JP3060635B2 - Manufacturing method of steel for high strength rebar - Google Patents
Manufacturing method of steel for high strength rebarInfo
- Publication number
- JP3060635B2 JP3060635B2 JP3223237A JP22323791A JP3060635B2 JP 3060635 B2 JP3060635 B2 JP 3060635B2 JP 3223237 A JP3223237 A JP 3223237A JP 22323791 A JP22323791 A JP 22323791A JP 3060635 B2 JP3060635 B2 JP 3060635B2
- Authority
- JP
- Japan
- Prior art keywords
- yield
- strength
- steel
- elongation
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、高強度、とくに下降
伏点が780MPa以上の高強度を有し、かつ、降伏伸
びが大きい鉄筋用鋼の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing steel for reinforcing steel having high strength, in particular, high strength having a yield point of not less than 780 MPa and high yield elongation.
【0002】[0002]
【従来の技術】鉄筋コンクリ−ト用棒鋼は、JIS G
3112に規定されているように、最大強度のものでも
降伏点が490〜630MPa(SD490)である。
このような棒鋼は、C−Mn鋼を熱間圧延して製造され
る。2. Description of the Related Art Steel bars for reinforced concrete are JIS G
As specified in 3112, the yield point is 490 to 630 MPa (SD490) even with the highest strength.
Such a steel bar is manufactured by hot rolling C-Mn steel.
【0003】近時、鉄筋コンクリ−トを用いて造られた
建築物はますます高層化する傾向にあり、鉄筋をさらに
高強度化する要望が高い。ところが、一般に、棒鋼を高
強度化すると、図1に示すように、降伏伸び(εP /ε
Y)が逆に低下するという不都合を生じる。因みに、建
設省のNewRC総合プロジェクトの指針によれば、降
伏点が690MPa以上の等級の棒鋼では降伏伸び値が
4%以上であることが好ましいとされているのに対し
て、降伏点が780MPa以上の等級の棒鋼では、特に
降伏伸びは規定されていない。しかしながら、将来、降
伏点が780MPa以上の等級の棒鋼においても、大き
な降伏伸びを要求されることが予想される。[0003] In recent years, buildings made using reinforced concrete tend to be even higher in height, and there is a high demand for further strengthening of reinforcing bars. However, in general, when the strength of a steel bar is increased, as shown in FIG. 1, the yield elongation (ε P / ε
Y ) is disadvantageously reduced. Incidentally, according to the guidelines of the NewRC Comprehensive Project of the Ministry of Construction, it is preferable that the yield elongation value is 4% or more in the bar having a yield point of 690 MPa or more, whereas the yield point is 780 MPa or more. No specific elongation is specified for steel bars of grade No. However, in the future, it is expected that a large yield elongation will be required even for a bar having a yield point of 780 MPa or more.
【0004】特公昭63−64494号公報には、棒鋼
を高強度化するためにNb含有鋼あるいはNb−V含有
鋼を素材に用い、降伏伸びの低下を抑制するためにこれ
を所定の圧延条件下で制御圧延する製造技術が記載され
ている。また、特公昭64−11705号公報には、N
b,V,Caを添加することにより高強度の鉄筋用鋼と
する技術が記載されている。Japanese Patent Publication No. 63-64494 discloses that an Nb-containing steel or an Nb-V-containing steel is used as a material for enhancing the strength of a steel bar, and to reduce the yield elongation under a predetermined rolling condition. The production technique for controlled rolling below is described. Japanese Patent Publication No. 64-11705 discloses N
A technique is described in which b, V, and Ca are added to make high-strength steel for reinforcing steel.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、これら
の従来の製造方法は、降伏点が490〜590MPaク
ラスの比較的低強度の棒鋼を対象としており、降伏点が
これらを超える高強度の棒鋼を対象とするものではな
い。すなわち、これらの製造技術においても、棒鋼の降
伏伸びを大きくしようとすると、降伏点が低下する。こ
のため、780MPa以上の降伏点を示す高強度かつ高
降伏伸びの棒鋼を製造することができないでいた。However, these conventional manufacturing methods are intended for relatively low-strength steel bars having a yield point of 490-590 MPa class, and for high-strength steel bars having a yield point exceeding these. It does not mean that. That is, even in these manufacturing techniques, if the yield elongation of the steel bar is to be increased, the yield point decreases. For this reason, it was not possible to produce a high-strength and high-yield elongation steel bar exhibiting a yield point of 780 MPa or more.
