JP3061867B2 - Winding protector for wound core - Google Patents

Winding protector for wound core

Info

Publication number
JP3061867B2
JP3061867B2 JP10510266A JP51026698A JP3061867B2 JP 3061867 B2 JP3061867 B2 JP 3061867B2 JP 10510266 A JP10510266 A JP 10510266A JP 51026698 A JP51026698 A JP 51026698A JP 3061867 B2 JP3061867 B2 JP 3061867B2
Authority
JP
Japan
Prior art keywords
core
thin film
winding
monomer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10510266A
Other languages
Japanese (ja)
Other versions
JP2000501894A (en
Inventor
フント、ハラルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7803425&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3061867(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of JP2000501894A publication Critical patent/JP2000501894A/en
Application granted granted Critical
Publication of JP3061867B2 publication Critical patent/JP3061867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、ポリマーを用いた巻磁心用の巻線保護体の
製造方法、特に可能なかぎり薄壁で絶縁し、同時に巻磁
心を固化する新しい固化・被覆方法に関する。
The present invention relates to a method for producing a winding protector for a wound core using a polymer, and in particular, to a new method of solidifying and coating the core while insulating it with a thin wall as much as possible.

電気部品用の磁心は多くの場合に巻磁心として、特に
環状巻磁心として構成される。これらの環状巻磁心は一
般に円筒状の周囲および軸線方向の内孔を有する。この
ような環状巻磁心はインダクタンス要素および変成器を
製造するために1つまたはそれ以上の巻線を巻かれる。
これらの巻線はたとえばエナメル銅線のような絶縁電線
から成る。その際に巻線は巻回の際の磁心のエッジによ
る損傷に対して保護されなければならない。
Magnetic cores for electrical components are often configured as wound cores, in particular as annular wound cores. These toroids generally have a cylindrical peripheral and axial bore. Such an annular core is wound with one or more windings to produce an inductance element and a transformer.
These windings consist of insulated wires, for example enamelled copper wires. The windings must be protected against damage by the edges of the core during winding.

特に、薄い切断された帯を巻かれている環状巻磁心は
非常に鋭いエッジを有する。非晶質またはナノ結晶性の
合金から成る環状巻磁心に対しては追加的に帯の脆さの
ゆえに内側および外側の帯層に対しても巻回の際に生ず
る力に対するエッジ保護が必要である。追加的にエッジ
保護は電気的に絶縁されていなければならない。
In particular, an annular wound core wound with a thin cut strip has very sharp edges. For annular wound cores made of amorphous or nanocrystalline alloys, additional edge protection against the forces generated during winding is also required for the inner and outer layers due to the brittleness of the band. is there. Additionally, the edge protection must be electrically insulated.

別の要求は、その構成に起因して非常に不安定な構造
である巻磁心の安定化および固化である。これは環状巻
磁心の内径および外径にはあまり関係しない。なぜなら
ば、これらの寸法はたとえば内側および外側の帯の相互
の点溶接により良好に固定されているからである。ここ
で重大なのはなかんずくコアの高さである。なぜなら
ば、たとえば巻回張力、帯の幾何形状、帯の表面形状、
帯の幅などのような種々のパラメータに関係して容易に
軸線方向のずれが生ずるからである。コアの幾何形状の
この変化を避けるためには、非常にさまざまな措置が知
られている。
Another requirement is the stabilization and solidification of the wound core, which is a very unstable structure due to its configuration. This has little bearing on the inner and outer diameters of the annular core. This is because these dimensions are well fixed, for example by mutual point welding of the inner and outer bands. What matters here is, among other things, the height of the core. Because, for example, winding tension, band geometry, band surface shape,
This is because an axial displacement easily occurs in relation to various parameters such as a band width and the like. A wide variety of measures are known to avoid this change in core geometry.

一般にたとえば溶剤放出または2つの成分の反応によ
る固くなるポリマーによるコアの降りそそぎおよび(ま
たは)浸漬が知られている。しかしその際に、この方法
によっては層厚みの性格な設定が可能でないという欠点
がある。
It is generally known to pour and / or soak the core with a polymer that hardens, for example by solvent release or reaction of the two components. However, in that case, there is a drawback that the characteristic setting of the layer thickness is not possible by this method.

