JP3063560B2 - Demagnetization method and demagnetization device for anisotropic magnet - Google Patents

Demagnetization method and demagnetization device for anisotropic magnet

Info

Publication number
JP3063560B2
JP3063560B2 JP4220395A JP4220395A JP3063560B2 JP 3063560 B2 JP3063560 B2 JP 3063560B2 JP 4220395 A JP4220395 A JP 4220395A JP 4220395 A JP4220395 A JP 4220395A JP 3063560 B2 JP3063560 B2 JP 3063560B2
Authority
JP
Japan
Prior art keywords
magnets
magnet
magnetic field
demagnetizing
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4220395A
Other languages
Japanese (ja)
Other versions
JPH08236352A (en
Inventor
洋之 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4220395A priority Critical patent/JP3063560B2/en
Publication of JPH08236352A publication Critical patent/JPH08236352A/en
Application granted granted Critical
Publication of JP3063560B2 publication Critical patent/JP3063560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁性粉末を樹脂で結合
して成形された磁気異方性を有するボンド磁石の製造工
程において、残留磁気による磁粉等の異物付着を防止す
るのに好適な異方性磁石の脱磁方法および脱磁装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for manufacturing a bonded magnet having magnetic anisotropy formed by bonding magnetic powder with a resin, which is suitable for preventing foreign particles such as magnetic powder from adhering due to residual magnetism. The present invention relates to a method and a device for demagnetizing an anisotropic magnet.

【0002】[0002]

【従来の技術】一般に、小型モーターやオートアイリス
機構等に使用される磁石は、磁性粉末と樹脂とを混ぜて
成形したボンド磁石であり、特に磁化容易軸の方向を一
方向に配向することにより強い磁性を有する磁気異方性
のボンド磁石(例えば、希土類を用いたSmCoやNd
FeB磁石)が好適とされる。この磁気異方性のボンド
磁石の製造方法は、磁性粉末と樹脂を混ぜた後、これを
磁場中において成形し、さらに150℃〜200℃の温
度で樹脂硬化を行う。この後、腐食防止用のコーティン
グ等の加工を施し、直流磁場中で再び着磁して製造す
る。
2. Description of the Related Art Generally, a magnet used for a small motor, an auto iris mechanism, or the like is a bonded magnet formed by mixing a magnetic powder and a resin, and is particularly strong when the direction of the axis of easy magnetization is oriented in one direction. Magnetically anisotropic bonded magnets having magnetism (for example, SmCo or Nd using rare earth elements)
FeB magnet) is preferred. In this method of manufacturing a bonded magnet having magnetic anisotropy, a magnetic powder and a resin are mixed, then molded in a magnetic field, and further cured at a temperature of 150 to 200 ° C. Thereafter, a process such as a coating for corrosion prevention is performed, and the film is magnetized again in a DC magnetic field to manufacture the device.

【0003】上記の製造方法において、成形されたボン
ド磁石の加工を行う前に、磁性粉末等の異物付着を防止
するための脱磁を行う必要がある。特に、NdFeB磁
石等は腐食され易いことから成形後に耐食性を向上させ
るためのコーティングを施す工程があり、この工程前に
成形品の脱磁を行い表面に付着する異物を除去する必要
がある。しかし、ボンド磁石の場合は、耐熱温度(20
0℃〜300℃)が比較的低く通常の焼結磁石のように
キュリー点(300℃〜400℃)以上の温度に加熱し
て熱消磁を行うことができない。このため、従来は、脱
磁手段として以下に述べる方法を用いている。
In the above-described manufacturing method, it is necessary to perform demagnetization in order to prevent foreign matter such as magnetic powder from adhering before processing the formed bonded magnet. In particular, since NdFeB magnets and the like are easily corroded, there is a step of applying a coating for improving the corrosion resistance after molding. Before this step, it is necessary to demagnetize the molded article to remove foreign substances adhering to the surface. However, in the case of a bonded magnet, the heat resistance temperature (20
(0 ° C. to 300 ° C.) is relatively low, and cannot be degaussed by heating to a temperature equal to or higher than the Curie point (300 ° C. to 400 ° C.) like a normal sintered magnet. For this reason, conventionally, the following method is used as the demagnetizing means.

【0004】まず、成形時に磁場配向後、金型内で反転
磁場を印加してできる限りの脱磁を行う。この後、金型
から取り外す前に、ボンド磁石に予めマーキング(例え
ば、ポンチ等で刻印を行う)等を施し、金型から取り出
した後に、僅かに残った磁気の磁場配向方向を揃えて並
べ、この方向に平行に漸次減衰する交流磁界を印加して
完全脱磁を行っている。
First, after the magnetic field is oriented at the time of molding, demagnetization is performed as much as possible by applying a reversal magnetic field in a mold. Thereafter, before being removed from the mold, the bond magnet is previously marked (for example, stamped with a punch or the like) or the like, and after being removed from the mold, the remaining magnetic field orientation directions are slightly aligned and arranged. Complete demagnetization is performed by applying an alternating magnetic field that gradually decreases in parallel to this direction.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記脱磁手段
には、以下のような解決すべき課題が残されている。金
型内での反転磁場による脱磁だけでは、完全に脱磁する
ことが困難であり、特に多数個を一度に成形する場合に
は、それぞれの成形体にかかる磁場がばらつくため完全
に脱磁することが不可能である。また、磁場配向方法を
揃えるためには、前述のようにボンド磁石にマーキング
を施す等の工程が必要となり、多大なコストの増大を招
いている。本発明は、前述の課題に鑑みてなされたもの
で、ボンド磁石を完全に脱磁するとともに、脱磁工程数
の削減を図り、低コスト化を達成することを目的とす
る。
However, the above-described demagnetizing means has the following problems to be solved. It is difficult to completely demagnetize only by demagnetization in the mold by the reversal magnetic field, especially when molding many pieces at once because the magnetic field applied to each compact varies. It is impossible to do. In addition, in order to align the magnetic field orientation method, a process such as marking the bond magnet is required as described above, resulting in a great increase in cost. The present invention has been made in view of the above-described problems, and has as its object to completely demagnetize a bonded magnet, reduce the number of demagnetization steps, and achieve cost reduction.