【0006】また、素材を熱処理すれば、このような高
強度・高降伏伸びの特性を得ることはできるが、熱処理
工程を経るために製造コストが上昇するという不都合が
ある。本発明は、かかる事情に鑑みてなされたものであ
って、高強度かつ降伏伸びが大きい鉄筋用鋼の製造方法
を提供することを目的とする。Further, if the material is heat-treated, such high strength and high yield elongation characteristics can be obtained, but there is a disadvantage that the production cost increases due to the heat treatment step. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a steel for reinforcing steel having high strength and large yield elongation.
【0007】[0007]
【課題を解決するための手段および作用】本発明者ら
は、高強度鉄筋用鋼を得るために、鋭意研究した結果、
バナジウムを多量添加すると強度の増大化がみられるこ
と、および、圧延終了温度の低下による降伏点の出現に
加えて、チタンを有効利用することにより降伏伸びが増
加することを見出した。The present inventors have conducted intensive studies to obtain high-strength steel for reinforcing steel.
It was found that when a large amount of vanadium was added, the strength was increased, and in addition to the appearance of a yield point due to a decrease in the rolling end temperature, the yield elongation was increased by effectively utilizing titanium.
【0008】[0008]
【0009】この発明に係る高強度鉄筋用鋼の製造方法
は、Cを0.35〜0.50質量%,Siを1.5質量
%以下,Mnを1.7質量%以下,Vを0.4〜0.7
質量%,Tiを0.01〜0.10質量%,Nを0.0
04〜0.01質量%それぞれ含有し、残部がFe及び
不可避的不純物からなる素材を、圧延終了温度が650
〜900℃となるように圧延することを特徴とする。素
材の組成をこのような成分範囲とした理由について、各
成分元素ごとに説明する。The method for producing high-strength rebar steel according to the present invention is characterized in that C is 0.35 to 0.50% by mass , Si is 1.5% by mass or less, Mn is 1.7% by mass or less, and V is 0%. 0.4-0.7
% By mass , 0.01 to 0.10% by mass of Ti, and 0.0
A raw material containing 0.4 to 0.01% by mass and the balance consisting of Fe and inevitable impurities having a rolling end temperature of 650.
It is rolled so as to reach 900 ° C. The reason for setting the composition of the material to such a component range will be described for each component element.
【0010】Cは、高強度化に必要な元素であり、所望
の強度レベルを得るには含有量を0.35重量%以上と
する必要がある。しかし、C含有量が0.50重量%を
超えると、降伏点が出現しにくくなるか、または、降伏
点が出現したとしても降伏伸びが小さくなるので、上限
値を0.50重量%とする。[0010] C is an element necessary for increasing the strength, and its content must be 0.35% by weight or more in order to obtain a desired strength level. However, when the C content exceeds 0.50% by weight, the yield point becomes difficult to appear, or even if the yield point appears, the yield elongation becomes small. Therefore, the upper limit is set to 0.50% by weight. .
【0011】Siは、脱酸に必要な元素であり、マトリ
ックスに固溶して強度を増大するのに有効である。しか
し、Si含有量が1.5重量%を超えると、靭性が低下
するので、上限値を1.5重量%とする。Si is an element necessary for deoxidation, and is effective for forming a solid solution in a matrix to increase the strength. However, if the Si content exceeds 1.5% by weight, the toughness decreases, so the upper limit is set to 1.5% by weight.
【0012】Mnは、高強度化に必要な元素である。し
かし、Mn含有量が1.7重量%を超えると、ベイナイ
ト組織を生じて降伏点が出現しなくなるので、上限値を
1.7重量%とする。Mn is an element necessary for increasing the strength. However, if the Mn content exceeds 1.7% by weight, a bainite structure is generated and no yield point appears, so the upper limit is set to 1.7% by weight.
【0013】Vは、析出強化元素であり、とくに少量の
添加でマトリックスの高強度化を図ることができるた
め、有効である。また、Vの添加は結晶粒の微細化にも
有効である。通常、高強度化に有効なV含有量は0.4
重量%以上である。しかし、VをTiとともに複合添加
した場合には、V含有量が0.7重量%を超えると、バ
ナジウム析出物およびチタン析出物の共存により、降伏
伸びが小さくなるので、Vの上限値を0.7重量%とす
る。V is a precipitation strengthening element, and is effective because it can increase the strength of the matrix by adding a small amount thereof. Further, the addition of V is also effective for making the crystal grains fine. Usually, the effective V content for strengthening is 0.4
% By weight or more. However, when V is added in combination with Ti, when the V content exceeds 0.7% by weight, the yield elongation becomes small due to the coexistence of vanadium precipitates and titanium precipitates. 0.7% by weight.
