JP3064503U - AC current sensor - Google Patents
AC current sensorInfo
- Publication number
- JP3064503U JP3064503U JP1999003886U JP388699U JP3064503U JP 3064503 U JP3064503 U JP 3064503U JP 1999003886 U JP1999003886 U JP 1999003886U JP 388699 U JP388699 U JP 388699U JP 3064503 U JP3064503 U JP 3064503U
- Authority
- JP
- Japan
- Prior art keywords
- current
- coil
- iron core
- resistance
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
(57)【要約】
【課題】 温度のアップ、抵抗温度係数及び抵抗負荷効
果できたした測定の誤差を消除し、非常に精確に電流を
測定できる並びに、電流測定の時に不必要なパワー・ロ
スを減少できる交流電流センサーを提供する。
【解決手段】 本考案の交流電流センサーは鉄芯、電流
入力コイル、安定度が高く温度係数の低い電流出力コイ
ル及びリーディング・コイルから成り、電流入力コイル
と測定待機電流回路を串聨し、そして鉄芯の二次側感応
の電流が殆ど完全に電流出力コイルに流れ、最後更に検
出器でリーディング・コイルの上の感応電圧を測定す
る。
(57) [Summary] [PROBLEMS] To eliminate a measurement error caused by temperature rise, resistance temperature coefficient and resistance load effect, to measure a current very accurately, and unnecessary power loss at the time of current measurement. To provide an alternating current sensor capable of reducing power consumption. The AC current sensor according to the present invention includes an iron core, a current input coil, a current output coil having high stability and a low temperature coefficient, and a leading coil, and combines a current input coil and a measurement standby current circuit. The secondary side sensitive current of the iron core flows almost completely through the current output coil, and finally the detector measures the sensitive voltage above the leading coil.
Description
【0001】[0001]
本考案は交流電流センサーに関し、特に2組のセコンダリ・コイルを有するト ランス構造を利用し、以て非常に精確に交流電流を測定する目的を達成する交流 電流センサーに関する。 The present invention relates to an alternating current sensor, and more particularly to an alternating current sensor that utilizes a transformer structure having two sets of secondary coils and achieves the purpose of measuring an alternating current with high accuracy.
【0002】[0002]
科学技術が日々益々進歩している現在、殆ど総ての装備は皆、電気と無関係に は単独に運用できない。電力の系統の面では、各電力設備の正常な運用を確保す る為、随時に電流の状態を偵測し、以て設備の運用をモニタリングするのに便利 ならしめるべきであり、そして設備の作動にミスが有った場合にも適当な措施を 取ることができる。集積電路など精密電子の面では、電子装置の間の制御信号及 び資料信号伝達の数量が莫大で、若し任意の一つの電流信号の検出がミス起こす と、系統全体にミスの作動を生じる可能性が有る。従って、如何に確実精密に電 流を測定するかは、現在非常に重要な課題である。 一般に使用されている電流センサーは抵抗偵測法と電流変換器偵測法に分けら れる。抵抗偵測法は図1の電路図に示す如く、センス抵抗を測定待機電流の電路 と串聨し、当該抵抗の上の電圧値を読み取った後、オーム定率(Ohm law )に依り当該抵抗の上を流れる測定待機電流に換算(Iin=Vout /R)でき、 構造が簡単だが、電流が抵抗を流れた後生じる熱効果(P=Iin2 R)が抵抗の 温度を高くし、抵抗値が熱を受けた為に変化し、そのために測定した電流値に非 常に大きな誤差が存在すると共に、少なからずのパワー・ロスを生じる。 電流変換器偵測法は図2の電路図に示す如く、電流変換器(一種のインストラ メント・トランス)を使い、測定待機電路と電流変換器のプリマリ・コイル(電 流入力コイル)を串聨し、セコンダリ・コイル(電流出力コイル)が測定待機電 流I(即ちIin)と比例する比較的小さい電流Iout が流れ、その比例はコイル のラン・レシオと反比例を成し、次いで検出器でこの電流Iout を測定する。I out を測定した後、公式Iin=Iout ×(M/V)で測定待機電流Iinを推算で きる。然し一般に電流に対する処理は電圧に対する処理に比べ難しいので、通常 セコンダリ・コイルにセンス抵抗を串接し、以てセンス抵抗の上の電圧値Vout を測定する。図3の電路図に示す如く、この時公式Iin=(Vout /R)×(M /V)で測定待機電流Iinの大きさを計算できる。 With the ever-evolving science and technology, almost all equipment cannot operate independently without electricity. In terms of the power system, it should be convenient to monitor the current condition of the power system at any time to ensure the normal operation of each power system, and to monitor the operation of the system. Appropriate measures can be taken even if there is a mistake in operation. In the area of precision electronics such as integrated circuits, the number of control signals and data signals transmitted between electronic devices is enormous, and if the detection of any one current signal fails, the entire system will operate incorrectly. There is a possibility. Therefore, how to accurately measure current is a very important issue at present. Commonly used current sensors are divided into resistance detection and current transducer detection. In the resistance reconnaissance method, as shown in the circuit diagram of FIG. 1, the sense resistor is combined with the circuit of the measurement standby current, and after reading the voltage value above the resistor, the resistance of the resistor is determined based on the ohmic constant (Ohm raw). It can be converted to the measurement standby current flowing above (Iin = Vout / R), and the structure is simple, but the heat effect (P = Iin2R) generated after the current flows through the resistor raises the temperature of the resistor, and the resistance value becomes higher. The measured current value has a very large error and causes a considerable loss of power. The current converter reconnaissance method uses a current converter (a kind of instrument transformer) as shown in the circuit diagram in Fig. 2, and combines the measurement standby circuit and the primary coil (current input coil) of the current converter. Then, the secondary coil (current output coil) flows a relatively small current Iout proportional to the measurement standby current I (ie, Iin), the proportion of which is inversely proportional to the run ratio of the coil, which is then detected by the detector. The current Iout is measured. After measuring I out, the measurement standby current Iin can be estimated by the formula Iin = Iout × (M / V). However, in general, processing for current is more difficult than processing for voltage. Therefore, a sense resistor is usually connected to a secondary coil, and the voltage value Vout above the sense resistor is measured. At this time, the magnitude of the measurement standby current Iin can be calculated by the formula Iin = (Vout / R) × (M / V), as shown in the circuit diagram of FIG.
【0003】[0003]
上記の電流変換法は測定待機電流を電流変換器で比較的小さい電流に転換し、 センス抵抗を流れる電流を比較的小さくするので、パワー・ロスが上記の抵抗法 に比べ小さく、抵抗値が温度効果に伴い変化する割合も比較的に小さいので、誤 差を少なくすることができるが、依然として以下幾つかの厳重な欠点が存在する : 1.抵抗が依然として主要な負荷であり、パワー・ロスが温度の上昇を招き抵 抗値の変化をきたし、これは精密な測定にとって非常に不利であり、品質が比較 的良い(即ち温度係数が比較的小さい)抵抗を採用し、この欠点を改善すべきで ある。 2.電流変換器自身もインビーダンス(ワンディングの抵抗、磁芯の等効抵抗 、コイルのリケージ・フラックスのきたすリケージ・リアクタンス及びコイルの マグネチジング・リアクタンス)が存在し、電流が流れたあと電圧の降下をきた すので、出力電圧Vout に依り推算した電流値に誤差が生じる。 3.図4の等効電路図に示す如く、たとえ品質優良の抵抗を選択してセンス抵 抗Rを作っても、セコンダリ・コイルMの採用する銅線自身が温度係数の大きい 抵抗R2 であり、それは温度に対し非常に敏感であり、且つそれをセンス抵抗R と串接すると、温度係数の異なる二つの導体を串接した状況の下では、その精確 度が大いに降下する。 4.コイル銅線とセンス抵抗Rが互いに接する点は異質金属の接点であり、そ の生じるワーク・ファンクションが測定に干渉すると同時に、接点の所で接触抵 抗Rc を生じ、それも温度係数の一つのエレメントである。 5.若し測定待機電流が非常に大きいと、必要とする電流変換器コイルの電流 比が非常に大きくなる、即ちそのラン・レシオが非常に大きくなるので、製造が 非常に困難となり、この場合通常多組の電流比較器を串聨し、一つずつ電流を降 げ、図5の電路図に示す如く、更に抵抗Rで最後の一つの電流比較器機のセコン ダリ・コイルの電圧値Vout を取り出すが、電流変換器をこの様に串聨した状況 の下では、電流変換器串接した後のインナ・インピーダンスを見逃すことできず 、精密度が大いに降下する。 In the current conversion method described above, the measurement standby current is converted to a relatively small current by the current converter, and the current flowing through the sense resistor is relatively small, so that the power loss is smaller than the resistance method described above and the resistance value is temperature. Although the rate of change with effect is relatively small, errors can be reduced, but there are still some severe drawbacks: Resistance is still the main load, power loss leads to temperature rise and changes in resistance, which is very disadvantageous for accurate measurements and of relatively good quality (ie relatively low temperature coefficient). A (small) resistor should be used to remedy this drawback. 2. The current converter itself also has impedance (wandering resistance, magnetic core equivalent resistance, coil reactance and flux reactance generated by coil flux and coil magnetic reactance), and the voltage drops after the current flows. Therefore, an error occurs in the current value estimated based on the output voltage Vout. 3. As shown in the equivalent circuit diagram of FIG. 4, even if a resistor of excellent quality is selected to form a sense resistor R, the copper wire used by the secondary coil M itself is a resistor R2 having a large temperature coefficient. If it is very sensitive to temperature and is connected to the sense resistor R, its accuracy is greatly reduced under the condition that two conductors having different temperature coefficients are connected. 4. The point where the coil copper wire and the sense resistor R contact each other is a contact of a dissimilar metal, and the resulting work function interferes with the measurement and, at the same time, produces a contact resistance Rc at the contact, which is also one of the temperature coefficients. Element. 5. If the measurement standby current is very large, the required current converter coil current ratio will be very large, that is, its run ratio will be very large, making it very difficult to manufacture, and in this case, usually many As shown in the circuit diagram of FIG. 5, the voltage value Vout of the secondary coil of the last one current comparator is taken out by the resistor R as shown in the circuit diagram of FIG. However, under the situation where the current converters are combined in this way, the inner impedance after the current converters are connected cannot be overlooked, and the precision is greatly reduced.
【0004】 本考案の主な目的はセコンダリ・コイルを2組に分け、これにより温度のアッ プ、抵抗温度係数及び抵抗負荷効果できたした電流測定の誤差を消除し、非常に 精確に測定できる交流電流センサーを提供することにある。 本考案の別の一つの目的は電流を測定する時に不必要のパワー・ロスを減少で きる交流電流センサーを提供することにある。The main object of the present invention is to divide the secondary coil into two sets, thereby eliminating the errors in the current measurement that could be effected by the temperature increase, the resistance temperature coefficient and the resistance load effect, and very accurate measurement can be performed. An AC current sensor is provided. Another object of the present invention is to provide an alternating current sensor that can reduce unnecessary power loss when measuring current.