環状コアの“外側”保護に対しては多くの方法が知ら
れている。ヨーロッパ特許出願公開第0 677 856号明細
書およびヨーロッパ特許出願公開第0 226 793号明細書
から、コアの外側形状に合わされており、その際に自己
安定な構成により内側の固化が省略され得るプラスチッ
クケースは知られている。ドイツ実用新案第77 26 882
号明細書から、コアの上に巻くべき電線のエナメルがコ
アの鋭いエッジにより損傷されることを本質的に防止す
べきコイルにより環状のコアを種々に包被することは知
られている。しかし、絶縁箔によるこの包帯巻きは高い
作業費用を要する。なぜならば、環状コアにおいて箔が
常に包帯巻きの際にコアの中心に通されなければならな
いからである。
Many methods are known for "outer" protection of the annular core. From EP-A-0 677 856 and EP-A-0 226 793, plastics which are adapted to the outer shape of the core and whose internal solidification can be omitted by means of a self-stable configuration The case is known. German Utility Model 77 26 882
From the specification it is known to enclose the annular core in various ways with a coil which essentially prevents the enamel of the wire to be wound on the core from being damaged by the sharp edges of the core. However, this bandage winding with insulating foil requires high operating costs. This is because in an annular core the foil must always be passed through the center of the core during bandaging.

さらにヨーロッパ特許出願公開第0 621 612号明細書
から、同時にコアを安定化して薄壁の固定および内側−
および外側エッジの保護を行う、コアの軸線方向に収縮
された収縮チューブを使用することは知られている。
Furthermore, from EP-A-0 621 612, it is simultaneously possible to stabilize the core and to fix the thin wall and the inner side.
It is known to use shrink tubing that is shrunk in the axial direction of the core, providing protection for the outer edge.

さらにヨーロッパ特許出願公開第0 351 861号明細書
から、道具のなかでプラスチックを環状巻磁心の周りに
吹き付けることは知られている。それによってエッジ保
護およびコア固化とならんで同時に組立および絶縁部分
も製造可能である。
It is furthermore known from EP 0 351 861 to spray a plastic around an annular core in a tool. Thereby, assembling and insulating parts can be manufactured simultaneously with edge protection and core solidification.

しかし、すべての公知の方法には、それらが一方では
非常に高い作業費用を要し、他方ではそれらにより性格
かつ特に非常に薄い均等な層が設定可能でないという欠
点が必ず存在する。特に小さいコアでは従来通常の方法
は、包被の必要な壁厚みおよびコアを入れる際の必要な
接合許容差により外側の体積(グロス体積)と磁気的に
利用される体積(ネット体積)との間の比が望ましくな
い値になるという欠点を有する。磁気的な利用率(グロ
ス体積/ネット体積)はその際にますます減少し、少な
からず理論的な理想値1から離れる。
However, all known methods have the disadvantage that they require, on the one hand, very high operating costs, and, on the other hand, that they cannot be set up in particular and in particular very thin, even layers. Especially for small cores, the conventional method is to determine the difference between the outer volume (gross volume) and the magnetically used volume (net volume) due to the required wall thickness of the wrapping and the required bonding tolerances when inserting the core. This has the disadvantage that the ratio between them is undesired. The magnetic utilization (gross volume / net volume) then decreases further and deviates considerably from the theoretical ideal value of 1.

ポリマーにより処理される公知の方法(浸漬、降りそ
そぎ、渦焼結など)は磁気的特性の少なからぬ変化に通
ずる。これは重合過程の間またはその後のポリマーの体
積変化に起因するものである。生ずる収縮力なかびに圧
力および引張力は軟磁性の帯の磁気ひずみのゆえに巻磁
心特性の変化を生じさせる。
Known methods of treatment with polymers (immersion, pouring, vortex sintering, etc.) lead to considerable changes in magnetic properties. This is due to the volume change of the polymer during or after the polymerization process. The resulting shrinkage, as well as the pressure and tension, cause changes in the core properties due to the magnetostriction of the soft magnetic strip.

従って、本発明の課題は、ポリマーを用いた磁心用の
巻線保護体の製造方法であって、磁気的特性を少なから
ず変化させることなく、合理的に同時に巻磁心を固めつ
つ非常に薄壁の絶縁を生ずる巻線保護の製造方法を提案
することである。
Accordingly, an object of the present invention is a method for manufacturing a winding protector for a magnetic core using a polymer, which hardens the winding core rationally at the same time without significantly changing the magnetic characteristics, and at the same time very thin walls. The present invention proposes a method of manufacturing a winding protection which causes insulation of the winding.

本発明によれば、この課題は、磁心の上に気相からポ
リマー薄膜が堆積されることにより解決される。
According to the invention, this problem is solved by depositing a polymer thin film from the gas phase on a magnetic core.

典型的にポリマー薄膜は、最初に低い圧力のもとに、
すなわち一般に真空のもとに、モノマーが磁心の表面に
凝縮させられ、かつ重合させられることにより製造され
る。モノマーを発生させるためにはオリゴマーが気化さ
れ、続いて光学的におよび(または)熱的におよび(ま
たは)プラズマを介して分解される。
Typically, a polymer film is initially exposed to low pressure,
That is, it is generally produced by condensing and polymerizing monomers on the surface of a magnetic core under a vacuum. In order to generate the monomer, the oligomer is vaporized and subsequently decomposed optically and / or thermally and / or via a plasma.

この方法で堆積されたポリマー薄膜の特別な利点は一
方では気密な層が既に数μmの厚みから得られることで
ある。さらにポリマー薄膜は高い弾力性および延性を示
し、従って亀裂を生ずる恐れがわずかである点で優れて
いる。モノマーは環状巻磁心において非常に細かい空所
に入り込むことができる。なぜならば、それらは気相の
中間段階にあるからである。たとえばラッカー処理の際
のような表面力による作用は生じない、すなわちエッジ
のディウェッティングまたは橋絡部の形成は生じない。
さらに、気相から堆積されたポリマー薄膜は非常に良好
に平滑な基礎の上に付着する。
A particular advantage of the polymer films deposited in this way is that, on the one hand, a gas-tight layer is already obtained from a thickness of a few μm. In addition, polymer films are distinguished by high elasticity and ductility, and thus a low risk of cracking. Monomers can penetrate very small voids in the toroid. Because they are in the middle stage of the gas phase. No action by surface forces occurs, for example during lacquering, ie no edge dewetting or bridging occurs.
Furthermore, polymer thin films deposited from the gas phase adhere very well to smooth substrates.

本発明の1つの実施態様ではポリマー薄膜としてポリ
パリレン薄膜が堆積される。典型的にこれらのポリパリ
レン薄膜はポリパラキシレン薄膜である。パリレンは、
低圧力において希薄にされた能動ガスにより処理される
表面の上に生ずる有機ポリマーの1つの族に対する一般
的な上位概念である。その際に、層厚みに関して卓越し
た特性を有し、また化学製品に対して非常に不活性であ
り、また細孔のない線形の結晶性のポリマーが生ずる。
In one embodiment of the present invention, a polyparylene thin film is deposited as a polymer thin film. Typically, these polyparylene thin films are polyparaxylene thin films. Parylene
It is a general superclass for one family of organic polymers that arise on surfaces treated with active gas diluted at low pressure. The result is a linear crystalline polymer which has excellent properties with respect to layer thickness, is very inert towards chemicals and has no pores.

本方法は特に非晶質または結晶質またはナノ結晶質の
合金から成る環状巻磁心を被覆するために適している。
The method is particularly suitable for coating annular wound cores made of amorphous or crystalline or nanocrystalline alloys.

典型的にその際に巻磁心は70%〜90%の充満率を有す
る。充満率とは磁気的なコア断面積と幾何学的なコア断
面積との比をいう。
Typically, the core then has a fill factor of 70% to 90%. The filling factor refers to a ratio between a magnetic core cross-sectional area and a geometric core cross-sectional area.

有利な実施態様は従属請求項に記載されている。 Advantageous embodiments are set out in the dependent claims.

以下、図面に示されている実施例により本発明を一層
詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1はパリレン固定および巻線を有する環状巻磁心の
概略断面図、 図2は図1の一部分の拡大図である。
FIG. 1 is a schematic sectional view of an annular core having parylene fixed and windings, and FIG. 2 is an enlarged view of a part of FIG.

図面によれば環状巻磁心1は非晶質またはナノ結晶質
の合金の帯2から成る環状の巻磁心から成っている。外
面5および6の上に環状巻磁心はポリパラキシレン被覆
3を設けられている。
According to the drawing, an annular core 1 comprises an annular core consisting of a band 2 of an amorphous or nanocrystalline alloy. On the outer surfaces 5 and 6, the annular core is provided with a polyparaxylene coating 3.

このポリパラキシレン被覆3は環状巻磁心1の上に気
相で堆積される。
The polyparaxylene coating 3 is deposited on the annular core 1 in a gas phase.

その際に被覆プロセスは粉末状のジパラキシレンダイ
マーの加熱により開始し、それによってこれらが直接的
にガス状の状態に移行する、すなわち昇華する。プロセ
スパラメータとしてはその際に約150℃の温度および約1
Torrの圧力が特に適していることが判明している。
The coating process then starts with the heating of the powdered diparaxylene dimers, whereby they go directly to the gaseous state, ie sublimate. Process parameters include a temperature of about 150 ° C and about 1
Torr pressures have proven to be particularly suitable.

その後にガス状のジパラキシレンダイマーが約690℃
の温度および約0,5Torrの圧力においてパラキシレンモ
ノマーに熱的に分解される(熱分解)。
After that, gaseous diparaxylene dimer is about 690 ° C
At a temperature of about 0.5 Pa and a pressure of about 0.5 Torr (pyrolysis).

これらのガス状のパラキシレンモノマーは次いでプロ
セスチャンバー、一般に真空チャンバのなかに導かれ、
そこで均等に分散し、また環状巻磁心1の表面5および
6の上ならびに環状巻磁心1の帯重ね2の空所7の中に
凝縮する。その後に重合およびポリマー薄膜の形成が行
われる。
These gaseous para-xylene monomers are then directed into a process chamber, typically a vacuum chamber,
There it is evenly distributed and condenses on the surfaces 5 and 6 of the toroidal core 1 and in the cavities 7 of the banding 2 of the toroidal core 1. Thereafter, polymerization and formation of a polymer thin film are performed.

ポリマー薄膜の厚みはその際にパラキシレンモノマー
の供給により的確に設定され得る。環状巻磁心では5μ
m〜60μmのポリマー薄膜厚みが特に適していることが
判明している。
At that time, the thickness of the polymer thin film can be appropriately set by supplying para-xylene monomer. 5μ for an annular wound core
Polymer film thicknesses of m to 60 μm have proven to be particularly suitable.

こうして生ずるポリパラキシレン薄膜は275℃よりも
高い融点を有するので、こうして被覆された環状巻磁心
が誘導性部品の構成部分として表面実装される部品(SM
D部品)へのろー付けプロセスに相応する要求条件に部
品の溶融または損傷なく耐えるように、温度安定な絶縁
層が生ずる。
Since the resulting polyparaxylene thin film has a melting point higher than 275 ° C., the annular core thus coated is surface-mounted as a component of the inductive component (SM).
A temperature-stable insulating layer is produced to withstand the requirements corresponding to the brazing process for the D part) without melting or damaging the part.

特にこうして2mm〜15mmの外径を有する環状巻磁心
が、コスト的に望ましいドラム法で被覆される巻線保護
体を設けられ得る。
In particular, an annular winding core having an outer diameter of 2 mm to 15 mm can thus be provided with a winding protector which is coated by a drum method which is cost-effective.

さらに、このような被覆された環状巻磁心は、高い電
圧の存在により部分放電を生じないことが必要とされて
いる変成器および変圧器の製造に適している。
In addition, such coated toroids are suitable for the manufacture of transformers and transformers where the presence of high voltages requires no partial discharge.

本明細書中に記載されているポリマーは登録商標Galx
ylのもとにイタリーのTechnipol社から、また商品名Par
yleneのもとにドイツのNovatran,Grossbritannien und
Aipha mittels Loetsysteme株式会社から市販品として
入手可能である。
The polymers described herein are trademarks of Galx®
Under the name yl from Technipol of Italy
German Novatran, Grossbritannien und under ylene
Available commercially from Aipha mittels Loetsysteme, Inc.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリマーを用いた巻磁心用の巻線保護体の
製造方法において、巻磁心の上に気相からポリマー薄膜
が堆積されることを特徴とする巻磁心用の巻線保護体の
製造方法。
1. A method of manufacturing a winding protector for a winding core using a polymer, wherein a polymer thin film is deposited from a gas phase on the winding core. Production method.
【請求項2】低い圧力のもとにモノマーが磁心の表面の
上に凝縮され、そこで重合することを特徴とする請求項
1記載の方法。
2. The method according to claim 1, wherein the monomer is condensed on the surface of the core under low pressure and polymerizes there.
【請求項3】モノマーを発生するためにオリゴマーが気
化され、続いて光学的および(または)熱的におよび
(または)スラズマを介して分解されることを特徴とす
る請求項2記載の方法。
3. The process as claimed in claim 2, wherein the oligomer is vaporized to generate the monomer and subsequently decomposed optically and / or thermally and / or via plasma.
【請求項4】ポリマー薄膜としてポリパリレン薄膜が堆
積されることを特徴とする請求項1ないし3の1つに記
載の方法。
4. The method according to claim 1, wherein a polyparylene thin film is deposited as the polymer thin film.
【請求項5】ポリパリレン薄膜としてポリパラキシレン
薄膜が堆積されることを特徴とする請求項4記載の方
法。
5. The method according to claim 4, wherein a polyparaxylene thin film is deposited as the polyparylene thin film.
【請求項6】約150℃の温度および約1Torrの圧力におい
てジパラキシレンダイマーが気化され、その後に約690
℃の温度および約0.5Torrの圧力においてパラキシレン
モノマーに熱的に分解され、続いてパラキシレンモノマ
ーが室温および約0.1Torrの圧力において磁心の上に凝
縮され、そこで重合することを特徴とする請求項5記載
の方法。
6. The diparaxylene dimer is vaporized at a temperature of about 150 ° C. and a pressure of about 1 Torr, followed by about 690
Characterized in that it is thermally decomposed into para-xylene monomer at a temperature of about ℃ and a pressure of about 0.5 Torr, followed by condensation of the para-xylene monomer onto the magnetic core at room temperature and a pressure of about 0.1 Torr, where it polymerizes. Item 6. The method according to Item 5.
【請求項7】モノマーの供給によりポリマー薄膜の厚み
が設定されることを特徴とする請求項2ないし6の1つ
に記載の方法。
7. The method according to claim 2, wherein the thickness of the polymer thin film is set by supplying the monomer.
【請求項8】非晶質またはナノ結晶質の合金の帯から成
る巻磁心が設けられていることを特徴とする請求項1な
いし7の1つに記載の方法。
8. The method according to claim 1, wherein a winding core is provided which comprises a band of amorphous or nanocrystalline alloy.
【請求項9】巻磁心が70%〜90%の充満率を有すること
を特徴とする請求項8記載の方法。
9. The method according to claim 8, wherein the core has a fill factor of 70% to 90%.
JP10510266A 1996-08-22 1997-08-18 Winding protector for wound core Expired - Lifetime JP3061867B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19633983.9 1996-08-22
DE19633983A DE19633983C1 (en) 1996-08-22 1996-08-22 Winding protection production for laminated cores
PCT/DE1997/001779 WO1998008238A1 (en) 1996-08-22 1997-08-18 Winding protection for tape-wound cores

Publications (2)

Publication Number Publication Date
JP2000501894A JP2000501894A (en) 2000-02-15
JP3061867B2 true JP3061867B2 (en) 2000-07-10

Family

ID=7803425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10510266A Expired - Lifetime JP3061867B2 (en) 1996-08-22 1997-08-18 Winding protector for wound core

Country Status (5)

Country Link
EP (1) EP0920702B1 (en)
JP (1) JP3061867B2 (en)
KR (1) KR100307843B1 (en)
DE (2) DE19633983C1 (en)
WO (1) WO1998008238A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19851871C2 (en) * 1998-11-10 2001-06-07 Vacuumschmelze Gmbh Process for producing a self-contained magnetic core
JP4825918B2 (en) * 2010-02-01 2011-11-30 株式会社東芝 Thin magnetic core manufacturing method and magnetic component manufacturing method
US10366805B2 (en) * 2016-03-31 2019-07-30 Essex Group, Inc. Insulated winding wire articles having conformal coatings

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246627A (en) * 1962-10-05 1966-04-19 Union Carbide Corp Apparatus for vapor deposition
US3342754A (en) * 1966-02-18 1967-09-19 Union Carbide Corp Para-xylylene polymers
DE7726882U1 (en) * 1977-08-30 1977-12-01 Siemens Ag, 1000 Berlin Und 8000 Muenchen COVERING FOR RING-SHAPED CORES OF REACTOR COILS
US4728919A (en) * 1985-11-25 1988-03-01 Siemens Aktiengesellschaft Moisture-tight wound ferrite toroidal core with resin envelope
EP0351861A1 (en) * 1988-07-21 1990-01-24 Siemens Aktiengesellschaft Inductive component, especially a transformer
EP0677856A1 (en) * 1990-09-28 1995-10-18 Mitsui Petrochemical Industries, Ltd. Container for storing an annular magnetic core
DE4310401A1 (en) * 1993-03-31 1994-10-06 Vacuumschmelze Gmbh Process for encasing a ring core as edge protection
JPH07211530A (en) * 1994-01-12 1995-08-11 Hitachi Metals Ltd Magnetic core

Also Published As

Publication number Publication date
EP0920702A1 (en) 1999-06-09
JP2000501894A (en) 2000-02-15
KR100307843B1 (en) 2001-09-29
WO1998008238A1 (en) 1998-02-26
EP0920702B1 (en) 2000-07-12
DE19633983C1 (en) 1997-08-28
DE59702021D1 (en) 2000-08-17
KR20000068224A (en) 2000-11-25

Similar Documents

Publication Publication Date Title
US20020113680A1 (en) Coil component and method for manufacturing the same
WO2002023563A3 (en) Advanced electronic microminiature coil and method of manufacturing
CA2376680A1 (en) Powder coated generator field coils and related method
JP2002246219A (en) Dust core and its manufacturing method
JP3061867B2 (en) Winding protector for wound core
JP2012105092A (en) Antenna core, antenna using the antenna core, and manufacturing method of the antenna core
US6849295B2 (en) Method for producing a winding protection for tape-wound cores
US20040140880A1 (en) Coupling device
CA2104292A1 (en) Insulated winding, together with process and semi-finished product for the production thereof
JP2000516400A (en) Interface transformer
US20220336150A1 (en) Inductive component and method for adjusting an inductance value
JP3388247B2 (en) Wound core and method of manufacturing the same
JPS63133610A (en) Manufacture of magnetic core
JPS63133609A (en) Magnetic core
JP2002008940A (en) Dry metallized film capacitor
JP2004047942A (en) Winding type inductor
JPH0240901A (en) Device for producing magnetic field using no wire and manufacture thereof
JPS6065502A (en) Electromagnetic iron core
JPH056824A (en) Inductor element
JPH01222415A (en) Inductance element and manufacture thereof
RU1817147C (en) Method for manufacturing ring-shaped magnetic circuits
JPH10223423A (en) Thin-type magnetic core and manufacture thereof
JPS59222904A (en) Superconductive coil
JPH0461108A (en) Manufacture of film chip capacitor
WO2001026120A3 (en) A method of manufacturing and using a superconducting tape.