【0014】Tiは、本発明に用いる素材において必須
の元素である。Tiは、高強度材料の降伏伸びを大きく
するのに有効であり、そのためにはTi含有量を0.0
1重量%以上とする必要がある。Ti含有量が0.10
重量%を超えると、降伏伸びの増大効果が飽和するの
で、上限値を0.10重量%とする。[0014] Ti is an essential element in the material used in the present invention. Ti is effective in increasing the yield elongation of a high-strength material.
It must be at least 1% by weight. Ti content 0.10
If the amount exceeds 10% by weight, the effect of increasing the yield elongation is saturated, so the upper limit is set to 0.10% by weight.
【0015】Nは、組織中ではTiNまたはVNの形態
で存在し、組織の微細化に有効な元素である。N含有量
が0.004重量%を下回ると、組織微細化の効果がみ
られない。一方、N含有量が0.01重量%を超える
と、組織微細化の効果が飽和するので、上限値を0.0
1重量%とする。次に、圧延終了温度について説明す
る。N exists in the structure in the form of TiN or VN, and is an element effective for making the structure finer. If the N content is less than 0.004% by weight, the effect of refining the structure is not obtained. On the other hand, if the N content exceeds 0.01% by weight, the effect of refining the structure saturates.
1% by weight. Next, the rolling end temperature will be described.
【0016】圧延終了温度を650〜900℃の範囲と
する理由は、圧延終了温度が650℃を下回る条件で上
記組成の素材を熱間圧延すると、過冷組織を生じて降伏
伸びが小さくなること、および、圧延機の負担が大きく
なることによる。このため、圧延終了温度の下限値を6
50℃とすることが望ましい。The reason for setting the rolling end temperature in the range of 650 to 900 ° C. is that when a material having the above composition is hot-rolled under the condition that the rolling end temperature is lower than 650 ° C., a supercooled structure is formed and the yield elongation is reduced. And that the load on the rolling mill increases. For this reason, the lower limit of the rolling end temperature is set to 6
It is desirable that the temperature be 50 ° C.
【0017】一方、圧延終了温度の上限値を900℃と
する理由は、圧延終了温度が900℃を上回る条件で上
記組成の素材を熱間圧延すると、組織が粗大化して降伏
点が出現しにくくなり、所望の降伏伸びを得ることがで
きなくなるからである。これに対して、900℃以下の
圧延終了温度となるように上記組成の素材を熱間圧延す
ると、組織が微細化し、降伏点が出現すると共に、降伏
伸びも大きくなる。この場合に、微細化組織はフェライ
トおよびパーライトの混合組織となる。従って、上記の
下限温度値との組合せにより圧延終了温度を650〜9
00℃の範囲に選ぶことが最も望ましい。On the other hand, the reason for setting the upper limit of the rolling end temperature to 900 ° C. is that when the material having the above composition is hot-rolled under the condition that the rolling end temperature is higher than 900 ° C., the structure becomes coarse and the yield point hardly appears. This is because the desired yield elongation cannot be obtained. On the other hand, when a material having the above composition is hot-rolled so as to have a rolling end temperature of 900 ° C. or lower, the structure becomes finer, a yield point appears, and the yield elongation increases. In this case, the microstructure becomes a mixed structure of ferrite and pearlite. Therefore, the above
The rolling end temperature is set to 650 to 9 in combination with the lower limit temperature value.
Most preferably, it is selected in the range of 00 ° C.
【0018】[0018]
【実施例】以下、この発明の実施例について具体的に説
明する。Embodiments of the present invention will be specifically described below.
【0019】表1は、各種組成の素材を示す成分表示で
ある。組成番号1乃至3は、本発明の実施例として挙げ
たものであり、本発明の素材の成分範囲に含まれる。組
成番号4乃至6は、比較例として挙げたものである。Table 1 is a component display showing materials of various compositions. Composition Nos. 1 to 3 are listed as examples of the present invention, and are included in the component range of the material of the present invention. Composition numbers 4 to 6 are listed as comparative examples.
【0020】表2は、上記組成番号1乃至6の素材を種
々の圧延終了温度となるように所定の圧下率で圧延し、
それぞれの降伏強さ、引張強さ、並びに降伏伸びについ
て調べた試験結果を示す表である。Table 2 shows that the raw materials having composition numbers 1 to 6 were rolled at predetermined rolling reductions so as to have various rolling end temperatures.
It is a table | surface which shows the test result investigated about each yield strength, tensile strength, and yield elongation.
