adhere and grow on the surface of the disk. As the disks forming the so-called biofilm rotate, the biofilm comes into contact with the wastewater in the oxidation tank, absorbing organic pollutants and carrying the wastewater into the air. These wastewaters form a film and absorb oxygen while falling on the biofilm surface,
The biofilm absorbs oxygen and organic contaminants from the film. The wastewater is purified by the action of such a biofilm, while the absorbed organic pollutants are oxidized and decomposed and stabilized.

【0004】定常状態における生物膜の厚さは条件によ
っても異なるが、通常2〜4mm程度とされている。生
物膜は排水の浄化が進行するにしたがい徐々に発達して
いくが、過剰の微生物は円板が排水中を通過するときに
生物膜に働く剪断力によって定期的に剥離される。これ
らの剥離された微生物は酸化槽を溢流し、固液分離装置
によって分離され、全量余剰汚泥として系外に取り出さ
れる。
[0004] The thickness of a biofilm in a steady state varies depending on conditions, but is usually about 2 to 4 mm. The biofilm develops gradually as the purification of the wastewater proceeds, but the excess microorganisms are periodically stripped off by the shearing forces acting on the biofilm as the disc passes through the wastewater. These exfoliated microorganisms overflow the oxidation tank, are separated by a solid-liquid separator, and are entirely taken out of the system as excess sludge.

【0005】回転円板法を用いた一般的な汚水処理装置
は、図4に示すように、初沈澱池1,4軸4段回転円板
体2を備えた処理槽3,終沈澱池4と並べたような形式
になっている。図5と図6は回転円板装置の構造を示す
もので、5は撹拌羽根6を備えた回転体、7は主軸、8
は軸受、9は減速機、10は処理槽である酸化槽、11
はカバーである。
As shown in FIG. 4, a general sewage treatment apparatus using the rotating disk method comprises a treatment tank 3 having an initial sedimentation basin 1, a four-axis four-stage rotating disk 2, a final sedimentation basin 4 It is in the form of lining up. 5 and 6 show the structure of the rotating disk device, where 5 is a rotating body having a stirring blade 6, 7 is a main shaft, 8
Is a bearing, 9 is a reduction gear, 10 is an oxidation tank as a processing tank, 11
Is the cover.

【0006】すなわち、回転円板装置の構造は図5と図
6に示すように回転体,駆動装置,酸化槽,カバー等か
ら構成されている。回転体は主軸とその主軸に一定間隔
(通常18〜30mm)に取りつけられた円板からな
る。駆動装置は電動機,減速機,伝動チェーンおよびス
プロケット等よりなっており、減速機の出口軸に取りつ
けられたスプロケットと伝動チェーンにより回転体主軸
に固定された伝動スプロケットを駆動し、円板を回転さ
せる。回転数は流入原水濃度,処理の目的等によって異
なるが、通常は円板周辺速度(周速)として10〜20
m/分の範囲で決定される。
That is, as shown in FIGS. 5 and 6, the structure of the rotating disk device includes a rotating body, a driving device, an oxidation tank, a cover, and the like. The rotating body is composed of a main shaft and a disk attached to the main shaft at regular intervals (usually 18 to 30 mm). The drive unit consists of an electric motor, a speed reducer, a transmission chain, a sprocket, etc. The sprocket mounted on the outlet shaft of the speed reducer and the transmission chain drive the transmission sprocket fixed to the main shaft of the rotating body to rotate the disk. . The rotation speed varies depending on the concentration of the inflowing raw water, the purpose of the treatment, and the like.
It is determined in the range of m / min.

【0007】回転円板法は活性汚泥法と比較して次のよ
うな特徴がある。
The rotating disk method has the following characteristics as compared with the activated sludge method.

【0008】(1)運転動力費が少ない。(2)維持管
理が容易で高度な運転管理技術を要しない。(3)短時
間の接触反応時間で高浄化率が得られ、負荷変動にも強
い。(4)発生汚泥量が少ない。(5)原水水質の高濃
度から低濃度までの広範囲の処理が可能である。(6)
硝化,脱窒が容易であり、脱リンも可能である。
(1) The operating power cost is low. (2) Maintenance is easy and does not require advanced operation management technology. (3) A high purification rate can be obtained in a short contact reaction time, and it is strong against load fluctuation. (4) The amount of generated sludge is small. (5) A wide range of treatment of raw water quality from high concentration to low concentration is possible. (6)
Nitrification and denitrification are easy, and dephosphorization is also possible.

【0009】回転円板法は活性汚泥法のような高度の運
転管理技術を要しない反面、処理の成否に関しては設計
が重要な因子となり、運転制御が必要と考えられる因子
としては回転数の制御ぐらいのものであろう。負荷量に
応じた可変速の回転円板装置も世に出ているが、合理的
な回転数制御が行われているとは言いがたい。
The rotating disk method does not require advanced operation control techniques such as the activated sludge method, but the design is an important factor in terms of the success or failure of the treatment. It will be about something. Variable speed rotating disk devices according to the load amount are available, but it cannot be said that rational rotation speed control is performed.