【0006】[0006]

【課題を解決するための手段】磁気異方性を有する磁石
を脱磁する方法において、着磁された2以上の磁石を一
列に並べて互いに吸着させそれぞれの磁場配向方向を磁
石の並び方向に揃える磁場配向方向整列工程と、前記磁
石に対して並び方向に平行に磁界を印加してこれら磁石
の脱磁を行う磁界印加工程とを有する技術を採用する。
また、2以上の磁石を一列に並べる磁石整列工程と、前
記磁石に対して並び方向に平行に直流磁界を印加して磁
石を着磁し互いに吸着させそれぞれの磁場配向方向を磁
石の並び方向に揃える仮着磁工程と、これら磁石に対し
て並び方向に平行に磁界を印加して磁石の脱磁を行う磁
界印加工程とを有する技術を採用する。さらに、これら
異方性磁石を脱磁する方法において、前記磁界印加工程
は、磁石に対して並び方向に平行に漸次減衰する交流磁
界を印加してこれら磁石の脱磁を行う交流減衰磁界印加
工程とされる技術が付加される。そして、磁気異方性を
有する磁石の脱磁装置において、2以上の磁石を一列に
並べる整列手段と、整列された磁石を搬送する磁石搬送
路と、該磁石搬送路の途中に設けられ磁石に対して並び
方向に平行に直流磁界を印加する仮着磁用コイルと、磁
石搬送路の該仮着磁コイルより下流に設けられ磁石に対
して並び方向に平行に漸次減衰する交流磁界を印加する
脱磁用コイルとを具備する技術を採用する。
In a method of demagnetizing a magnet having magnetic anisotropy, two or more magnetized magnets are arranged in a line and are attracted to each other to align their respective magnetic field orientations with the magnet arrangement direction. A technique including a magnetic field orientation direction alignment step and a magnetic field application step of applying a magnetic field to the magnets in a direction parallel to the alignment direction to demagnetize these magnets is adopted.
Also, a magnet alignment step of arranging two or more magnets in a line, and applying a DC magnetic field to the magnets in parallel to the alignment direction to magnetize the magnets and attract them to each other so that the respective magnetic field alignment directions are aligned with the magnet alignment direction. A technique is employed that includes a temporary magnetizing step of aligning and a magnetic field applying step of applying a magnetic field to these magnets in a direction parallel to the arrangement direction to demagnetize the magnets. Further, in the method of demagnetizing these anisotropic magnets, the step of applying a magnetic field includes the step of applying an alternating magnetic field that gradually attenuates the magnets in parallel in the direction in which the magnets are arranged, thereby demagnetizing the magnets. Technology is added. In the demagnetizing device for magnets having magnetic anisotropy, an alignment means for arranging two or more magnets in a line, a magnet transport path for transporting the aligned magnets, and a magnet provided in the middle of the magnet transport path. On the other hand, a temporary magnetizing coil for applying a DC magnetic field in parallel to the arrangement direction, and an AC magnetic field provided downstream of the temporary magnetizing coil in the magnet conveyance path and gradually attenuating in parallel with the arrangement direction for the magnet is applied to the magnet. A technology including a demagnetizing coil is employed.

【0007】[0007]

【作用】予め着磁された複数の磁石を一列に並べると、
各磁石は着磁されているので互いの異極同士が引き合う
とともに回転して吸着し合う。このとき、それぞれの磁
場配向方向が並び方向に揃えられる。そして、このよう
に並べられた磁石に対して、該磁石の並び方向に平行に
磁場を印加(例えば、磁場配向方向に対する反転磁界等
を印加)すると、磁石の磁化の強さを低下させ、脱磁す
ることができる。また、未着磁や僅かに着磁されただけ
の磁石を含む磁化の強さが互いに異なる複数の磁石の場
合には、これら磁石を一列に並べた後、磁石の並び方向
に平行に直流磁界を印加することによって、各磁石を仮
着磁して、互いの異極同士を引き合わせて回転させ吸着
させる。このとき、それぞれの磁場配向方向は並び方向
に揃う。この後、上記と同様に、並び方向に平行な磁界
を印加することによってこれら磁石を脱磁する。上記の
磁界を印加して磁石の脱磁を行う際に、磁石の並び方向
に平行に漸次減衰する交流磁界を印加すると、この交流
磁界の減衰に伴って磁石の磁化の強さも漸減し、最終的
には、交流磁界の強さを零まで減衰させることによって
磁石は完全に脱磁される。そして、本発明の異方性磁石
の脱磁装置においては、2以上の磁石を整列手段によっ
て一列に並べ、これら整列された磁石を磁石搬送路によ
って搬送する。このように搬送される磁石は、磁石搬送
路の途中で仮着磁用コイルにより並び方向に平行な直流
磁界を印加されて仮着磁され、互いの異極同士を引き合
わせて回転し吸着する。このとき、それぞれの磁場配向
方向は並び方向に揃う。この後、仮着磁された磁石は搬
送され、仮着磁コイルの下流に設けた脱磁用コイルによ
って磁石の並び方向に漸次減衰する交流磁界が印加され
る。これによって、磁石は完全に脱磁される。
[Function] When a plurality of magnets magnetized in advance are arranged in a line,
Since the magnets are magnetized, the different poles of the magnets attract each other and rotate and attract each other. At this time, the respective magnetic field orientation directions are aligned in the arrangement direction. When a magnetic field is applied to the magnets arranged in this manner in parallel to the direction in which the magnets are arranged (for example, a reversal magnetic field or the like in the direction of the magnetic field is applied), the strength of magnetization of the magnets is reduced, and Can be magnetized. In the case of a plurality of magnets having different magnetization intensities, including unmagnetized magnets and magnets that are only slightly magnetized, after arranging these magnets in a row, the DC magnetic field is parallel to the magnet arrangement direction. Is applied, the respective magnets are temporarily magnetized, and the different poles are attracted to each other by rotating. At this time, the respective magnetic field orientation directions are aligned in the arrangement direction. Thereafter, these magnets are demagnetized by applying a magnetic field parallel to the arrangement direction as described above. When the above magnetic field is applied to demagnetize the magnet, if an alternating magnetic field that gradually attenuates in parallel to the direction in which the magnets are arranged is applied, the intensity of the magnet magnetization of the magnet also gradually decreases with the attenuation of the alternating magnetic field, and the final Typically, the magnet is completely demagnetized by attenuating the strength of the alternating magnetic field to zero. In the anisotropic magnet demagnetizing apparatus of the present invention, two or more magnets are arranged in a line by an aligning means, and the aligned magnets are transported by a magnet transport path. The magnet conveyed in this way is temporarily magnetized by applying a DC magnetic field parallel to the direction of arrangement by a coil for temporary magnetization in the middle of the magnet transport path, and attracts and rotates by attracting mutually different polarities. . At this time, the respective magnetic field orientation directions are aligned in the arrangement direction. Thereafter, the temporarily magnetized magnet is conveyed, and an alternating magnetic field that gradually attenuates in the direction in which the magnets are arranged is applied by a demagnetizing coil provided downstream of the temporarily magnetized coil. This completely demagnetizes the magnet.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1および図2を
参照しながら説明する。これらの図において符号1はボ
ンド磁石、2はボンド磁石の脱磁装置、3はパーツフィ
ーダー、4はガイド板、5は磁石搬送路、6は仮着磁用
コイル、7は脱磁用コイルである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. In these figures, reference numeral 1 denotes a bond magnet, 2 denotes a bond magnet demagnetizer, 3 denotes a parts feeder, 4 denotes a guide plate, 5 denotes a magnet transport path, 6 denotes a temporary magnetizing coil, and 7 denotes a demagnetizing coil. is there.

【0009】図1に示すように、脱磁装置2は、複数の
ボンド磁石1を供給するパーツフィーダー3と、該パー
ツフィーダー3の供給路3Aに連結された一対のガイド
板4と、該ガイド板4を上部に配する磁石搬送路5と、
該磁石搬送路5の途中に設けられる仮着磁用コイル6
と、磁石搬送路5の仮着磁コイル6より下流に設けられ
る脱磁用コイル7とを具備している。
As shown in FIG. 1, a demagnetizing device 2 includes a parts feeder 3 for supplying a plurality of bond magnets 1, a pair of guide plates 4 connected to a supply path 3A of the parts feeder 3, and A magnet conveying path 5 on which the plate 4 is disposed,
Temporary magnetizing coil 6 provided in the middle of magnet conveyance path 5
And a demagnetizing coil 7 provided downstream of the temporarily magnetized coil 6 in the magnet transport path 5.

【0010】パーツフィーダー3の内部には、未着磁状
態および磁化の強さが異なる複数のボンド磁石1が収納
されている。これらボンド磁石1は、SmCoやNdF
eB磁石等の磁気異方性のボンド磁石であり、それぞれ
同一の円柱状に成形されている。パーツフィーダー3
は、内部のボンド磁石1に振動を加えることによりこれ
らボンド磁石1を整列させて供給路3Aに送り出すもの
であり、該供給路3Aの両側壁3Bに接続状態に設けら
れた一対のガイド板4とともに、ボンド磁石を一列に並
べる整列手段を構成している。上記両側壁3Bの間隔
は、ガイド板4に向けて漸次狭くなるように設定され、
両側壁3Bのガイド板4との接続部分および一対のガイ
ド板4の間隔は、ボンド磁石1の直径より僅かに広く設
定されている。供給路3Aの先端下部には、ベルトコン
ベア5Aがガイド板4に沿って設けられている。このベ
ルトコンベア5Aは、供給路3Aより送り込まれるボン
ド磁石1を一対のガイド板4の間に位置させながらガイ
ド板4の長さ方向に搬送させるものである。
Inside the parts feeder 3, a plurality of bonded magnets 1 having different magnetization states and unmagnetized states are housed. These bonded magnets 1 are made of SmCo or NdF
These are magnetic anisotropic bonded magnets such as eB magnets, each of which is formed in the same cylindrical shape. Parts feeder 3
Is to align the bond magnets 1 by applying vibration to the internal bond magnets 1 and send them out to the supply path 3A, and a pair of guide plates 4 provided in a connected state on both side walls 3B of the supply path 3A. Together, they constitute an alignment means for arranging the bond magnets in a line. The interval between the side walls 3B is set so as to gradually decrease toward the guide plate 4,
The connecting portions of the side walls 3B with the guide plate 4 and the distance between the pair of guide plates 4 are set slightly wider than the diameter of the bond magnet 1. A belt conveyor 5A is provided along the guide plate 4 at the lower end of the supply path 3A. The belt conveyor 5 </ b> A conveys the bond magnet 1 fed from the supply path 3 </ b> A in the length direction of the guide plate 4 while being positioned between the pair of guide plates 4.

【0011】ベルトコンベア5Aの途中には、円筒状に
形成された仮着磁用コイル6が、中心軸上にベルトコン
ベア5Aが位置するように設けられている。該仮着磁用
コイル6は、ガイド板4の長さ方向に平行な直流状態の
磁界をベルトコンベア5A上を搬送されるボンド磁石1
に印加し、着磁させるものである。ベルトコンベア5A
の終端部には、ベルトコンベア5Bが近接して設けられ
ており、ベルトコンベア5Aの長さ方向に対し直交する
方向に向けて配されている。このベルトコンベア5B
は、ベルトコンベア5A側に開口した複数の磁石用トレ
ー8を搬送し、ベルトコンベア5Aによって搬送される
ボンド磁石1を該磁石用トレー8の内部に移載するよう
に設定されている。また、ベルトコンベア5Bの終端部
は、ベルトコンベア5Aと平行に配されたベルトコンベ
ア5Cの側部に近接して配され、内部にボンド磁石1を
収納した磁石用トレー8をベルトコンベア5Cの上面へ
と移載するように設定されている。
In the middle of the belt conveyor 5A, a temporary magnetizing coil 6 formed in a cylindrical shape is provided so that the belt conveyor 5A is located on the center axis. The temporary magnetizing coil 6 applies a direct-current magnetic field parallel to the length direction of the guide plate 4 to the bond magnet 1 conveyed on the belt conveyor 5A.
And magnetized. Belt conveyor 5A
A belt conveyor 5B is provided close to the end of the belt conveyor 5A, and is arranged in a direction orthogonal to the length direction of the belt conveyor 5A. This belt conveyor 5B
Is set so that a plurality of magnet trays 8 opened to the belt conveyor 5A side are conveyed, and the bonded magnets 1 conveyed by the belt conveyor 5A are transferred inside the magnet tray 8. The end of the belt conveyor 5B is disposed close to the side of the belt conveyor 5C arranged in parallel with the belt conveyor 5A, and the magnet tray 8 in which the bonded magnets 1 are stored is placed on the upper surface of the belt conveyor 5C. It is set to transfer to.

【0012】ベルトコンベア5Cの途中には、円筒状に
形成された脱磁用コイル7が、中心軸上にベルトコンベ
ア5Cが位置するように設けられている。この脱磁用コ
イル7は、ベルトコンベア5Cの搬送方向に平行な交流
状態の磁界を漸次減衰させてベルトコンベア5C上を搬
送されるボンド磁石1に印加して脱磁するものである。
上記のベルトコンベア5A,5B,5Cは、それぞれボ
ンド磁石1の磁石搬送路5を構成している。また、ベル
トコンベア5A、5Cの上方には、一定間隔を空けて上
部ベルトコンベア5D,5Eが仮着磁コイル6および脱
磁用コイル7にそれぞれ貫通状態にかつベルトコンベア
5A,5Cに平行に配されている。上部ベルトコンベア
5D,5Eは、それぞれベルトコンベア5A,5Cとと
もに、ボンド磁石1を該ボンド磁石1が回転可能な程度
に挟み込んで搬送し、ボンド磁石1が仮着磁コイル6お
よび脱磁用コイル7を通過する際にこれらに引き寄せら
れ吸着されることを阻止するものである。
In the middle of the belt conveyor 5C, a demagnetizing coil 7 formed in a cylindrical shape is provided so that the belt conveyor 5C is located on the center axis. The demagnetizing coil 7 attenuates the magnetic field in an alternating current state parallel to the conveying direction of the belt conveyor 5C and applies the same to the bond magnet 1 conveyed on the belt conveyor 5C to demagnetize.
The above-mentioned belt conveyors 5A, 5B, and 5C constitute the magnet conveyance path 5 of the bond magnet 1, respectively. Above the belt conveyors 5A and 5C, upper belt conveyors 5D and 5E are arranged at predetermined intervals so as to penetrate the temporary magnetizing coil 6 and the demagnetizing coil 7, respectively, and in parallel with the belt conveyors 5A and 5C. Have been. The upper belt conveyors 5D and 5E transport the bond magnet 1 together with the belt conveyors 5A and 5C so that the bond magnet 1 is rotatable to such an extent that the bond magnet 1 is rotatable. To prevent them from being attracted and adsorbed when passing through.

【0013】次に、上記の脱磁装置2を用いた場合の本
発明に係る異方性磁石の脱磁方法の一工程例を説明す
る。
Next, an example of one step of the method for demagnetizing an anisotropic magnet according to the present invention when the above-described demagnetizing apparatus 2 is used will be described.

【0014】〔磁石の整列〕まず、パーツフィーダー3
を作動させることによって、内部のボンド磁石1は供給
路3Aに送り出され、ガイド板4に至る過程で供給路3
Aの側壁3Bによって導かれ一列に整列する。整列状態
のボンド磁石1は、供給路3Aからベルトコンベア5A
の上面に送り出された後、ベルトコンベア5Aを作動さ
せることにより、一対のガイド板4によって一列状態を
維持しながら搬送される。上記の搬送時において、各ボ
ンド磁石1は、図2の(a)に示すように、互いに磁化
の強さが異なり、僅かに着磁されたものや磁化の強さが
零のものが含まれるため、磁場配向方向および磁化容易
軸方向が無秩序に向いた状態となっている。なお、図2
において、矢印の長さは、ボンド磁石1の磁化の強さに
比例するものとし、矢印の方向および破線の方向は磁場
配向方向および磁化容易軸方向を示している。また、矢
印の示されていないボンド磁石1は、磁化の強さが零の
ものを示している。
[Alignment of Magnets] First, the parts feeder 3
Is operated, the internal bond magnet 1 is sent out to the supply path 3A, and in the process of reaching the guide plate 4, the supply path 3
A is guided by the side wall 3B of A and is aligned in a line. The aligned bonded magnets 1 are fed from the supply path 3A to the belt conveyor 5A.
After being sent out to the upper surface of the sheet, by operating the belt conveyor 5A, the sheet is conveyed while being kept in a line by the pair of guide plates 4. At the time of the transport, as shown in FIG. 2A, the bond magnets 1 have different magnetization strengths, and include those slightly magnetized and those having zero magnetization strength. Therefore, the orientation direction of the magnetic field and the direction of the axis of easy magnetization are randomly oriented. Note that FIG.
In the figure, the length of the arrow is proportional to the strength of the magnetization of the bond magnet 1, and the direction of the arrow and the direction of the broken line indicate the direction of the magnetic field orientation and the direction of the easy axis of magnetization. The bond magnet 1 without an arrow has a magnetization strength of zero.

【0015】〔磁石の仮着磁(磁場配向方向の整列)〕
ボンド磁石1は、ベルトコンベア5Aによって搬送さ
れ、仮着磁用コイル6の内部を通過する。このとき、仮
着磁用コイル6を作動させ、ボンド磁石1の並び方向と
平行な直流磁界を、通過するボンド磁石1に印加する。
これによって、ボンド磁石1を、互いに異極を引き合い
回転して吸着し合う磁化の強さまで仮着磁する。仮着磁
用コイル6の内部を通過して出てきた各ボンド磁石1
は、着磁されたために、図2の(b)に示すように、磁
場配向方向および磁化容易軸方向を並び方向に平行な方
向に揃え、この状態を維持して搬送される。
[Temporary magnetization of magnet (alignment of magnetic field orientation direction)]
The bond magnet 1 is transported by the belt conveyor 5A, and passes through the inside of the temporary magnetizing coil 6. At this time, the temporary magnetizing coil 6 is operated, and a DC magnetic field parallel to the direction in which the bond magnets 1 are arranged is applied to the passing bond magnets 1.
As a result, the bonded magnets 1 are temporarily magnetized to the strength of magnetization that attracts and rotates by attracting different poles to each other. Each bonded magnet 1 that has passed through the inside of the temporary magnetizing coil 6
As shown in FIG. 2 (b), since the magnetic field is magnetized, the magnetic field orientation direction and the direction of the easy axis of magnetization are aligned in a direction parallel to the alignment direction, and are conveyed while maintaining this state.

【0016】このように磁場配向方向が整列状態のボン
ド磁石1は、ベルトコンベア5Aの終端部まで搬送さ
れ、ベルトコンベア5Bの上面へと送り出される。この
とき、ベルトコンベア5Bの上面に、ベルトコンベア5
A側を開口状態とした磁石用トレー8を載置するととも
に、ボンド磁石1の整列方向の延長上に位置するように
ベルトコンベア5Bを作動させる。これによって、ベル
トコンベア5Aから送り込まれた一定個数のボンド磁石
1は、整列状態を維持したままベルトコンベア5Bの磁
石用トレー8の内部に移載されて収納される。このボン
ド磁石1の移載は、ベルトコンベア5Bの上面に載置さ
れた複数の磁石用トレー8の内部へ一定個数毎に順次行
われる。
The bonded magnets 1 having the aligned magnetic field orientations are conveyed to the end of the belt conveyor 5A and sent out to the upper surface of the belt conveyor 5B. At this time, the belt conveyor 5B is placed on the upper surface of the belt conveyor 5B.
The magnet tray 8 with the A side opened is placed, and the belt conveyor 5B is operated so as to be positioned on the extension of the bond magnet 1 in the alignment direction. As a result, a fixed number of bonded magnets 1 sent from the belt conveyor 5A are transferred and stored inside the magnet tray 8 of the belt conveyor 5B while maintaining the aligned state. The transfer of the bond magnets 1 is sequentially performed for every fixed number into a plurality of magnet trays 8 placed on the upper surface of the belt conveyor 5B.

【0017】磁石用トレー8に移載されたボンド磁石1
は、ベルトコンベア5Bによって終端部まで搬送され、
近接するベルトコンベア5Cの上面へと送り込まれる。
The bonded magnet 1 transferred to the magnet tray 8
Is transported to the end by the belt conveyor 5B,
It is sent to the upper surface of the adjacent belt conveyor 5C.

【0018】〔磁石への交流減衰磁界印加〕磁石用トレ
ー8は、ベルトコンベア5Cによって搬送され、脱磁用
コイル7の内部を通過する。このとき、脱磁用コイル7
を作動させ、通過するボンド磁石1に対してその並び方
向と平行な交流磁界を漸次減衰させて印加する。この交
流磁界の減衰に伴って、各ボンド磁石1の磁化の強さも
漸減し、最終的には、交流磁界の強さを零まで減衰させ
て磁石用トレー8の内部の各ボンド磁石1を完全に脱磁
する。強磁性体であるボンド磁石1は、印加される磁界
の強さと磁化の強さの関係にヒステリシス現象を生じる
ことから、単に直流状態の磁界を印加して漸次減衰させ
る場合では、磁界の強さが零になっても磁化の強さは零
とならず有限の値を示す。しかしながら、上記のように
磁界を交流状態で減衰印加するので、ヒステリシス現象
による残留磁気が漸次減少し、交流磁界の強さが零に至
った状態で、ボンド磁石1は完全に脱磁される。脱磁用
コイル7を通過した各ボンド磁石1は、図2の(c)に
示すように、磁化容易軸方向が同一に揃えられ、磁化の
強さが零となっている。この後、これら完全脱磁された
ボンド磁石1は次工程へと搬送される。
[Application of AC Decaying Magnetic Field to Magnet] The magnet tray 8 is conveyed by the belt conveyor 5C and passes through the inside of the demagnetizing coil 7. At this time, the demagnetizing coil 7
Is operated, and an alternating magnetic field parallel to the direction in which the bond magnets 1 pass is gradually attenuated and applied to the passing bond magnet 1. With the decay of the AC magnetic field, the strength of the magnetization of each bond magnet 1 also gradually decreases, and finally, the strength of the AC magnetic field is attenuated to zero to completely bond each bond magnet 1 inside the magnet tray 8. To demagnetize. Since the bond magnet 1 made of a ferromagnetic material causes a hysteresis phenomenon in the relationship between the strength of the applied magnetic field and the strength of the magnetization, when the magnetic field in the DC state is simply applied and gradually attenuated, the strength of the magnetic field is reduced. Becomes zero, the magnetization intensity does not become zero and shows a finite value. However, since the magnetic field is attenuated in the AC state as described above, the residual magnetism due to the hysteresis phenomenon gradually decreases, and the bond magnet 1 is completely demagnetized in a state where the strength of the AC magnetic field reaches zero. As shown in FIG. 2C, the bond magnets 1 that have passed through the demagnetizing coil 7 have the same easy axis direction and the magnetization intensity is zero. Thereafter, these completely demagnetized bond magnets 1 are transported to the next step.

【0019】なお、本実施例では、ボンド磁石1に適用
したが、磁気異方性を有する他の磁石でも同様の効果を
得ることができる。例えば、焼結磁石に適用しても構わ
ない。また、ボンド磁石1の形状を円柱状としたが、他
の形状でも構わない。例えば、直方体状の磁石でも構わ
ない。そして、既に着磁され、互いに異極を引き合い吸
着し合う複数の磁石だけを脱磁する場合には、パーツフ
ィーダー3およびガイド板4による整列時に、各磁石
は、互いに吸着し合い磁場配向方向および磁化容易軸方
向を並び方向に平行な方向に揃えた状態とすることがで
きるので、上記の仮着磁用コイル6を作動させる必要は
ない。
Although the present embodiment is applied to the bonded magnet 1, other magnets having magnetic anisotropy can obtain the same effect. For example, it may be applied to a sintered magnet. Further, although the shape of the bond magnet 1 is cylindrical, other shapes may be used. For example, a rectangular parallelepiped magnet may be used. When only a plurality of magnets that have already been magnetized and attract and attract different poles are demagnetized, at the time of alignment by the parts feeder 3 and the guide plate 4, the respective magnets are attracted to each other and aligned with the direction of the magnetic field and Since the direction of the axis of easy magnetization can be aligned in a direction parallel to the alignment direction, it is not necessary to operate the above-described coil for temporary magnetization 6.

【0020】[0020]

【発明の効果】本発明によれば、以下の効果を奏する。 (1)着磁された磁石を並べて互いに吸着させ磁場配向
方向を並び方向に揃えた後、並び方向に交流減衰磁界を
印加して脱磁を行うので、磁石の磁場配向方向および磁
化容易軸方向を容易に揃えることができ、マーキング等
の高コストな工程を削減できるとともに、これら磁石を
脱磁することができる。 (2)磁石を並べた後、その並び方向に平行に直流磁界
を印加して仮着磁し、互いに吸着させ、この後、並び方
向に磁界を印加して脱磁を行うので、未着磁状態および
磁化の強さが僅かな磁石に適用しても、確実かつ容易に
磁場配向方向を揃えることができるとともに、これら磁
石を脱磁することができる。 (3)上記の磁界を印加して磁石の脱磁を行う際に、磁
石の並び方向に平行に漸次減衰する交流磁界を印加する
ことによって、磁石の磁化の強さを零にし、完全に脱磁
することができる。 (4)本発明の異方性磁石の脱磁装置によれば、磁石の
整列手段と、整列された磁石の磁石搬送路と、直流磁界
を印加する仮着磁用コイルと、交流減衰磁界を印加する
脱磁用コイルとを具備するので、大量の磁石を連続的か
つ確実に脱磁することができ、脱磁工程の量産性が向上
し、生産コストを大幅に低減することができる。
According to the present invention, the following effects can be obtained. (1) After magnetized magnets are arranged side by side and attracted to each other to align the magnetic field orientation direction in the arrangement direction, an AC damping magnetic field is applied in the arrangement direction to perform demagnetization. Can be easily prepared, high-cost steps such as marking can be reduced, and these magnets can be demagnetized. (2) After arranging the magnets, a DC magnetic field is applied in parallel to the arrangement direction to temporarily magnetize the magnets, and the magnets are attracted to each other. Then, a magnetic field is applied in the arrangement direction to perform demagnetization. Even when applied to magnets having a small state and a small intensity of magnetization, the orientation of the magnetic field can be reliably and easily aligned, and these magnets can be demagnetized. (3) When demagnetizing the magnet by applying the above-described magnetic field, the intensity of the magnetization of the magnet is reduced to zero by applying an alternating magnetic field that is gradually attenuated in parallel with the direction in which the magnets are arranged. Can be magnetized. (4) According to the anisotropic magnet demagnetizing apparatus of the present invention, the magnet alignment means, the magnet conveyance path of the aligned magnets, the temporary magnetizing coil for applying a DC magnetic field, and the AC attenuation magnetic field are used. Since a demagnetizing coil to be applied is provided, a large amount of magnets can be continuously and reliably demagnetized, the mass productivity of the demagnetizing step is improved, and the production cost can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る異方性磁石の脱磁装置の一実施例
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an anisotropic magnet demagnetizing apparatus according to the present invention.

【図2】本発明に係る異方性磁石の脱磁装置の一実施例
による脱磁の各工程における磁石の磁場配向方向および
磁化容易軸方向を示す説明図である。
FIG. 2 is an explanatory view showing a magnetic field orientation direction and a magnetization easy axis direction in each step of demagnetization by an embodiment of the anisotropic magnet demagnetization apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 ボンド磁石(磁石) 2 脱磁装置 3 パーツフィーダー 3A 供給路 4 ガイド板 5 磁石搬送路 5A,5B,5C ベルトコンベア 6 仮着磁用コイル 7 脱磁用コイル DESCRIPTION OF SYMBOLS 1 Bond magnet (magnet) 2 Demagnetization device 3 Parts feeder 3A supply path 4 Guide plate 5 Magnet conveyance path 5A, 5B, 5C Belt conveyor 6 Temporary magnetizing coil 7 Demagnetizing coil

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁気異方性を有する磁石を脱磁する方法
において、 着磁された2以上の磁石を一列に並べて互いに吸着させ
それぞれの磁場配向方向を磁石の並び方向に揃える磁場
配向方向整列工程と、 前記磁石に対して並び方向に平行に磁界を印加してこれ
ら磁石の脱磁を行う磁界印加工程とを有することを特徴
とする異方性磁石の脱磁方法。
1. A method for demagnetizing a magnet having magnetic anisotropy, comprising: arranging two or more magnetized magnets in a line and adsorbing each other to align the respective magnetic field alignment directions with the arrangement direction of the magnets. And a magnetic field applying step of applying a magnetic field to the magnets in a direction parallel to the arrangement direction to demagnetize the magnets.
【請求項2】 磁気異方性を有する磁石を脱磁する方法
において、 2以上の磁石を一列に並べる磁石整列工程と、 前記磁石に対して並び方向に平行に直流磁界を印加して
磁石を着磁し互いに吸着させそれぞれの磁場配向方向を
磁石の並び方向に揃える仮着磁工程と、 これら磁石に対して並び方向に平行に磁界を印加して磁
石の脱磁を行う磁界印加工程とを有することを特徴とす
る異方性磁石の脱磁方法。
2. A method for demagnetizing a magnet having magnetic anisotropy, comprising: a magnet alignment step of arranging two or more magnets in a line; A temporary magnetization step of magnetizing and adsorbing each other to align the respective magnetic field orientations in the direction in which the magnets are arranged, and a magnetic field applying step of applying a magnetic field to these magnets in parallel to the arrangement direction to demagnetize the magnets. A method for demagnetizing an anisotropic magnet, comprising:
【請求項3】 請求項1または2記載の磁気異方性を有
する磁石を脱磁する方法において、 前記磁界印加工程は、磁石に対して並び方向に平行に漸
次減衰する交流磁界を印加してこれら磁石の脱磁を行う
交流減衰磁界印加工程とされることを特徴とする異方性
磁石の脱磁方法。
3. The method of demagnetizing a magnet having magnetic anisotropy according to claim 1, wherein the step of applying a magnetic field includes applying an alternating magnetic field that gradually attenuates the magnets in parallel to a direction in which the magnets are arranged. A demagnetizing method for an anisotropic magnet, which is an AC attenuating magnetic field applying step for demagnetizing these magnets.
【請求項4】 磁気異方性を有する磁石の脱磁装置にお
いて、 2以上の磁石を一列に並べる整列手段と、 整列された磁石を搬送する磁石搬送路と、 該磁石搬送路の途中に設けられ磁石に対して並び方向に
平行に直流磁界を印加する仮着磁用コイルと、 磁石搬送路の該仮着磁コイルより下流に設けられ磁石に
対して並び方向に平行に漸次減衰する交流磁界を印加す
る脱磁用コイルとを具備することを特徴とする異方性磁
石の脱磁装置。
4. An apparatus for demagnetizing a magnet having magnetic anisotropy, comprising: an aligning means for arranging two or more magnets in a line; a magnet transport path for transporting the aligned magnets; A temporary magnetizing coil for applying a DC magnetic field in parallel to the magnets in the direction in which the magnets are arranged, and an AC magnetic field provided downstream of the temporary magnetizing coils in the magnet conveyance path and gradually attenuating in parallel to the magnets in the direction in which the magnets are arranged. And a demagnetizing coil for applying a voltage.
JP4220395A 1995-03-01 1995-03-01 Demagnetization method and demagnetization device for anisotropic magnet Expired - Lifetime JP3063560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4220395A JP3063560B2 (en) 1995-03-01 1995-03-01 Demagnetization method and demagnetization device for anisotropic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4220395A JP3063560B2 (en) 1995-03-01 1995-03-01 Demagnetization method and demagnetization device for anisotropic magnet

Publications (2)

Publication Number Publication Date
JPH08236352A JPH08236352A (en) 1996-09-13
JP3063560B2 true JP3063560B2 (en) 2000-07-12

Family

ID=12629459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4220395A Expired - Lifetime JP3063560B2 (en) 1995-03-01 1995-03-01 Demagnetization method and demagnetization device for anisotropic magnet

Country Status (1)

Country Link
JP (1) JP3063560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101865129B1 (en) * 2017-05-31 2018-06-07 셰플러코리아(유) A Demagnetizing System Of Race Ring For Rolling Bearing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200446771Y1 (en) * 2008-03-28 2009-12-03 주식회사 비에스이 A magnetize unit of a vibration motor
CN102956340B (en) * 2011-08-31 2015-06-17 宝山钢铁股份有限公司 Demagnetizing method and device for steel wire lining conveyer belt by double magnetic rollers
CN103515051B (en) * 2013-09-17 2015-11-18 洛阳轴研科技股份有限公司 A kind of medium-and-large-sized bearing ring is standing by the rotation demagnetizing method under state
JP6455253B2 (en) * 2015-03-18 2019-01-23 株式会社デンソー Magnetic coupling
CN107424721B (en) * 2017-09-22 2023-08-29 上海杰灵磁性器材有限公司 Pipeline demagnetizing device based on permanent magnet structure and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101865129B1 (en) * 2017-05-31 2018-06-07 셰플러코리아(유) A Demagnetizing System Of Race Ring For Rolling Bearing

Also Published As

Publication number Publication date
JPH08236352A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
Pinkerton et al. Magnetization process in rapidly solidified neodymium‐iron‐boron permanent magnet materials
Hirosawa et al. Magnetization and magnetic anisotropy of R2Co14B and Nd2 (Fe1− x Co x) 14B measured on single crystals
JP3063560B2 (en) Demagnetization method and demagnetization device for anisotropic magnet
CN101106052B (en) Apparatus and method for demagnetizing shadow mask
HK1010018A1 (en) Magnetization of permanent magnet strip materials
US7531050B2 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
JP2001219093A (en) Classifying method and classifying device for structure including rare earth magnet and ferromagnetic material
WO2003068066A1 (en) Magnetic field generator and its manufacturing method
JPS6134249B2 (en)
JPS6038843B2 (en) magnetic attraction device
JPH0867329A (en) Electronic part carrying device
JPS60186339A (en) Exciting method for demagnetizing electro permanent magnetic chuck
WO2012100379A1 (en) Magnetic-variation type electrical permanent-magnetic chuck
JP2001223113A (en) Method of classifying structure containing ferrite magnet
JPH0596486A (en) Electromagnetic attracting device
GB2069766A (en) Improvements in or relating to methods of producing anisotropic permanent magnets and magnets produced by such methods
CN210358102U (en) Magnetic attraction fixture
JP7328127B2 (en) Manufacturing method and manufacturing apparatus for permanent magnet rotor
Tomka et al. Interaction phenomena in polymer bonded permanent magnet powders
JP2003305021A (en) Magnetic field generating apparatus and its manufacturing method
WO2004077413A1 (en) In-magnetic-field heat-treating device
Zezulka et al. Methods of Assembling Large Magnetic Blocks From NdFeB Magnets With a High Value of $({\rm BH}) _ {\max} $ and Their Influence on the Magnetic Induction Reached in an Air Gap of a Magnetic Circuit
JPH0512972Y2 (en)
Ding et al. Energy Efficient Rare Earth Lifting Permanent Magnet
CN108806963B (en) Screening method for performance consistency of sintered neodymium-iron-boron magnetic steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000404