【0021】図1に示すように、降伏伸びとは、降伏が
終了するまでの伸び量εP を上降伏点までの伸び量εY
で割った比率(εP /εY )をいう。なお、引張試験に
はJIS4号試験片を用い、標点間距離を50mmとし
た。ここで、降伏強さは、実施例1,2,3及び比較例
1,2,8においては降伏点の表示強度を用いたが、比
較例3,4,5,6,7,9においては降伏点が明瞭に
認められないので0.2%耐力を採用した。表2から明
らかなように、実施例1,2,3は、いずれも降伏強さ
が780MPa以上となり、かつ、降伏伸びが4を超え
ている。As shown in FIG. 1, the yield elongation is defined as the elongation ε P up to the end of the yield, and the elongation ε Y up to the upper yield point.
Divided by (ε P / ε Y ). In the tensile test, a JIS No. 4 test piece was used, and the distance between gauge points was set to 50 mm. Here, as the yield strength, the display strength of the yield point was used in Examples 1, 2, and 3 and Comparative Examples 1, 2, and 8, but in Comparative Examples 3, 4, 5, 6, 7, and 9, Since the yield point was not clearly recognized, a 0.2% proof stress was adopted. As is clear from Table 2, in Examples 1, 2, and 3, the yield strength is 780 MPa or more, and the yield elongation exceeds 4.
【0022】これに対して、圧延終了温度が650℃を
下回る条件の比較例1,3,5では、降伏伸びが得られ
ないか又は得られたとしても0.8程度の小さな降伏伸
びしか得られなかった。On the other hand, in Comparative Examples 1, 3, and 5 where the rolling end temperature is lower than 650 ° C., no yield elongation is obtained, or even if it is obtained, only a small yield elongation of about 0.8 is obtained. I couldn't.
【0023】また、圧延終了温度が900℃を超える条
件の比較例2,4,6では、降伏伸びが得られないか又
は得られたとしても2.0程度の小さな降伏伸びしか得
られなかった。なお、比較例3,4,5,6では、明瞭
な降伏点が出現せず、降伏伸びを測定することができな
かった。In Comparative Examples 2, 4, and 6 where the rolling end temperature exceeded 900 ° C., no yield elongation was obtained, or even if it was obtained, only a small yield elongation of about 2.0 was obtained. . In Comparative Examples 3, 4, 5, and 6, no clear yield point appeared, and the yield elongation could not be measured.
【0024】さらに、比較例7,8,9の結果から明ら
かなように、圧延終了温度が650〜900℃の範囲内
の条件であっても、所定の組成範囲から外れる組成(組
成番号4,5,6)のものでは、降伏伸びが小さくな
る。すなわち、比較例7及び9では降伏点が明瞭に出現
せず、また、比較例8では降伏点は現れるものの降伏伸
びは2.3程度と小さい。Further, as is apparent from the results of Comparative Examples 7, 8, and 9, even if the rolling end temperature is in the range of 650 to 900 ° C., the composition (composition number 4, In the case of (5, 6), the yield elongation becomes small. That is, in Comparative Examples 7 and 9, the yield point does not clearly appear, and in Comparative Example 8, the yield point appears but the yield elongation is as small as about 2.3.
【0025】上記実施例によれば、素材の組成、とくに
チタン含有量およびバナジウム含有量を所定範囲とし、
650〜900℃の範囲に圧延終了温度を選ぶことによ
り、組織の微細化を図り、降伏強さを低下させることな
く、降伏伸びを増大することができた。According to the above embodiment, the composition of the raw material, in particular, the content of titanium and the content of vanadium are set to predetermined ranges,
By selecting the rolling end temperature in the range of 650 to 900 ° C., it was possible to refine the structure and increase the yield elongation without lowering the yield strength.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】[0028]
【発明の効果】この発明によれば、鉄筋用棒鋼の降伏強
さを780MPa以上に向上させることができ、かつ、
降伏伸びを4以上にすることができる。従って、この発
明により製造した棒鋼は、超高層ビルの鉄筋コンクリ−
トに用いるのに最適である。According to the present invention, the yield strength of steel bars for reinforcing steel can be improved to 780 MPa or more, and
The yield elongation can be 4 or more. Accordingly, the steel bars manufactured according to the present invention are used for reinforcing concrete in skyscrapers.
Ideal for use in
【図1】降伏伸びを説明するための応力−歪線図。FIG. 1 is a stress-strain diagram for explaining yield elongation.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−56727(JP,A) 特開 平4−193908(JP,A) 特開 平5−9577(JP,A) 永井義規”高強度鉄筋SD50の機械的 性質”,材料とプロセス,Vol.3, (1990),1398 (58)調査した分野(Int.Cl.7,DB名) C21D 8/08 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-56727 (JP, A) JP-A-4-193908 (JP, A) JP-A-5-9577 (JP, A) Nagai Yoshinori "High strength" Mechanical Properties of Reinforcing Bar SD50 ", Materials and Processes, Vol. 3, (1990), 1398 (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/08
Claims (1)
1.5質量%以下,Mnを1.7質量%以下,Vを0.