【0010】[0010]

【発明が解決しようとする課題】回転円板装置の最も重
要な設計因子として負荷条件があり、生物膜単位面積あ
たりの負荷量が設計の基本となりその1つとして生物化
学的要素要求量(BOD)面積負荷がある。BOD面積
負荷は1日に円板単位面積あたりに負荷されるBOD量
で表され、その単位はgBOD/m2・日である。
The most important design factor of a rotating disk device is a load condition, and the load per unit area of a biofilm becomes the basis of the design. One of the factors is a biochemical element requirement (BOD). ) There is area load. The BOD area load is represented by the amount of BOD applied per disk unit area per day, and its unit is gBOD / m 2 · day.

【0011】BOD面積負荷は装置の酸素供給能力によ
って制約される。この上限値は排水の種類によって異な
るが、例えば下水の場合には第1段目で40〜50gB
OD/m2・日とされている。BOD面積負荷がこの上
限値を越えると、その槽は嫌気性となり悪臭発生の原因
となる。通常の設計(BOD除去率90%以上を期待)
におけるBOD面積負荷は基質によっても異なるが、一
般に5〜20gBOD/m2・日の範囲で決定される。
The BOD area load is limited by the oxygen supply capacity of the device. The upper limit varies depending on the type of drainage. For example, in the case of sewage, 40 to 50 gB
OD / m 2 · day. When the BOD area load exceeds this upper limit, the tank becomes anaerobic and causes odor. Normal design (BOD removal rate is expected to be 90% or more)
Although the BOD area load varies depending on the substrate, it is generally determined in the range of 5 to 20 gBOD / m 2 · day.

【0012】円板の回転速度は酸素供給量,酸化槽の混
合撹拌,円板上に付着する微生物量と過剰微生物の定期
的剥離,経済性(動力消費量)等を考慮して決定する必
要がある。回転速度を大にすると酸素供給量は増加し、
かつ槽内の混合撹拌も有利となるが、微生物膜の形式が
困難になるとともに動力消費量が増加する。一方速度を
極端に小とした場合には動力消費量の点では有利となる
が、酸素の供給および槽内の撹拌が不足するとともに過
剰微生物の剥離が不完全となり処理効率の低下をもたら
す。
The rotational speed of the disk needs to be determined in consideration of the amount of oxygen supplied, the mixing and stirring of the oxidation tank, the amount of microorganisms adhering to the disk and the periodic removal of excess microorganisms, and the economics (power consumption). There is. Increasing the rotation speed increases the oxygen supply,
In addition, mixing and stirring in the tank is advantageous, but the type of the microorganism membrane becomes difficult and the power consumption increases. On the other hand, if the speed is extremely low, it is advantageous in terms of power consumption, but the supply of oxygen and the stirring in the tank are insufficient, and the removal of excess microorganisms is incomplete, resulting in a reduction in processing efficiency.

【0013】回転円板法における浄化の主役は円板上に
付着した微生物である。円板上の微生物は排水通水後、
2〜3日で薄く付着しはじめ、その後、1週間程度で密
生した褐色の生物膜を形成する。この生物膜の厚みは流
入する排水の性状と負荷によって決まり、濃度が高く負
荷が高いほど厚くなる。したがって装置が多段式で運転
される場合は原水と接する第1段目の円板に最も多くの
生物膜が形成され浄化が進む後段になるほどその量は減
少する。
[0013] In the rotating disk method, the main role of purification is microorganisms attached to the disk. The microorganisms on the disc are drained
It begins to attach thinly in a few days, and then forms a dense brown biofilm in about a week. The thickness of the biofilm is determined by the properties of the incoming wastewater and the load. The higher the concentration and the higher the load, the thicker the biofilm. Therefore, when the apparatus is operated in a multi-stage system, the most biofilm is formed on the first-stage disc in contact with the raw water, and the amount decreases as purification proceeds.

【0014】前記の諸点を考慮すると、円板の回転速度
は第1段目は速く、後になるに従って遅くするのが合理
的である。また負荷変動がある場合には、円板の回転速
度は負荷に応じて可変速とすることが望ましい。
In consideration of the above-mentioned points, it is reasonable that the rotational speed of the disk is high in the first stage, and is slowed down later. When there is a load fluctuation, it is desirable that the rotation speed of the disk is variable according to the load.

【0015】しかしながら、負荷条件を測定する従来の
手段は、生物化学的要素要求量(BOD),化学的酸素
要求量(COD)および円板上の微生物の活性汚泥浮遊
物(MLSS),活性汚泥有機性浮遊物(MLVSS)
量などがあるが測定に時間がかかることと自動計測が困
難であることから、時々刻々の流入負荷変動に追随して
円板の回転速度を合理的に制御することは不可能であっ
た。
However, conventional means for measuring loading conditions include biochemical element demand (BOD), chemical oxygen demand (COD) and microbial activated sludge suspended on a disk (MLSS), activated sludge. Organic suspended matter (MLVSS)
However, it is impossible to control the rotation speed of the disk rationally in accordance with the inflow load fluctuation every moment because of the time and the difficulty of the automatic measurement.

【0016】回転円板法におけるBOD面積負荷は標準
活性汚泥法におけるBOD容積負荷に相当するものであ
り、F/M比を表現するものではない。標準活性汚泥法
においてF/M比が重要な運転制御因子であるのと同じ
ように回転円板法においてもF/M比を考慮すべきであ
ると言えよう。回転円板法におけるF/M比は流入水の
水質を測定するとともに円板上の生物膜を剥ぎとり乾燥
重量を測定することによって知ることができる。
The BOD area load in the rotating disk method is equivalent to the BOD volume load in the standard activated sludge method, and does not express the F / M ratio. Just as the F / M ratio is an important operation control factor in the standard activated sludge process, it can be said that the F / M ratio should be considered in the rotating disk process. The F / M ratio in the rotating disk method can be determined by measuring the quality of the influent water, peeling off the biofilm on the disk, and measuring the dry weight.

【0017】回転円板法のF/M比を測定した例では、
第1段の生物膜乾燥重量が194g/m2であり、これ
はMLVSS40.000〜60.000mg/リット
ルに相当する。このように回転円板法は微生物量が多い
ため、F/M比は標準活性汚泥法の0.3程度と比べ、
0.02〜0.05と約1/10となっている。回転円
板法が短時間の接触で高い除去率が得られ、原排水の水
質の変動に対して比較的強いのは活性汚泥法と比較して
F/M比が低いためと考えられる。
In the example of measuring the F / M ratio of the rotating disk method,
The first stage biofilm dry weight is 194 g / m 2 , which corresponds to MLVSS 40.000-60.000 mg / l. As described above, since the rotating disk method has a large amount of microorganisms, the F / M ratio is smaller than the standard activated sludge method of about 0.3.
0.01 to 0.05, which is about 1/10. It is considered that the reason why the rotating disk method can obtain a high removal rate by short-time contact and is relatively strong against the fluctuation of the water quality of the raw wastewater is that the F / M ratio is lower than that of the activated sludge method.

【0018】回転円板の生物膜をはぎとって乾燥あるい
は強熱して計測したMLSSおよびMLVSSは微生物
を正確に表現するものではなく、流入水中の未分解の有
機物や微生物の死骸も含まれる。負の微生物量を知るこ
とは不可能であるが、浄化に寄与する活性微生物量との
相関が高い指標を用いればF/M比をより正確に知るこ
とができる。またF/M比と相関があり、容易に自動測
定できる水質指標を選択して測定することにより流入負
荷量を知り、負荷条件に応じた円板回転数の制御が可能
となり、処理水質の向上と消費電力の節減が期待でき
る。
The MLSS and MLVSS measured by peeling off the biofilm of the rotating disk and drying or igniting do not accurately represent microorganisms, but also include undegraded organic matter and dead microorganisms in the influent water. Although it is impossible to know the amount of negative microorganisms, it is possible to know the F / M ratio more accurately by using an index having a high correlation with the amount of active microorganisms contributing to purification. Also, by selecting and measuring a water quality index that has a correlation with the F / M ratio and can be easily and automatically measured, the amount of inflow load is known, and the disk rotation speed can be controlled according to the load condition, thereby improving the quality of treated water. And power savings can be expected.

【0019】本発明は上述の問題点に鑑みてなされたも
ので、その目的は、処理水質の変動が少なく、良好な処
理水質が得られる回転円板法による汚水処理装置を提供
することである。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a sewage treatment apparatus by a rotating disk method capable of obtaining good treated water quality with little variation in treated water quality. .

【0020】[0020]

【課題を解決するための手段】本発明は、上記目的を達
成するために、酸化槽に流入された被処理水中に回転円
板の一部を浸漬し、この回転円板を回転させて該回転円
板の表面に生物膜を生成させ、この生物膜により前記被
処理水を浄化する汚水処理装置において、前記酸化槽中
の酸化還元電位を測定する酸化還元電位計と、前記回転
円板に生成した生物膜の単位面積当りのアデノミンー3
ーリン酸の値を測定する手段と、前記酸化槽に流入され
る流入水量を測定する流量計と、前記酸化還元電位計の
酸化還元電位測定値,前記生物膜単位面積当りのアデノ
ミンー3ーリン酸値および流量測定値より演算式を用い
て、流入水の2クロム酸化カリウムによる酸素消費量で
ある流入水CODcr,流入水の生物化学的酸素要求量で
ある流入BOD,生物化学的酸素要求量であるBOD面
積負荷および前記回転円板の周辺速度を算出し、この算
出された周辺速度に対応して回転円板の回転速度を制御
する演算制御手段によって構成したことを特徴とする。
According to the present invention, in order to achieve the above object, a part of a rotating disk is immersed in water to be treated which has flowed into an oxidation tank, and the rotating disk is rotated to rotate the disk. In a sewage treatment apparatus for generating a biofilm on the surface of a rotating disk and purifying the water to be treated by the biological film, an oxidation-reduction potentiometer for measuring an oxidation-reduction potential in the oxidation tank, Adenamine-3 per unit area of biofilm formed
A means for measuring the value of phosphoric acid, a flow meter for measuring the amount of inflowing water flowing into the oxidation tank, a measurement value of the oxidation-reduction potential of the oxidation-reduction potentiometer, an adenamine-3-phosphate value per unit area of the biofilm Using an arithmetic expression based on the measured flow rate and the flow rate measurement value, the inflow water CODcr, which is the oxygen consumption of the inflow water by potassium chromium oxide, the inflow BOD, which is the biochemical oxygen demand of the inflow water, and the biochemical oxygen demand. The present invention is characterized in that it is constituted by arithmetic control means for calculating the BOD area load and the peripheral speed of the rotating disk, and controlling the rotating speed of the rotating disk in accordance with the calculated peripheral speed.

【0021】[0021]

【作用】有機性排水の回転処理法における円板の回転速
度の制御に属するもので、酸化槽にORP計を設置し回
転円板の生物膜を剥ぎとり、生物膜単位面積当りのAT
Pを測定するとともに、流入量およびORP,ATP,
流入測定値より演算式を用いて流入水CODcr,流入B
OD,BOD面積負荷,回転円板の周辺速度を算出し、
回転円板の回転数を算出された周辺速度になるように調
節する。
The present invention belongs to the control of the rotation speed of a disc in the spinning method of organic wastewater, in which an ORP meter is installed in an oxidation tank, the biofilm of the disc is stripped, and the AT per biofilm unit area is reduced.
Measure P and measure inflow and ORP, ATP,
Inflow water CODcr, inflow B from the inflow measurement value using an arithmetic expression
Calculate OD, BOD area load, peripheral speed of rotating disk,
The rotation speed of the rotating disk is adjusted so as to reach the calculated peripheral speed.

【0022】[0022]

【実施例】以下に本発明の実施例を図1から図3を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0023】図1は本発明の実施例による汚水処理装置
を示すもので、12は処理槽である酸化槽10内の被処
理水中に一部が浸漬するように設けられた回転円板、1
3は酸化槽10への流入水の量を測定する流量計、14
は酸化還元電位(ORP)計、15はアデノミン−3−
リン酸(ATP)計、16は演算制御装置である。
FIG. 1 shows a sewage treatment apparatus according to an embodiment of the present invention. Reference numeral 12 denotes a rotating disk provided so as to be partially immersed in water to be treated in an oxidation tank 10 which is a treatment tank.
3 is a flow meter for measuring the amount of water flowing into the oxidation tank 10, 14
Is an oxidation-reduction potential (ORP) meter, 15 is adenamine-3-
A phosphoric acid (ATP) meter 16 is an arithmetic and control unit.

【0024】上記汚水処理装置において、ORP計14
は酸化槽10内の液の酸化還元電位を測定し、ATP計
15は円板12の生物膜を剥ぎとり、TCA抽出、ルシ
フェリールシフェラーゼ法により手動操作または自動操
作によって生物膜一定面積内のATP(アデノミン−3
−リン酸)含量を測定する。演算制御装置16はORP
計測値とATP計測値あるいはORP計測値と流量値か
ら演算式を用いて微生物(M)と有機物(F)の比であ
るF/M比、生物化学的酸素要求量(BOD)又は化学
的酸素要求量(COD)面積負荷,円板速度を算出し
て、円板速度信号を回転円板装置に発信する仕組みにな
っており、円板の回転速度は負荷条件に応じて制御され
る。
In the above sewage treatment apparatus, the ORP meter 14
Measures the oxidation-reduction potential of the liquid in the oxidation tank 10, and the ATP meter 15 peels off the biofilm on the disc 12 and manually or automatically operates the ATP within a certain area of the biofilm by TCA extraction and luciferyl luciferase method. (Adenamine-3
-Phosphoric acid) content is measured. The arithmetic and control unit 16 is ORP
The F / M ratio, which is the ratio of the microorganism (M) to the organic matter (F), the biochemical oxygen demand (BOD), or the chemical oxygen using the arithmetic expression from the measured value and the ATP measured value or the ORP measured value and the flow rate value The required amount (COD) area load and the disk speed are calculated, and a disk speed signal is transmitted to the rotating disk device. The rotation speed of the disk is controlled according to the load condition.

【0025】生物膜のATP含量測定の際、円板12か
ら剥ぎ取った部分の面積を測定する必要がある。この面
積をA(cm2)、ATPの測定値をB(μ mole)とす
ると、生物膜単位面積あたりのATP含量C(μmole/
2)は(1)式により算出される。
When measuring the ATP content of the biofilm, it is necessary to measure the area of the portion peeled off from the disk 12. Assuming that this area is A (cm 2 ) and the measured value of ATP is B (μ mole), the ATP content C per unit area of the biofilm (μmole /
m 2 ) is calculated by equation (1).

【0026】 C(μ mole)=B(μ mole)×10.000/A(cm2) ……(1) 標準活性汚泥法によるF/M比の表現方式の一つである
CODcr・ATP負荷はORPと相関があり、人口下水
を用いた室内連続実験データ解析より関係式(2)が得
られている。
C (μ mole) = B (μ mole) × 10.000 / A (cm 2 ) (1) CODcr · ATP load which is one of the expression methods of the F / M ratio by the standard activated sludge method Has a correlation with the ORP, and the relational expression (2) is obtained from data analysis of continuous laboratory experiments using artificial sewage.

【0027】ORP(mV)=−427.52CODcr
・ATP負荷(g/μ mole・日)+182.6
………(2) ここで相関係数r=−0.8977,サンプリング数n
=32である。標準活性汚泥法も回転円板法も有機性汚
濁物質の生物酸化という点においては同一基本原理に基
づいているので、(2)式は回転円板法においても成立
すると考えられる。
ORP (mV) =-427.52 CODcr
ATP load (g / μmole / day) +182.6
... (2) where the correlation coefficient r = −0.8977 and the number of samples n
= 32. Since both the standard activated sludge method and the rotating disk method are based on the same basic principle in terms of the biological oxidation of organic pollutants, it is considered that the equation (2) holds for the rotating disk method.

【0028】回転円板法におけるCODcr・ATP負荷
は(3)式のように定義できる。
The CODcr · ATP load in the rotating disk method can be defined as in equation (3).

【0029】CODcr・ATP負荷(g/μ mole・日=
{流入水CODcr(mg/リットル)×10-3×流入水
量(リットル/日)}/{生物膜単位面積当りATP含
量(μ mole/m2)×円板面積(m2)} ……
…(3) ORPより(2)式を用いて算出したCODcr・ATP
負荷と生物膜単位面積当りATP含量測定値,円板面積
および流入水量を(3)式を変形した(4)式に代入す
ることにより流入水CODcrが算出される。
CODcr · ATP load (g / μ mole · day =
{Influent CODcr (mg / liter) × 10 −3 × inflow water (liter / day)} / {ATP content per biofilm unit area (μ mole / m 2 ) × disc area (m 2 )}
... (3) CODcr · ATP calculated from ORP using equation (2)
The inflow CODcr is calculated by substituting the load, the measured value of the ATP content per unit area of the biofilm, the disk area, and the amount of the inflow into the expression (4) obtained by modifying the expression (3).

【0030】流入水CODcr(mg/リットル)={C
ODcr・ATP負荷(g/μmole・日)×生物膜単位面
積当りATP含量(μ mole/m2)×円板面積(m2
………(4) 流入水CODcr(2クロム酸化カリウムによる酸素消費
量)は同一種類の排水であればBODと相関があり
(5)式により流入水BODが算出される。
Inflow water CODcr (mg / liter) = {C
ODcr · ATP load (g / μmole · day) × ATP content per biofilm unit area (μ mole / m 2 ) × disc area (m 2 )
(4) The inflow water CODcr (oxygen consumption by potassium dichromate) has a correlation with the BOD for the same type of wastewater, and the inflow water BOD is calculated by equation (5).

【0031】流入水BOD(mg/リットル)=流入水
CODcr(mg/リットル)×k(定数) ……
…(5) 回転円板12のBOD面積負荷は(6)式により算出さ
れる。
Inflow water BOD (mg / liter) = inflow water CODcr (mg / liter) × k (constant)
(5) The BOD area load of the rotating disk 12 is calculated by the equation (6).

【0032】BOD面積負荷={流入水BOD(mg/
リットル)×10-3×流入水量(リットル/日)}/回
転円板面積(m2) ………(6) 回転円板の回転速度は一般に周辺速度(周速)で表現さ
れるが、複数(14処理場)の回転円板実規模処理施設
の運転データよりBOD面積負荷と周辺速度の関係を調
査したところ、図2に示すような関係が得られ、相関回
帰式として(7)式が得られた。
BOD area load = {influent BOD (mg /
Liter) × 10 −3 × inflow water volume (liter / day)} / rotating disk area (m 2 ) ………………………………………………………………………………… (6) When the relationship between the BOD area load and the peripheral speed was investigated from the operation data of a plurality of (14 treatment plants) rotating disk full-scale treatment facilities, the relationship shown in FIG. 2 was obtained, and the equation (7) was used as the correlation regression equation. was gotten.

【0033】周辺速度=0.393×BOD面積負荷
(g/m2・日)+13.7 ……(7)(r=0.72
22、n=14) BOD面積負荷を(7)式に代入すれば周辺速度が算出
される。したがって酸化槽のORPと生物膜のATP含
量および流量を測定することにより、BOD面積負荷が
算出され、負荷に応じた周辺速度に制御することが可能
である。
Peripheral speed = 0.393 × BOD area load (g / m 2 · day) +13.7 (7) (r = 0.72)
22, n = 14) The peripheral speed is calculated by substituting the BOD area load into the equation (7). Therefore, by measuring the ORP of the oxidation tank and the ATP content and the flow rate of the biofilm, the BOD area load is calculated, and it is possible to control the peripheral speed according to the load.

【0034】該システムにおいてATPの測定はMLS
SやMLVSSより容易であるが、剥ぎとった生物膜の
面積も測定しなければならないのでかなり煩雑してなる
ことは避けられない。しかしながら定常状態においては
生物膜のATPの含量が急激に変化することはないと考
えられるので、ATPの測定はそれほど頻繁に行う必要
はなく、ORP測定値から円板の周辺速度を算出する場
合、ATP含量は前回の測定値を代入して計算すること
ができる。
In the system, ATP measurement is performed by MLS
Although it is easier than S or MLVSS, it is inevitable that the area of the peeled biofilm must be measured, so that it becomes considerably complicated. However, in the steady state, it is considered that the ATP content of the biofilm does not change suddenly, so the ATP measurement does not need to be performed so frequently, and when calculating the peripheral velocity of the disc from the ORP measurement value, ATP content can be calculated by substituting previous measurements.

【0035】信頼性は低下するがORPの測定値と流量
測定値のみから円板の周辺速度を算出することも可能で
ある。この場合、図1のシステム構成からATP測定機
構が省略される。
Although the reliability is reduced, it is also possible to calculate the peripheral speed of the disk from only the measured value of ORP and the measured value of flow rate. In this case, the ATP measurement mechanism is omitted from the system configuration of FIG.

【0036】標準活性汚泥法の室内連続実験のデータ解
析よりORPとCODcr容積負荷は図3のような関係が
あり、相関関係式として(8)式が得られた。
From the data analysis of the continuous continuous experiment of the standard activated sludge method, the ORP and the CODcr volume load have a relationship as shown in FIG. 3, and the equation (8) was obtained as a correlation equation.

【0037】 ORP=−174.7×CODcr容積負荷+222.4 ………(8) (mv) (r=−0.6247,n=32) (8)式を利用してORPよりCODcr容積負荷が算出
される。さらに(9)式にCODcr容積負荷と流量を代
入して流入水CODcrが算出される。
ORP = −174.7 × CODcr volume load + 222.4 (8) (mv) (r = −0.6247, n = 32) CODcr volume load from ORP using equation (8) Is calculated. Further, the inflow CODcr is calculated by substituting the CODcr volume load and the flow rate into the equation (9).

【0038】流入水CODcr(mg/リットル)=CO
Dcr容積負荷(g/リットル・日)×103/流入水量
(リットル/日) ………(9) さらに(5)式と(6)式を利用すればBOD面積負荷
が算出され、(7)式を用いて円板の周辺速度が算出さ
れる。以上のようにしてORP,生物膜ATP含量,流
入水量,あるいはORPと流入水量より円板の周辺速度
を合理的に制御できる。
Inflow water CODcr (mg / liter) = CO
Dcr volume load (g / liter · day) × 10 3 / inflow water volume (liter / day) (9) Further, by using equations (5) and (6), the BOD area load is calculated, and (7) The peripheral speed of the disk is calculated by using the equation. As described above, the peripheral speed of the disk can be rationally controlled based on the ORP, the biofilm ATP content, the inflow water amount, or the ORP and the inflow water amount.

【0039】[0039]

【発明の効果】本発明は以上の如くであって、次のよう
な効果が得られる。
As described above, the present invention has the following effects.

【0040】回転円板の回転速度は処理効率に与える影
響が大きいことが知られている。該システムでは時々刻
々の負荷条件の変化を認識し、負荷条件に応じた適切な
回転速度に制御できるので処理水質の変動が少なく良好
な処理水質が得られる。
It is known that the rotational speed of the rotating disk has a large effect on the processing efficiency. The system recognizes the change of the load condition every moment, and can control the rotation speed to an appropriate value according to the load condition. Therefore, the fluctuation of the treated water quality is small and a good treated water quality can be obtained.

【0041】回転速度と所要動力は円板形状にもよる
が、速度の2乗または2.5乗に比例するので負荷条件
に応じた適切な回転速度に制御することにより電力消費
を抑制できるので消費電力を節減できる効果がある。
Although the rotation speed and the required power depend on the disk shape, they are proportional to the square of the speed or the 2.5th power, so that power consumption can be suppressed by controlling to an appropriate rotation speed according to the load condition. This has the effect of reducing power consumption.

【0042】回転円板は後段になるほど浄化されて負荷
が低くなり、それに応じてORPも上昇するので後段ほ
ど回転速度を遅くすることになり実際の運転状況と一致
する。
The rotating disk is purified at a later stage and the load is reduced, and the ORP is also increased accordingly. Therefore, the rotating speed is decreased at the later stage, which matches the actual operating condition.

【0043】定流量運転の場合、ORPの上昇は流入B
OD濃度の上昇と関連づけられるので、ATPの測定を
省略した場合でも、ORPの測定のみで実用に耐えうる
円板の回転数制御が可能である。
In the case of the constant flow rate operation, the rise of the ORP
Since it is related to the increase in the OD concentration, even when the measurement of ATP is omitted, the rotational speed of the disk that can be practically used can be controlled only by the measurement of the ORP.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による汚水処理装置のブロック
図。
FIG. 1 is a block diagram of a sewage treatment apparatus according to an embodiment of the present invention.

【図2】本発明の実施例による汚水処理装置のBOD面
積負荷と周辺速度の関係を示す特性図。
FIG. 2 is a characteristic diagram showing a relationship between a BOD area load and a peripheral speed of the sewage treatment apparatus according to the embodiment of the present invention.

【図3】本発明の実施例による汚水処理装置のCODcr
容積負荷とORPの関係を示す特性図。
FIG. 3 shows CODcr of a sewage treatment apparatus according to an embodiment of the present invention.
FIG. 4 is a characteristic diagram showing a relationship between a volume load and an ORP.

【図4】回転円板法による汚水処理装置の構成図。FIG. 4 is a configuration diagram of a sewage treatment apparatus using a rotating disk method.

【図5】回転円板装置の側面図。FIG. 5 is a side view of the rotating disk device.

【図6】回転円板装置の正断面図。FIG. 6 is a front sectional view of a rotating disk device.

【符号の説明】[Explanation of symbols]

10…酸化槽、12…回転円板、13…流量計、14…
ORP計、15…ATP計、16…演算制御装置。
10 oxidation tank, 12 rotating disk, 13 flow meter, 14
ORP meter, 15: ATP meter, 16: Operation control device.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化槽に流入された被処理水中に回転円
板の一部を浸漬し、この回転円板を回転させて該回転円
板の表面に生物膜を生成させ、この生物膜により前記被
処理水を浄化する汚水処理装置において、前記酸化槽中
の酸化還元電位を測定する酸化還元電位計と、前記回転
円板に生成した生物膜の単位面積当りのアデノミンー3
ーリン酸の値を測定する手段と、前記酸化槽に流入され
る流入水量を測定する流量計と、前記酸化還元電位計の
酸化還元電位測定値,前記生物膜単位面積当りのアデノ
ミンー3ーリン酸値および流量測定値より演算式を用い
て、流入水の2クロム酸化カリウムによる酸素消費量で
ある流入水CODcr,流入水の生物化学的酸素要求量で
ある流入BOD,生物化学的酸素要求量であるBOD面
積負荷および前記回転円板の周辺速度を算出し、この算
出された周辺速度に対応して回転円板の回転速度を制御
する演算制御手段によって構成したことを特徴とする汚
水処理装置。
1. A part of a rotating disk is immersed in water to be treated that has flowed into an oxidation tank, and the rotating disk is rotated to form a biofilm on the surface of the rotating disk. In the sewage treatment apparatus for purifying the water to be treated, an oxidation-reduction potentiometer for measuring an oxidation-reduction potential in the oxidation tank, and adenamine-3 per unit area of a biofilm formed on the rotating disk.
A means for measuring the value of phosphoric acid, a flow meter for measuring the amount of inflowing water flowing into the oxidation tank, a measurement value of the oxidation-reduction potential of the oxidation-reduction potentiometer, an adenamine-3-phosphate value per unit area of the biofilm Using an arithmetic expression based on the measured flow rate and the flow rate measurement value, the inflow water CODcr, which is the oxygen consumption of the inflow water by potassium chromium oxide, the inflow BOD, which is the biochemical oxygen demand of the inflow water, and the biochemical oxygen demand. A sewage treatment apparatus comprising: an arithmetic control unit that calculates a BOD area load and a peripheral speed of the rotating disk, and controls a rotating speed of the rotating disk in accordance with the calculated peripheral speed.
【請求項2】 酸化槽に流入された被処理水中に回転円
板の一部を浸漬し、この回転円板を回転させて該回転円
板の表面に生物膜を生成させ、この生物膜により前記被
処理水を浄化する汚水処理装置において、前記酸化槽中
の酸化還元電位を測定する酸化還元電位計と、前記回転
円板に生成した生物膜の単位面積当りのアデノミンー3
ーリン酸の値を測定する手段と、前記酸化槽に流入され
る流入水量を測定する流量計と、前記酸化還元電位計の
酸化還元電位測定値,前記生物膜面積当りのアデノミン
ー3ーリン酸含量および流量測定値より演算式を用い
て、流入水の2クロム酸化カリウムによる酸素消費量で
ある流入水CODcr,流入水の生物化学的酸素要求量で
ある流入BOD,生物化学的酸素要求量であるBOD面
積負荷を算出する演算制御手段によって構成したことを
特徴とする汚水処理装置。
2. A part of a rotating disk is immersed in the water to be treated flowing into the oxidation tank, and the rotating disk is rotated to form a biofilm on the surface of the rotating disk. In the sewage treatment apparatus for purifying the water to be treated, an oxidation-reduction potentiometer for measuring an oxidation-reduction potential in the oxidation tank, and adenamine-3 per unit area of a biofilm formed on the rotating disk.
Means for measuring the value of phosphoric acid, a flow meter for measuring the amount of inflowing water flowing into the oxidation tank, a measurement value of the oxidation-reduction potential of the oxidation-reduction potentiometer, an adenamine-3-phosphate content per biofilm area, and Using an arithmetic expression based on the measured flow rate, the inflow CODcr, which is the amount of oxygen consumed by the indium chromium oxide, the inflow BOD, which is the biochemical oxygen demand of the inflow, and the BOD, which is the biochemical oxygen demand. A sewage treatment apparatus comprising an arithmetic control unit for calculating an area load.
【請求項3】 酸化槽に流入された被処理水中に回転円
板の一部を浸漬し、この回転円板を回転させて該回転円
板の表面に生物膜を生成させ、この生物膜により前記被
処理水を浄化する汚水処理装置において、前記酸化槽中
の酸化還元電位を測定する酸化還元電位計と、前記回転
円板に生成した生物膜の単位面積当りのアデノミンー3
ーリン酸の値を測定する手段と、前記酸化槽に流入され
る流入水量を測定する流量計と、前記酸化還元電位計の
酸化還元電位測定値,前記生物膜単位面積当りのアデノ
ミンー3ーリン酸値および流量測定値より演算式を用い
て、流入水の2クロム酸化カリウムによる酸素消費量で
ある流入水CODcr,流入水の生物化学的酸素要求量で
ある流入BOD,生物化学的酸素要求量であるBOD面
積負荷を算出し、この算出されたBOD面積負荷に対応
して回転円板の回転速度を制御する演算制御手段によっ
て構成したことを特徴とする汚水処理装置。
3. A part of a rotating disk is immersed in the water to be treated flowing into the oxidation tank, and the rotating disk is rotated to form a biofilm on the surface of the rotating disk. In the sewage treatment apparatus for purifying the water to be treated, an oxidation-reduction potentiometer for measuring an oxidation-reduction potential in the oxidation tank, and adenamine-3 per unit area of a biofilm formed on the rotating disk.
A means for measuring the value of phosphoric acid, a flow meter for measuring the amount of inflow water flowing into the oxidation tank, a measurement value of the oxidation-reduction potential of the oxidation-reduction potentiometer, adenamine-3-phosphate value per unit area of the biofilm Using an arithmetic expression based on the measured flow rate and the flow rate, the inflow CODcr, which is the oxygen consumption of the inflow water by potassium chromium oxide, the inflow BOD, which is the biochemical oxygen demand of the inflow, and the biochemical oxygen demand. A sewage treatment apparatus comprising a calculation control means for calculating a BOD area load and controlling a rotation speed of the rotating disk in accordance with the calculated BOD area load.
【請求項4】酸化槽中の酸化還元電位を測定する酸化還
元電位計と、前記酸化槽に流入される流入水量を測定す
る流量計と、前記酸化還元電位計の酸化還元電位測定値
より演算式を用いて、流入水の2クロム酸化カリウムに
よる酸素消費量である流入水CODcr,流入水の生物化
学的酸素要求量である流入BODおよび生物化学的酸素
要求量であるBOD面積負荷を算出し、この算出された
BOD面積負荷に対応して回転円板の回転速度を制御す
る演算制御手段によって構成したことを特徴とする汚水
処理装置。
4. An oxidation-reduction potentiometer for measuring an oxidation-reduction potential in an oxidation tank, a flowmeter for measuring an amount of inflowing water flowing into the oxidation tank, and a calculation based on a measurement value of the oxidation-reduction potential of the oxidation-reduction potential meter. Using the equations, the influent CODcr, which is the amount of oxygen consumed by the indium chromium potassium oxide, the influent BOD, which is the biochemical oxygen demand of the influent, and the BOD area load, which is the biochemical oxygen demand, are calculated. A sewage treatment apparatus comprising arithmetic and control means for controlling the rotation speed of the rotating disk in accordance with the calculated BOD area load.
JP3078791A 1991-04-11 1991-04-11 Sewage treatment equipment Expired - Lifetime JP3067241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3078791A JP3067241B2 (en) 1991-04-11 1991-04-11 Sewage treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3078791A JP3067241B2 (en) 1991-04-11 1991-04-11 Sewage treatment equipment

Publications (2)

Publication Number Publication Date
JPH04313394A JPH04313394A (en) 1992-11-05
JP3067241B2 true JP3067241B2 (en) 2000-07-17

Family

ID=13671702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3078791A Expired - Lifetime JP3067241B2 (en) 1991-04-11 1991-04-11 Sewage treatment equipment

Country Status (1)

Country Link
JP (1) JP3067241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082698A1 (en) * 2005-02-04 2006-08-10 Seiko Instruments Inc. Vessel for section sample treatment, method of section sample treatment and section sample treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225389B2 (en) * 2019-05-28 2023-02-20 株式会社東芝 water treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082698A1 (en) * 2005-02-04 2006-08-10 Seiko Instruments Inc. Vessel for section sample treatment, method of section sample treatment and section sample treatment apparatus

Also Published As

Publication number Publication date
JPH04313394A (en) 1992-11-05

Similar Documents

Publication Publication Date Title
Rusten Wastewater treatment with aerated submerged biological filters
Zhu et al. Effect of extended idle conditions on structure and activity of granular activated sludge
Figueroa et al. The effect of particulate organic matter on biofilm nitrification
CA1067219A (en) Activated sludge treatment of wastewater and apparatus therefor
US7655142B2 (en) Dynamic control of membrane bioreactor system
Hiras et al. Organic and nitrogen removal in a two-stage rotating biological contactor treating municipal wastewater
Su et al. Treatment of antibiotic pharmaceutical wastewater using a rotating biological contactor
BG63532B1 (en) Waste water treatment monitoring by measuring the speed of the usage of oxygen
KR20060119863A (en) Method and installation for the biological treatment of water using activated sludge and comprising aeration regulation
US3871999A (en) Removal of pollutants from waste-water
Harrison et al. A comparison of trickling filter media
Kadu et al. Treatment of Municipal Wastewater by Using Rotating Biological Contactors (RBCs)
JPS61242694A (en) Method and device for purifying waste water through activated sludge method
JP3067241B2 (en) Sewage treatment equipment
AU2018331439A1 (en) Simultaneous nitrification/denitrification (SNDN) in sequencing batch reactor applications
AU595177B2 (en) Nitrification/denitrification of waste material
Albertson et al. Biologically mediated inconsistencies in aeration equipment performance
KR100935914B1 (en) Advanced wastewater treatment apparatus with two stage reactor
Wilson et al. Scaleup in rotating biological contactor design
JPH0938683A (en) Biological water treating device
CN2711156Y (en) Two-section SBR process equipment for removing organic pollutant and denitrification from waste-water
JPS5931357Y2 (en) Rotating disk device for water treatment
Watanabe et al. Nitrification kinetics and simultaneous removal of biomass and phosphorus in rotating biological contactors
CN204490605U (en) A kind of Novel water conservancy system waste disposal plant
JPS59115788A (en) Method and device for treating sewage