【0005】[0005]
本考案の交流電流センサーはトランスに似た鉄芯構造を有し、従来の電流変換 器の接ぎ方と同じくプリマリ・コイルと測定待機交流電流電路を互いに串聨する 。そしてセコンダリ・コイルは2組有り、第1組のコイルは安定度高く温度係数 が低い抵抗線(例えばマンガン銅線)を巡ぐらして成り、その両末端を溶接短絡 しており、第2組のコイルはオープンで、検出器として電圧のリーディング・コ イルを測定するのに供じる。本考案の交流電流センサーは従来の交流電流センサ ーに比べ下記の長所が有る: 1.本考案に於ける第2組のセコンダリ・コイル(即ちリーディング・コイル )はオープニングの状態なので、二次側電流が殆ど完全に第一組のセコンダリ・ コイル(即ち電流出力コイル)を流れる、即ち第一組のセコンダリ・コイル全体 自身が二次側の電流負荷抵抗であるので、散熱の状況が良く;そしてそれは温度 係数の小さい抵抗材料を採用し、且つ温度係数が至る所同じなので、抵抗値が殆 ど変わらず;又それは第一金属の導体でありその他異質の金属と接触しないので 、接触ワーク・ファンクションの干渉と接触抵抗を生じない。 2.第2組のセコンダリ・コイルの上に感応する電圧と第一組のセコンダリ・ コイルの電圧は比例を成し(この比例は第一組コイルと第二組のコイルのラン・ レシオである)、読み取り器を第2組のコイルに串聨してこの感応電圧を測定す るが、読み取り器のインピーダンスが非常に高いので、リーディング・コイルを 流れる電流が非常に小さい(オープン状態と見なしてよい)、従って鉄芯及びコ イルのきたした感電性の電圧降下及び抵抗性の電圧降下が非常に小さく、これを 見逃し計算に入れないことができ、従来の電流変換器の負荷効果が無い。 3.電流が殆ど全部第一組のセコンダリ・コイル(電流出力コイル)を流れる ので、本考案に於けるロス・パワーは殆ど全部第一組のセコンダリ・コイルにあ り、コイルの抵抗値が一般の抵抗値に比べ非常に大きいので、そのロス・パワー が抵抗法及び電流比較法で損耗されたパワーより小さい。 4.測定待機電流が非常に大きい時、若しプリマリ・コイル及びセコンダリ・ コイルのラン・レシオをアップしなければ、セコンダリ・コイルをながれる電流 も非常に大きくなるので、若し従来の電流変換器が多級串接の方式を採用しない と、測定待機電流が大きい発熱パワーに耐えられずに焼き壊され、たとえ抵抗が この様に高いパワーに耐えることができても、その抵抗の上に電圧も非常に大き く、測定し難く且つ危険が生じやすい。但し本考案に就いて言えば、第1組のセ コンダリ・コイルの抵抗が非常に小さいので、発熱パワーは従来のに比べて非常 に小さく、電圧も比較的小さく、且つたとえ測定待機電流が非常に大きいために 第1組のセコンダリ・コイルの電圧が高すぎても、電圧は第2組のコイルから読 み取りしているので、第2組コイルの第1組コイルに対するラン・レシオを変え ることにより第2組コイルの上の感応電圧値を降げることができる外に、(若し 更に粗い抵抗線を使用すれば)直接第1組のセコンダリ・コイルの抵抗値を降げ 、以て第2組コイルの感応電圧を降げ、それが測定しやすい様にすることができ る。従って、本考案の交流電流センサーで大きい電流を測定する場合、多級串接 の方式を使用する必要が無く、只2組のセコンダリ・コイルのラン・シレオを変 えたり第1組コイルの抵抗値を変えればよく、操作が非常に便利で、且つ体積と コストを節約し、経済的メリットをアップすることができる。 5.一般のカレント・トランスはセコンダリ・コイル側でオープニングを避け るので、未だ測定していない時、通常セコンダリ・コイルの所に短絡接線を加え るべきだが、この短絡接線は常に電流が大きすぎるために焼き壊れる。そして本 考案に於ける第1組のセコンダリ・コイル自身は短絡コイル構造なので、更に安 全な測定を提供でき、尤中大きい電流を測定する時よりよく本考案がその他一般 に知られている技術に比べ優秀であることを示すことができる。 The AC current sensor of the present invention has an iron core structure similar to a transformer, and the primary coil and the measurement standby AC current path are connected to each other in the same manner as the conventional current converter connection method. There are two sets of secondary coils. The first set of coils is wrapped around a resistance wire (for example, manganese copper wire) with high stability and low temperature coefficient, and both ends are short-circuited by welding. The coil is open and serves as a detector to measure the leading coil of voltage. The AC current sensor of the present invention has the following advantages over the conventional AC current sensor: Since the second set of secondary coils (ie, the leading coil) in the present invention is in the open state, the secondary current almost completely flows through the first set of secondary coils (ie, the current output coil), ie, the second set of secondary coils. The heat dissipation situation is good because the whole set of secondary coils themselves is the current load resistance on the secondary side; and it uses a low temperature coefficient resistive material and the temperature coefficient is the same everywhere, so the resistance value is low. Hardly any; it is a conductor of the first metal and does not come into contact with other dissimilar metals, so that it does not cause interference and contact resistance of the contact work function. 2. The voltage sensed on the second set of secondary coils and the voltage of the first set of secondary coils is proportional (this proportion is the run ratio of the first set of coils and the second set of coils); The sensing voltage is measured by connecting the reader to the second set of coils, but the impedance of the reader is so high that the current through the reading coil is very small (can be considered as open). Therefore, the voltage drop of the electric shock and the voltage drop of the resistance caused by the iron core and the coil are so small that they can be overlooked and not included in the calculation, and there is no load effect of the conventional current converter. 3. Since almost all of the current flows through the first set of secondary coils (current output coils), the loss power in the present invention is almost entirely in the first set of secondary coils, and the resistance value of the coil is a general resistance. Since it is much larger than the value, its loss power is smaller than the power consumed by the resistance method and the current comparison method. 4. When the standby current for measurement is very large, the current flowing through the secondary coil will be very large unless the run ratio of the primary coil and secondary coil is increased. If the method of class connection is not adopted, the measurement standby current will not be able to withstand large heat generation power and will be destroyed. Even if the resistance can withstand such high power, the voltage will be extremely high on the resistance. Large, difficult to measure and prone to danger. However, according to the present invention, since the resistance of the second set of secondary coils is very small, the heat generation power is very small, the voltage is relatively small, and even if the measurement standby current is very small. Even if the voltage of the first set of secondary coils is too high because the voltage is large, the voltage is read from the second set of coils, so the run ratio of the second set of coils to the first set of coils is changed. In addition to being able to lower the sensitive voltage value on the second set of coils, the resistance value of the first set of secondary coils is reduced directly (if a coarser resistance wire is used), As a result, the sensitive voltage of the second set coil can be reduced, so that it can be easily measured. Therefore, when measuring a large current with the AC current sensor of the present invention, it is not necessary to use a multi-stage shunting method. You only need to change the value, it is very convenient to operate, saves volume and cost, and can increase the economic advantage. 5. Since a general current transformer avoids opening on the secondary coil side, a short-circuit tangent should usually be added at the secondary coil when not yet measured, but this short-circuit tangent is always too large in current. Burn down. Since the first set of secondary coils in the present invention has a short-circuit coil structure, more secure measurement can be provided, and the present invention is well known when measuring a large current. Can be shown to be superior to
【0006】[0006]
以下、添付した図面を参照しつつ、具体的な実施例により本考案の特徴及び効 果を詳細に説明する。 図1は抵抗法で電流を測定する場合の電路図であり、図に示す如くセンス抵抗 Rの上の電圧値Vout を読み取った後、オーム定率で測定待機電流値Iinを換算 できる。 Hereinafter, the features and effects of the present invention will be described in detail with reference to the accompanying drawings by way of specific embodiments. FIG. 1 is an electric circuit diagram when the current is measured by the resistance method. As shown in the figure, after reading the voltage value Vout on the sense resistor R, the measurement standby current value Iin can be converted at a constant ohm rate.
【0007】 図2は電流変換器で電流を測定する場合の電路図であり、図に示す如くセコン ダリ・コイルの電流値Iout を測定した後、コイルのラン・レシオで待機測定電 流値Iinを換算できる。FIG. 2 is an electric circuit diagram when the current is measured by the current converter. After measuring the current value Iout of the secondary coil as shown in the figure, the standby measurement current value Iin is measured by the run ratio of the coil. Can be converted.
【0008】 図3は電流変換器でセンス抵抗を串聨し、以て電圧を測定する場合の電路図で ある。点線の中は電流センサーであり、セコンダリ・コイルの上のセンス抵抗R の電圧値Vout を測定した後、公式Iin=(Vout /R)×(M/V)により測 定待機電流値Iinを換算できる。FIG. 3 is an electric circuit diagram in a case where a voltage is measured by connecting a sense resistor with a current converter. Inside the dotted line is a current sensor, which measures the voltage value Vout of the sense resistor R on the secondary coil and then converts the measurement standby current value Iin by the formula Iin = (Vout / R) × (M / V). it can.
【0009】 図4は図3の等効電路図である。点線の中は実際の電流交換器の等効電路、太 線はアイディアル・トランスであり、電流交換器はトランスの一種であり、そし てトランス自身はインピーダンス(ワインディングの抵抗、磁心の等効抵抗、コ イルのリーケージ・フラックスのきたすリーケージ・リアクタンス及びコイルの マグネチック・リアクタンス)が存在し、その中のワインディング抵抗が決定的 な影響を有するので、実際の電流変換器の等効電路はアイディアル・トランス及 び両側コイルの抵抗R1 及びR2 を含む。この外に、電流変換器が測定待機抵抗 と串聨するので、干渉ワーク・ファンクションf及び接触抵RC が存在する。FIG. 4 is an equivalent electric circuit diagram of FIG. The dotted line is the equivalent current path of the actual current exchanger, the bold line is the ideal transformer, the current exchanger is a type of transformer, and the transformer itself has impedance (winding resistance, magnetic core equivalent resistance). Because the leakage reactance of the coil and the magnetic reactance of the coil exist, and the winding resistance in them has a decisive effect, the equivalent current path of the actual current converter is ideal.・ Includes resistance R1 and R2 of transformer and coil on both sides. Besides this, there is an interference work function f and a contact resistance RC, since the current transducer is combined with the measurement standby resistance.
【0010】 図5は数個の電流変換器を串接し、以て大きい電流を測定する場合の電路図で ある。図に示す如く、多組の電流変換器を串聨し一つずつ電流を降げた後、抵抗 で最後一つの電流変換器のセコンダリ・コイルの電圧値を取り出せば、公式Iin =(Vout /R)×(M1 /N1 )×(M2 /N2 )×・・・(Mn /Nn )で 測定待機電流値を換算できる。FIG. 5 is an electric circuit diagram in the case where several current converters are connected to each other to measure a large current. As shown in the figure, after combining multiple current converters and reducing the current one by one, the voltage value of the secondary coil of the last current converter is taken out with a resistor, and the formula Iin = (Vout / R ) × (M 1 / N 1 ) × (M 2 / N 2 ) ×... (Mn / Nn) can convert the measurement standby current value.
【0011】 図6は本考案の交流電流センサーの電路図である。図に示す如く、それはトラ ンスに似た鉄心構造を有し、従来の電流変換器の継ぎ方と同じくプリマリ・コイ ル(電流入力コイルであり、鉄心の上にN周巡らされている)と測定待機交流電 流の電路を互いに串聨する(若し柱形中空鉄心構造ならば、測定待機電流の電路 をこの鉄心に貫通すればよい)。セコンダリ・コイルは2組有り、第1組のコイ ル(電流出力コイル)は安定度が高く温度と係数の低い抵抗線(例えばマンガン 銅線)をM周鉄心の上に巡らせると共に、両末端を溶接短絡したもので;第2組 のコイル(一般の銅線を使用してよい)はP周鉄心の上に巡らされ、コイルの両 端がオープンであり、検出器として感応電圧を測定するのに供じるリーディング ・コイルである。検出器のインナ・レジスタンスがハイ・インピーダンスであり 、リーディング・コイルの上の電流が非常に小さいので、検出器を連接した後の 当該コイルは依然オープンの状態と見なすことができ、従って二次側電流は殆ど 完全に第1組のプリマリ・コイル(電流出力コイル)に流れ、即ちこのコイルの 上の電流で完全にプリマリ・コイルが鉄心に造ったマグネチック・モーチブ・ホ ースを相殺し、そして第1組のコイル(リーディング・コイル)は感応電圧を読 み取るのに使用され、その上の電流が非常に小さい。この様な構造の接配により 、従来の電流変換器のセコンダリ・コイルの負担する効果(電流を流れさせ以て プリマリ・コイルの造ったマグネチック・モーチブ・ホースを相殺する及び電圧 を読み取るのに供じる効果)を分け、そして二つのコイルでそれぞれ完成する。 斯くして完全に従来の電流交換器が温度の上昇、抵抗温度係数及び抵抗負荷効果 によりきたした測定の誤差を完全に消除できると共に、電流センサーの中に損耗 されたパワー・ロスが降下でき、そして非常に精確に測定する目的が達成できる 。本考案の原理を更に詳細に説明する及び実際に本考案を応用した後の結果を導 き出すため、確かに本考案に於ける実際の等効電路で分析する必要が有り、その 分析は下記の如きである。FIG. 6 is an electric circuit diagram of the AC current sensor of the present invention. As shown in the figure, it has a core structure similar to that of a transformer, and has a primary coil (current input coil, which is looped N times over the iron core) in the same manner as a conventional current converter. The measurement standby AC current paths are connected to each other (if the hollow iron core structure is used, the measurement standby current path may be passed through this core). There are two sets of secondary coils. The first set of coils (current output coils) has a high stability, low temperature and low coefficient of resistance wire (for example, manganese copper wire) wrapped around the M core, and both ends. With a welded short circuit; the second set of coils (which may be regular copper wire) is wrapped around the P core, both ends of the coil are open, and the sensing voltage is measured as a detector. It is a leading coil for Since the inner resistance of the detector is high impedance and the current above the leading coil is very small, after connecting the detector the coil can still be considered as open and therefore the secondary side The current flows almost entirely through the first set of primary coils (current output coils), i.e. the current above this coil completely cancels out the magnetic motive hose that the primary coil made on the iron core, And the first set of coils (leading coil) is used to read the sensitive voltage, and the current over it is very small. By connecting such a structure, the effect borne by the secondary coil of the conventional current converter (to offset the magnetic motive hose made by the primary coil by flowing the current and to read the voltage) Effect), and complete each with two coils. Thus, completely conventional current exchangers can completely eliminate the measurement errors caused by temperature rise, temperature coefficient of resistance and resistive load effects, and reduce the power loss worn in the current sensor, And the purpose of measuring very accurately can be achieved. In order to explain the principle of the present invention in more detail and to derive the results after actually applying the present invention, it is necessary to perform analysis on the actual equivalent effective circuit in the present invention, and the analysis is as follows. It is like.
【0012】 図7は本考案の交流電流センサーの等効電路図であり、本考案のセンサーはア イディアル・トランス(太線はアイディアル・トランスを示し、アイディアル・ トランスの公式を使用できる)及び両側のコイル抵抗r1 、r2 、r3 、と同等 の効果にすることができ、そしてr4 は検出器のインナ・レジスタンスである。 本考案に於ける電流負荷コイルの上の電流値Iout =Iin×(N/M)はラン・ レシオから求めることができ、電流出力コイルのコイル抵抗がr2 であり、そし てその両端が短絡しているので、電圧V1 =Iout ×r2 が測定待機の電流と正 比例を成す。この電圧は外部の検出儀器で測定できないが、第2組のセコンダリ ・コイル(リーディング・コイル)でその値を測定できる。アイディアル・トラ ンスの理論に依れば、鉄心の上の各コイルの感応電圧が磁芯全体の上のマグネチ ック・フラックスの変化率と正比例を成すので、これからリーディング・コイル の上の電圧V2 =V1 ×(P/M)=Iin×(N/M)×r2 ×(P/M)が求 められる。検出器のインナ・レジスタンスr4 がハイ・インピーダンス(100 万オーム以上)で、リーディング・コイルはオープニングの状態と見なすことが できるので、その上を流れる電流が殆ど無く、そしてコイル抵抗は数オームであ り、殆ど電圧の降下が無い、即ち従来の電流変換器の負荷抵抗効果が無いので、 検出器の上で測定された電圧値Vout はV2 に等しく、それは測定待機電流Iin と正比例を成すので、これにより測定待機電流の値を換算でき、換算の公式はI in=V2 ×M2 /N/P/r2 である。本考案に既にサンプルを中華民国標準実 験室に提供し、実験の結果理論分析と完全に同じであると証明している。 上記の具体的な実施例は本考案の目的、特徴及び効能を詳細に説明するのに供 じるもので、別にこれで本考案の特許範囲を制限するのでなく、この種技芸に精 通する者が当該具体的な実施例に基き為した局部的な変更及び修改が本考案の技 芸の精神を離脱しないものは、総て本考案の実用新案登録請求の範囲に属する。FIG. 7 is an equivalent electric circuit diagram of the AC current sensor according to the present invention. The sensor according to the present invention includes an ideal transformer (a thick line indicates an ideal transformer, and an ideal transformer formula can be used). The effect can be equivalent to the coil resistances r 1 , r 2 , r 3 on both sides, and r 4 is the inner resistance of the detector. The current value Iout = Iin × (N / M) above the current load coil in the present invention can be obtained from the run ratio, the coil resistance of the current output coil is r 2 , and both ends are short-circuited. since it has, and the voltage V1 = Iout × r 2 forms a current and a positive proportional measurement standby. This voltage cannot be measured by an external detector, but its value can be measured by a second set of secondary coils (leading coils). According to the ideal trans theory, the sensitive voltage of each coil above the iron core is directly proportional to the rate of change of the magnetic flux over the entire core, and hence the voltage above the leading coil V 2 = V 1 × (P / M) = Iin × (N / M) × r 2 × (P / M) In the inner-resistance r 4 is high impedance of the detector (millions ohms or higher), a leading coil can be regarded as the opening of the state, there is almost no current flowing thereon, and coil resistance are few ohms Since there is almost no voltage drop, ie, no load resistance effect of the conventional current converter, the voltage value Vout measured on the detector is equal to V2, which is directly proportional to the measured standby current Iin. Thus, the value of the measurement standby current can be converted, and the conversion formula is I in = V 2 × M 2 / N / P / r 2 . The sample has already been provided to the Republic of China Standard Laboratory for this invention, and the results of the experiment have proved to be exactly the same as the theoretical analysis. The above specific examples serve to explain the purpose, features and effects of the present invention in detail, and do not limit the patent scope of the present invention, but become familiar with this kind of art. If a person does not depart from the spirit of the art of the present invention by a local change or modification based on the specific embodiment, the invention belongs to the claims of the present invention.
【0013】[0013]
【考案の効果】 以上述べた様に、本考案は巧みな構造設計で、従来の電流センサーが非常に精 確に電流を測定できない欠点を改善し、かつ実際の必要(測定待機電流の範囲) に依りラン・レシオを調整でき、任意の設備に適用し非常に精確な測量の結果を 獲得できる。[Effects of the Invention] As described above, the present invention has a clever structure design, improves the drawback that the conventional current sensor cannot measure the current very accurately, and reduces the actual necessity (range of the measurement standby current). Can be used to adjust the run ratio, and can be applied to any equipment to obtain very accurate survey results.
【提出日】平成11年7月1日(1999.7.1)[Submission date] July 1, 1999 (1999.7.1)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0002[Correction target item name] 0002
【補正方法】変更[Correction method] Change
【0002】[0002]
科学技術が日々益々進歩している現在、殆ど総ての装備は皆、電気と無関係に は単独に運用できない。電力の系統の面では、各電力設備の正常な運用を確保す る為、随時に電流の状態を偵測し、以て設備の運用をモニタリングするのに便利 ならしめるべきであり、そして設備の作動にミスが有った場合にも適当な措施を 取ることができる。集積電路など精密電子の面では、電子装置の間の制御信号及 び資料信号伝達の数量が莫大で、若し任意の一つの電流信号の検出がミス起こす と、系統全体にミスの作動を生じる可能性が有る。従って、如何に確実精密に電 流を測定するかは、現在非常に重要な課題である。 一般に使用されている電流センサーは抵抗偵測法と電流変換器偵測法に分けら れる。抵抗偵測法は図1の電路図に示す如く、センス抵抗を測定待機電流の電路 と串聨(本明細書において、串聨とは、直列に接続することを意味する)し、当 該抵抗の上の電圧値を読み取った後、オーム定率(Ohm law)に依り当該 抵抗の上を流れる測定待機電流に換算(Iin=Vout /R)でき、構造が簡単だ が、電流が抵抗を流れた後生じる熱効果(P=Iin2 R)が抵抗の温度を高くし 、抵抗値が熱を受けた為に変化し、そのために測定した電流値に非常に大きな誤 差が存在すると共に、少なからずのパワー・ロスを生じる。 電流変換器偵測法は図2の電路図に示す如く、電流変換器(一種のインストラ メント・トランス)を使い、測定待機電路と電流変換器のプリマリ・コイル(電 流入力コイル)を串聨し、セコンダリ・コイル(電流出力コイル)が測定待機電 流I(即ちIin)と比例する比較的小さい電流Iout が流れ、その比例はコイル のラン・レシオと反比例を成し、次いで検出器でこの電流Iout を測定する。I out を測定した後、公式Iin=Iout ×(M/V)で測定待機電流Iinを推算で きる。然し一般に電流に対する処理は電圧に対する処理に比べ難しいので、通常 セコンダリ・コイルにセンス抵抗を串接(本明細書において、串接とは、電気的 に接続することを意味する)し、以てセンス抵抗の上の電圧値Vout を測定する 。図3の電路図に示す如く、この時公式Iin=(Vout /R)×(M/V)で測 定待機電流Iinの大きさを計算できる。 With the ever-evolving science and technology, almost all equipment cannot operate independently without electricity. In terms of the power system, it should be convenient to monitor the current condition of the power system at any time to ensure the normal operation of each power system, and to monitor the operation of the system. Appropriate measures can be taken even if there is a mistake in operation. In the area of precision electronics such as integrated circuits, the number of control signals and data signals transmitted between electronic devices is enormous, and if the detection of any one current signal fails, the entire system will operate incorrectly. There is a possibility. Therefore, how to accurately measure current is a very important issue at present. Commonly used current sensors are divided into resistance detection and current transducer detection. In the resistance reconnaissance method, as shown in the circuit diagram of FIG. 1, the sense resistance is combined with the circuit of the measurement standby current (in this specification, “combined” means connected in series), After reading the voltage value above the resistance, it can be converted to a measurement standby current flowing over the resistor (Iin = Vout / R) by the ohmic constant (Ohm law), and the structure is simple, but the current flows through the resistance The subsequent thermal effect (P = Iin2 R) raises the temperature of the resistor, and the resistance changes due to the heat, so that there is a very large error in the measured current value and not a little. Causes power loss. The current converter reconnaissance method uses a current converter (a kind of instrument transformer) as shown in the circuit diagram in Fig. 2, and combines the measurement standby circuit and the primary coil (current input coil) of the current converter. Then, the secondary coil (current output coil) flows a relatively small current Iout proportional to the measurement standby current I (ie, Iin), the proportion of which is inversely proportional to the run ratio of the coil, which is then detected by the detector. The current Iout is measured. After measuring I out, the measurement standby current Iin can be estimated by the formula Iin = Iout × (M / V). However, in general, the processing for current is more difficult than the processing for voltage. Therefore, usually, a sense resistor is connected to the secondary coil (in this specification, connection means to electrically connect). Measure the voltage value Vout above the resistor. As shown in the circuit diagram of FIG. 3, at this time, the magnitude of the measurement standby current Iin can be calculated by the formula Iin = (Vout / R) × (M / V).
【図1】一般に知られている抵抗法で電流を測定する場
合の電路図である。FIG. 1 is an electric circuit diagram when a current is measured by a generally known resistance method.
【図2】一般に知られている電流変換器で電流を測定す
る場合の電路図である。FIG. 2 is an electric circuit diagram when a current is measured by a generally known current converter.
【図3】一般に知られている電流変換器をセンス抵抗に
串聨し電圧を測定する場合の電路図である。FIG. 3 is an electric circuit diagram in a case where a generally known current converter is connected to a sense resistor and a voltage is measured.
【図4】図3の等効電路図である。FIG. 4 is an equivalent electric circuit diagram of FIG. 3;
【図5】一般に知られている数個の電流変換器を串接し
大電流を測定する場合の電路図である。FIG. 5 is an electric circuit diagram in the case of measuring a large current by connecting several generally known current converters.
【図6】本考案の交流電流センサーの電路図である。FIG. 6 is an electric circuit diagram of the AC current sensor of the present invention.
【図7】本考案の交流電流センサーの等効電路図であ
る。FIG. 7 is an equivalent electric circuit diagram of the AC current sensor of the present invention.
I−−−測定待機電流 Iin−−−入力電流 Iout −−−出力電流 R−−−センス抵抗 R1 −−−入力電流コイル抵抗 R2 −−−出力電流コイル抵抗 RC −−−接触抵抗 r1 −−−本考案の入力電流コイル抵抗 r2 −−−本考案の出力電流コイル抵抗 r3 −−−本考案のリーディング・コイル抵抗 r4 −−−検出器のインナ・レジスタンス Vout −−−センス電圧 N−−−入力電流コイルの巻数 M−−−出力電流コイルの巻数 P−−−リーディング・コイルの巻数 f−−−干渉ワーク・ファンクション N1 −−−第1個の電流変換器を串接する入力電流コイ
ルの巻数 N2 −−−第2個の電流変換器を串接する入力電流コイ
ルの巻数 Nn −−−第n個の電流交換器を串接する入力電流コイ
ルの巻数 M1 −−−第1個の電流変換器を串接する出力電流コイ
ルの巻数 M2 −−−第2個の電流交換器を串接する出力電流コイ
ルの巻数 Mn −−−第n個の電流変換器を串接する出力電流コイ
ルの巻数I --- Measurement standby current Iin --- Input current Iout --- Output current R --- Sense resistance R 1 --- Input current coil resistance R 2 --- Output current coil resistance R C --- Contact resistance r 1 --- Input current coil resistance of the present invention r 2 ----Output current coil resistance of the present invention r 3 --- Leading coil resistance of the present invention r 4 --- Inner resistance of detector Vout --- −Sense voltage N−−Number of turns of input current coil M −−− Number of turns of output current coil P −−− Number of turns of leading coil f −−− Interference work function N 1 −−− First current converter N 2 --- The number of turns of the input current coil which connects the second current converter Nn --- The number of turns of the input current coil which connects the n-th current exchanger M 1- --- Connect the first current transducer Number of turns of the output current coil M 2 --- Number of turns of the output current coil connected to the second current exchanger Mn-Number of turns of the output current coil connected to the n-th current converter
Claims (3)
びリーディング・コイルから成り、 上記の鉄芯は鉄芯のロス、マグネチック・ハイステレシ
スのロス、リケージ・フラックス、マグネチック・エク
シィチング、リアクタンスが少なくマグネチック・フラ
ックスが多い磁性材料を使用し;上記の電流入力コイル
は導電金属を材料とし、それは鉄心の上に巡らされ、測
定待機電路と串聨し;上記の電流出力コイルは安定度が
高く温度係数の低い抵抗線を材料とし、それは鉄芯の上
に巡らされ、その両端が溶接短絡され;上記のリーディ
ング・コイルは導電金属を材料とし、それは鉄心の上に
巡らされ、その両端がオープンで、検出器と串接して感
応電圧を測定でき;上記の構造により、電流入力コイル
と測定待機電流電路を串聨し、二次側電流を電流出力コ
イルに流れさせると共に、検出器を利用してリーディン
グ・コイルの上の感応電圧を測定し、交流電流を測定す
るように形成したことを特徴とする交流電流センサー。An iron core, a current input coil, a current output coil, and a leading coil, wherein the iron core has a loss of an iron core, a loss of magnetic hysteresis, a flux, a magnetic exciting, and a reactance. The current input coil is made of conductive metal, which is made of conductive metal, which is wrapped on the iron core and is connected with the measurement standby circuit; the current output coil is stable Is made of a high-resistance wire with a low temperature coefficient, which is wrapped over an iron core and its both ends are short-circuited by welding; the leading coil is made of a conductive metal, which is wrapped over an iron core and has both ends. Is open and can be connected to the detector to measure the sensitive voltage; with the above structure, the current input coil and measurement standby current circuit can be combined, and the secondary side An AC current sensor characterized in that current is caused to flow through a current output coil and an AC current is measured by measuring a sensitive voltage on a leading coil using a detector.
流電路をこの中空構造の鉄心に貫通させ、別に電流入力
コイルで測定待機電流電路を串聨する必要が無いことを
特徴とする請求項1記載の交流電流センサー。2. The method according to claim 1, wherein the iron core has a hollow structure, and the measurement standby current circuit does not have to be penetrated through the iron core of the hollow structure and the measurement standby current circuit needs to be separately provided by a current input coil. The alternating current sensor according to claim 1.
銅線であることを特徴とする請求項1記載の交流電流セ
ンサー。3. The current output coil is made of manganese.
The alternating current sensor according to claim 1, wherein the sensor is a copper wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1999003886U JP3064503U (en) | 1999-06-02 | 1999-06-02 | AC current sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1999003886U JP3064503U (en) | 1999-06-02 | 1999-06-02 | AC current sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3064503U true JP3064503U (en) | 2000-01-21 |
Family
ID=43198156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1999003886U Expired - Lifetime JP3064503U (en) | 1999-06-02 | 1999-06-02 | AC current sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3064503U (en) |
-
1999
- 1999-06-02 JP JP1999003886U patent/JP3064503U/en not_active Expired - Lifetime
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111190039B (en) | Current detection circuit of power converter | |
KR960011531B1 (en) | Current sensor | |
CN111650428A (en) | Magnetic sensing chip, closed-loop feedback current sensor and preparation method thereof | |
CN104729396A (en) | High-temperature eddy-current displacement sensor temperature compensation method based on temperature online measurement and sensing device | |
US5949231A (en) | Alternating current measuring device | |
JPS58501692A (en) | Current measurement transformer | |
CN103592490A (en) | High-accuracy electronic compensated current transformer | |
JPH09329633A (en) | Conductivity meter | |
JP4623289B2 (en) | Current sensor | |
WO2021208135A1 (en) | Closed-loop current transformer | |
JP2007524836A (en) | System and method for acquiring and measuring the input voltage of a distribution service using an inactive current transformer | |
US5446372A (en) | Noninductive shunt current sensor with self-power capability | |
CN212568937U (en) | Magnetic sensing chip and closed-loop feedback current sensor | |
CN212723044U (en) | Closed-loop current transformer | |
CN212410691U (en) | Magnetic sensing chip and temperature compensation current sensor | |
JP3064503U (en) | AC current sensor | |
JPS6117122B2 (en) | ||
CN100353139C (en) | Temperature compensation method for electric eddy shift sensor | |
US7671580B2 (en) | Integrated current sensing transformer and current sensing circuit using such transformer | |
US10014810B1 (en) | Reduced-impedance active current measurement | |
CN213633577U (en) | High dynamic range alternating current/direct current isolation measuring circuit for measuring instrument | |
CN103901368A (en) | Magnetic parameter measuring device for magnetic material | |
CN103941201A (en) | Magnetic parameter measuring method for magnetic material | |
GB2388914A (en) | Current transformer with reduced resistance | |
CN112415251A (en) | High dynamic range alternating current/direct current isolation measurement method for measuring instrument |