4〜0.7質量%,Tiを0.01〜0.10質量%,
Nを0.004〜0.01質量%それぞれ含有し、残部
がFe及び不可避的不純物からなる素材を、圧延終了温
度が650〜900℃となるように圧延することを特徴
とする高強度鉄筋用鋼の製造方法。 C. 0.35 to 0.50 mass% of C and Si
1.5 mass% or less, Mn 1.7 mass% or less, V
4 to 0.7% by mass, 0.01 to 0.10% by mass of Ti,
N in an amount of 0.004 to 0.01% by mass, and the balance
Is a material consisting of Fe and unavoidable impurities,
Rolled to a degree of 650-900 ° C
Method for producing high-strength steel for reinforcing steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3223237A JP3060635B2 (en) | 1990-09-04 | 1991-09-04 | Manufacturing method of steel for high strength rebar |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-232475 | 1990-09-04 | ||
JP23247590 | 1990-09-04 | ||
JP3223237A JP3060635B2 (en) | 1990-09-04 | 1991-09-04 | Manufacturing method of steel for high strength rebar |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0551636A JPH0551636A (en) | 1993-03-02 |
JP3060635B2 true JP3060635B2 (en) | 2000-07-10 |
Family
ID=26525345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3223237A Expired - Fee Related JP3060635B2 (en) | 1990-09-04 | 1991-09-04 | Manufacturing method of steel for high strength rebar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3060635B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112080682A (en) * | 2020-09-23 | 2020-12-15 | 宁夏建龙龙祥钢铁有限公司 | Method for increasing vanadium content of molten deformed steel bar by using vanadium-containing titanium-containing pig iron block |
CN115261720B (en) * | 2022-06-29 | 2023-05-05 | 张家港荣盛特钢有限公司 | Fireproof steel bar mechanical connecting sleeve, wire rod and production method of wire rod |
-
1991
- 1991-09-04 JP JP3223237A patent/JP3060635B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
永井義規"高強度鉄筋SD50の機械的性質",材料とプロセス,Vol.3,(1990),1398 |
Also Published As
Publication number | Publication date |
---|---|
JPH0551636A (en) | 1993-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080240969A1 (en) | High Strength Hot Rolled Steel Sheet Containing High Mn Content with Excellent Workability and Method for Manufacturing the Same | |
JP5363922B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
KR101243002B1 (en) | High strength steel sheet having excellent elongation and method for manufacturing the same | |
JP5612982B2 (en) | High-strength rebar and manufacturing method thereof | |
KR100431851B1 (en) | structural steel having High strength and method for menufactreing it | |
JP2973909B2 (en) | Non-heat treated steel for high strength rebar and method for producing high strength rebar | |
JP3060635B2 (en) | Manufacturing method of steel for high strength rebar | |
JPH09111340A (en) | High strength and low yield ratio steel for reinforcing bar and its production | |
JP3060636B2 (en) | Manufacturing method of steel for high strength rebar | |
JP2526718B2 (en) | Method for manufacturing high-strength steel | |
JPH0525543A (en) | Production of reinforcing steel having high strength and high yield elongation | |
KR100358939B1 (en) | Method for manufacturing steel for construction with tensile strength of 58 kgf/mm¬2 class | |
JPH0551637A (en) | Production of high strength steel for reinforcing bar | |
JP3031485B2 (en) | Method for manufacturing high-strength rebar with excellent yield elongation | |
JPS59129725A (en) | Production of hot rolled high tension steel sheet having excellent cold workability | |
JP2019143244A (en) | High strength high ductility fine martensite structure steel material and manufacturing method therefor | |
JPH05125481A (en) | High tensile strength steel material having high toughness and low yield ratio and its production | |
JP3081197B1 (en) | High strength steel sheet with excellent workability and fatigue properties | |
KR100370580B1 (en) | Manufacturing method of steel sheet for constructing having high temperature strenth | |
KR102181788B1 (en) | High strength medium carbon steel for earthquake-proof and its manufacturing method | |
JPS5887222A (en) | Production of steel having high yield point elongation ratio for high strength reinforcing bar | |
KR940008057B1 (en) | Making method of high tension steel | |
KR100311786B1 (en) | Method for manufacturing steel strip(50kg) with superior strength and yield ratio | |
JP2023506831A (en) | Vibration control damper steel material with excellent impact toughness and its manufacturing method | |
JPH10317100A (en) | Reinforcing bar with high strength and high toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080428 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110428 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |