JP3060154B2 - Electroplated grinding wheel for compound grinding - Google Patents

Electroplated grinding wheel for compound grinding

Info

Publication number
JP3060154B2
JP3060154B2 JP6320676A JP32067694A JP3060154B2 JP 3060154 B2 JP3060154 B2 JP 3060154B2 JP 6320676 A JP6320676 A JP 6320676A JP 32067694 A JP32067694 A JP 32067694A JP 3060154 B2 JP3060154 B2 JP 3060154B2
Authority
JP
Japan
Prior art keywords
grinding
abrasive grains
electrodeposited
wear
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6320676A
Other languages
Japanese (ja)
Other versions
JPH08174431A (en
Inventor
一雄 森
浩二 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6320676A priority Critical patent/JP3060154B2/en
Publication of JPH08174431A publication Critical patent/JPH08174431A/en
Application granted granted Critical
Publication of JP3060154B2 publication Critical patent/JP3060154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、軟質部と硬質部とを備
える研削ワークを同時研削する複合研削用電着砥石で
って、軟質部を研削する砥石部と硬質部を研削する砥石
部とが一体に形成されたものに関する。
The present invention relates to, I Oh <br/> in composite grinding for electricity Chakutogi stone to co-grinding the grinding work and a soft part and the hard part, the grinding wheel portion and a rigid grinding the soft part The present invention relates to a device in which a grinding wheel portion for grinding a portion is integrally formed.

【0002】[0002]

【従来の技術】例えば自動車の足回り部品のように、部
分的に高硬度と面粗度とが要求されるものがあり、この
ような足回り部品の軟質部と硬質部との各々に研削加工
を行なう場合には、軟質部を研削する砥石と硬質部を研
削する砥石とを別体に製作し、各砥石を用いて軟質部と
硬質部とを個別に研削加工している。
2. Description of the Related Art Some undercarriage parts, such as undercarriage parts for automobiles, are required to have high hardness and surface roughness, and the soft part and the hard part of such underbody parts are ground. In performing the processing, a grindstone for grinding the soft portion and a grindstone for grinding the hard portion are manufactured separately, and the soft portion and the hard portion are individually ground using each grindstone.

【0003】即ち、軟質部の切粉は目づまりしやすいた
め、比較的大きな粒径の砥粒を、疎状態に電着した砥石
を使用し、一方、硬質部は面粗度が要求されるため、比
較的小さな粒径の砥粒を、密状態に電着した砥石を用い
る必要がある。
That is, since the cuttings in the soft part are easily clogged, a grindstone in which abrasive grains having a relatively large particle diameter are electrodeposited in a sparse state is used, while the hard part requires a surface roughness. Therefore, it is necessary to use a grindstone in which abrasive grains having a relatively small particle diameter are electrodeposited in a dense state.

【0004】[0004]

【発明が解決しようとする課題】上記のように軟質部と
硬質部とを研削する砥石を別体に設けると、軟質部と硬
質部とを研削する工程を別個に分けて、例えば2台の研
削装置を用いなくてはならず、加工工数が増加するとい
う問題がある。尚、特開昭62−94265号公報によ
り、一体の砥石ホイルに粒径が大小異なる2種類の砥粒
を区画して電着し、粒径の大きな砥粒が電着された砥石
部と粒径の小さな砥粒が電着された砥石部とで同時に研
削加工を行なうようにしたものが知られている。
When the grindstone for grinding the soft part and the hard part is provided separately as described above, the steps of grinding the soft part and the hard part are separately performed. There is a problem that a grinding device must be used and the number of processing steps increases. According to Japanese Patent Application Laid-Open No. 62-94265, two types of abrasive grains having different particle sizes are partitioned and electrodeposited on an integrated grinding wheel foil, and the abrasive portion having the larger grain size is electrodeposited with the abrasive portion. It is known that grinding is performed simultaneously with a grindstone portion on which abrasive grains having a small diameter are electrodeposited.

【0005】しかし、軟質部を研削する場合には、軟質
部の切粉は砥粒に付着しやすく、一旦付着した切粉が脱
落する際に砥粒表面の一部を剥離させ、いわゆるチッピ
ングを起し、砥粒の摩耗速度が速い。これに対し、硬質
部を研削する場合には、硬質部の切粉は砥粒に付着しに
くいためチッピングを起しにくく砥粒の摩耗速度は遅
い。従って、上記公報に記載のもののように粒径の大き
な砥粒が電着された砥石と粒径の小さな砥粒が電着され
た砥石とを単に一体にしただけでは両砥石の摩耗速度が
異なり、個々の砥石部の寿命が残っているのに加工され
た研削ワークの寸法公差が不良となってそれ以上その砥
石を使用できなくなり、不経済になるという問題が生じ
る。
[0005] However, when grinding a soft part, the chips in the soft part tend to adhere to the abrasive grains, and when the chips once adhered fall off, a part of the surface of the abrasive grains is peeled off, so-called chipping occurs. Abrasion speed of the abrasive grains is high. On the other hand, when grinding a hard part, the chips in the hard part hardly adhere to the abrasive grains, so that chipping hardly occurs and the wear rate of the abrasive grains is low. Therefore, the wear speeds of the two grinding wheels are different only by simply integrating the grindstone with the large grain size electrodeposited as described in the above-mentioned publication and the grindstone with the small grain size electrodeposited thereon. In addition, the dimensional tolerance of the machined grinding work becomes poor while the life of the individual grinding wheels remains, and the grinding wheels cannot be used any more, resulting in a problem of uneconomic.

【0006】そこで本発明は、上記の問題点に鑑み、軟
質部を研削する砥粒の摩耗速度と硬質部を研削する砥粒
の摩耗速度との差を縮め、寿命の長い複合研削用電着砥
石を提供することを目的とする。
In view of the above problems, the present invention reduces the difference between the wear rate of abrasive grains for grinding soft parts and the abrasive rate of abrasive grains for grinding hard parts, and provides a long-life electrodeposition for composite grinding. The purpose is to provide a whetstone.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
、軟質部と硬質部とを備える研削ワークを同時研削す
る複合研削用電着砥石であって軟質部を研削する砥石部
と硬質部を研削する砥石部とが一体に形成されたものに
おいて、上記軟質部を研削する砥石部に電着される砥粒
の粒径を100/120メッシュとし硬質部を研削する
砥石部に電着される砥粒の粒径を140/170メッシ
ュとし、研削開始から所定量の加工を行う間に砥粒が摩
耗する初期摩耗量に相当する寸法だけ各砥石部について
砥石母材 の外径を大きくしておき、初期摩耗量に相当す
る所定寸法だけ大径となるように両砥石部に砥粒を電着
し、該所定寸法を整形除去して各砥石部の外径を所定の
外径寸法に仕上げたことを特徴とする。
To achieve SUMMARY OF to the above objects, the grinding wheel portion and rigid a composite grinding electrodeposited grindstone for simultaneously grinding the grinding work and a soft substance portion and the hard portion grind the soft part Abrasive grains that are electrodeposited on the grinding wheel portion for grinding the soft portion, in which the grinding wheel portion for grinding the portion is integrally formed.
The grain size of the particles is 100/120 mesh, and the grain size of the abrasive grains electrodeposited on the grindstone portion for grinding the hard portion is 140/170 mesh.
The abrasive grains are ground during a predetermined amount of machining from the start of grinding.
For each whetstone part only the dimension equivalent to the initial wear amount
Increase the outer diameter of the grindstone base material to
Electrodeposits abrasive grains on both whetstones so that they have a large diameter
Then, the predetermined diameter is shaped and removed, and the outer diameter of each grindstone portion is set to a predetermined value.
It is characterized by finishing to the outer diameter .

【0008】[0008]

【作用】硬質部を研削する場合であっても、砥粒の粒径
が大きくなるに従って摩耗量は増加する。一方、粒径を
大きくすると面粗度が低下する。従って、面粗度が保証
される範囲内で可及的に粒径を大きくすることにより、
砥粒の摩耗速度を軟質部を研削する砥粒の摩耗速度に近
付け、研削ワークの寸法精度が所定の公差内から外れる
までの加工個数を増加させ砥石の寿命を延ばすことがで
きる。そこで、本発明では軟質部を研削する砥石部に電
着される砥粒の粒径を100/120メッシュとし硬質
部を研削する砥石部に電着される砥粒の粒径を140/
170メッシュとした
The amount of wear increases as the grain size of the abrasive grains increases, even when grinding a hard part. On the other hand, when the particle size is increased, the surface roughness decreases. Therefore, by increasing the particle size as much as possible within the range where the surface roughness is guaranteed,
Be extended abrasive grains wear rate close to the wear rate of the abrasive grain for grinding soft portion, the life of the grindstone dimensional accuracy of the grinding work increases the working number to deviate from a predetermined tolerance
Wear. Therefore, in the present invention, the electric power is applied to the grindstone for grinding the soft part.
Abrasive particles with a particle size of 100/120 mesh
The particle size of the abrasive particles electrodeposited on the grindstone part for grinding the part is 140 /
170 mesh .

【0009】また、砥粒の摩耗速度は研削加工開始直後
が最も速く、その後研削加工を継続するに従って摩耗速
度が低下することが知られている。そこで、砥粒を電着
した後研削加工に先立って電着されている砥粒の先端を
初期摩耗量に相当する所定量整形除去し、人為的に若干
摩耗した状態にすることにより研削加工開始後の摩耗速
度を抑え、かつ粒径が大の砥粒と粒径が小の砥粒との摩
耗速度の差が小さくなるようにした。
It is known that the wear rate of abrasive grains is highest immediately after the start of grinding, and then decreases as grinding continues. Therefore, after electrodeposition of the abrasive grains, the tip of the
A predetermined amount corresponding to the initial wear amount is removed by shaping, and the wear rate after the start of the grinding process is suppressed by making it slightly worn artificially. The difference in wear rate was reduced.

【0010】[0010]

【実施例】図1を参照して、Wは研削ワークであり、自
動車の車輪にエンジンの駆動力を伝達する等速ジョイン
トの構成部品である。該研削ワークWは鍛造成形された
後徐冷されHRC25〜46程度の硬度に調整される
が、例えば範囲WHのようにスプライン等を設けるため
機械的強度が要求される箇所については部分的に高周波
加熱し、HRC58〜63程度になるように焼入れす
る。W1は研削ワークWに嵌着されるベアリング(図示
せず)のインナレースの端部が突き当てられる部分であ
り、面粗度が6.3Sになるように高周波焼入れ後に加
工される。また、W2は上記ベアリングのアウタレース
側に取り付けられた環状の防塵シールの先端が摺動する
部分であり、面粗度が12.5Sになるように高周波焼
入れ後に加工される。更に、W3は車輪速検出用の歯車
が圧入固定される部分であり、従って焼入れの必要はな
く、また面粗度は25S程度で十分である。このよう
に、硬質部であるW1及びW2の部分を研削する硬質部
用砥石部2と軟質部であるW3の部分を研削する軟質部
用砥石部3とを一体に形成し、L方向に切り込んでプラ
ンジ加工する複合砥石1の各砥石部2・3に電着する砥
粒の粒径を決定しなければならない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, reference numeral W denotes a grinding work, which is a component of a constant velocity joint for transmitting a driving force of an engine to wheels of an automobile. The forged work W is gradually cooled after being forged and adjusted to a hardness of about 25 to 46 HRC. For example, a spline or the like such as a range WH is required to provide a spline or the like to partially require high-frequency mechanical strength. Heat and quench to an HRC of about 58-63. W1 is a portion where the end of the inner race of the bearing (not shown) fitted to the grinding work W is abutted, and is processed after induction hardening so that the surface roughness becomes 6.3S. W2 is a portion where the tip of an annular dustproof seal attached to the outer race side of the bearing slides, and is processed after induction hardening so that the surface roughness becomes 12.5S. Further, W3 is a portion where the gear for wheel speed detection is press-fitted and fixed, so that quenching is not required, and a surface roughness of about 25S is sufficient. Thus, the hard portion grindstone portion 2 for grinding the hard portions W1 and W2 and the soft portion grindstone portion 3 for grinding the soft portion W3 are integrally formed and cut in the L direction. It is necessary to determine the grain size of the abrasive grains to be electrodeposited on each of the grindstone portions 2 and 3 of the composite grindstone 1 to be plunge-processed.

【0011】従来は、W1及びW2の部分は面粗度を上
げるため、砥粒の分級のメッシュが200/230の比
較的粒径の小さな砥粒を電着した砥石を使用して研削加
工している。一方、W3は目づまりを防止するため10
0/120の比較的粒径の大きな荒い砥粒を電着した砥
石を使用して研削加工している。砥粒の粒径の大小によ
り砥粒の摩耗量がどのように相違するかについて、図2
を参照して説明する。図2は縦軸に摩耗量を示し横軸に
研削ワークWの加工数を示し、また、aは100/12
0の砥粒の摩耗量を示し、bは140/170の砥粒の
摩耗量を示し、cは200/230の砥粒の摩耗量を示
す。図示のごとく、砥粒の粒径が大きくなるに伴って摩
耗量が増加する。即ち、砥粒の粒径が大きいほど砥粒の
摩耗速度が速いことがわかる。ところで、両砥石部2・
3を一体に形成した場合に問題となるのは両砥石部2・
3に電着された砥粒の摩耗速度の相違である。両砥石部
2・3に電着された砥粒の摩耗速度差が小さければ複合
砥石1自体の切込量を調節するだけでW1・W2とW3
との寸法を双方ともに公差範囲内に納めることができる
が、摩耗速度差が大きいため一方が速く摩耗すると複合
砥石1の切込量では調節できなくなるからである。従っ
て、従来のように軟質部用砥石部3にaに示す100/
120の砥粒を電着し、硬質部用砥石部2にcに示す2
00/230の砥粒を電着したのでは、図3のXに示す
ように、aに示す砥粒とcに示す砥粒との組み合わせで
は、両砥石部2・3の砥粒の摩耗速度差が大幅に異なる
ため、まだ十分に両砥石部2・3が使用に耐える状態で
あってもW1・W2部の寸法精度とW3部の寸法精度と
の両方を共に満たすことができなくなり、複合砥石1自
体がそれ以上使用できなくなる。この場合、軟質部用砥
石3に電着する砥石をaに示す100/120からbに
示す140/170に変更し粒径を小さくすることも考
えられるが、それでは軟質部用砥石部3が目づまりを起
こす。そこで本発明は、硬質部用砥石部2に電着する砥
粒をcに示す200/230からbに示す140/17
0に変更し砥粒の粒径を大きくすることとし、図3のY
に示すように、aに示す砥粒とbに示す砥粒との組み合
わせでは、両砥石部2・3に電着される砥粒の摩耗速度
差が小さくなるようにした。尚、このように砥粒の粒径
を大きくするとW1部及びW2部の面粗度は面粗度が保
証される範囲内で多少低下する。
Conventionally, in order to increase the surface roughness of the portions W1 and W2, a mesh for classifying the abrasive grains is ground by using a grindstone with electrodeposited abrasive grains having a relatively small grain size of 200/230. ing. On the other hand, W3 is 10 to prevent clogging.
Grinding is performed using a grindstone on which coarse abrasive grains having a relatively large grain size of 0/120 are electrodeposited. FIG. 2 shows how the wear amount of the abrasive grains differs depending on the size of the abrasive grains.
This will be described with reference to FIG. FIG. 2 shows the amount of wear on the vertical axis and the number of processed grinding works W on the horizontal axis, and a is 100/12.
0 indicates the wear amount of abrasive grains, b indicates the wear amount of 140/170 abrasive grains, and c indicates the wear amount of 200/230 abrasive grains. As shown in the figure, the wear amount increases as the grain size of the abrasive grains increases. That is, it can be seen that the larger the grain size of the abrasive grains, the faster the wear rate of the abrasive grains. By the way, both whetstones 2
The problem when forming 3 integrally is that both grinding stones 2
3 shows the difference in the wear rate of the electrodeposited abrasive grains. If the difference in wear rate between the abrasive grains electrodeposited on both grinding wheel portions 2 and 3 is small, only adjusting the cutting amount of the composite grinding wheel 1 itself, W1.W2 and W3
This is because both dimensions can be kept within the tolerance range, but if one of them wears fast due to a large difference in wear speed, it cannot be adjusted by the cutting depth of the composite grindstone 1. Therefore, as shown in FIG.
120 abrasive grains are electrodeposited, and 2
When the abrasive grains of 00/230 were electrodeposited, as shown by X in FIG. 3, in the combination of the abrasive grains shown by a and the abrasive grains shown by c, the wear rate of the abrasive grains of both whetstone parts 2.3 Since the difference is greatly different, it is impossible to satisfy both the dimensional accuracy of the W1 and W2 portions and the dimensional accuracy of the W3 portion even if both the grinding stone portions 2 and 3 are still in a state where they can be used sufficiently. The grindstone 1 itself can no longer be used. In this case, it is conceivable to change the grindstone to be electrodeposited on the soft portion grindstone 3 from 100/120 indicated by a to 140/170 indicated by b to reduce the particle size. Cause jams. Therefore, in the present invention, the abrasive grains to be electrodeposited on the grindstone portion 2 for the hard portion are changed from 200/230 indicated by c to 140/17 indicated by b.
0 to increase the grain size of the abrasive grains.
As shown in (2), in the combination of the abrasive grains shown in a and the abrasive grains shown in b, the difference in the wear rate between the abrasive grains electrodeposited on the two grindstone portions 2 and 3 was reduced. When the grain size of the abrasive grains is increased as described above, the surface roughness of the W1 portion and the W2 portion slightly decreases within a range where the surface roughness is guaranteed.

【0012】ところで、面粗度が低下するのは研削加工
開始直後の砥粒が尖っている間である。この間は砥粒の
摩耗速度が速く粒径の大小による摩耗速度差が大きくな
る範囲である。このため、図2に示すように、aに示す
100/120の砥粒を電着した軟質部用砥石3につい
ては初期摩耗量が大きいため、比較的多い個数Na加工
した場合の摩耗量に相当するTaに示す量整形(ツルー
イング)し、一方、bに示す140/170の砥粒を電
着した硬質部用砥石部2については初期摩耗量が大きく
ないので、Naより少ない個数Nb加工した場合の摩耗
量に相当するTbに示す量整形し、加工開始後における
摩耗量の推移がaとbとで略等しくなるように同期さ
せ、両砥石部2・3に電着された砥粒の摩耗速度差が更
に小さくなるようにした。尚、硬質部用砥石部2に電着
した砥粒についてTbに示す量整形することにより砥粒
の尖りが除去されW1部及びW2部について要求される
面粗度を満たすことができる。
By the way, the surface roughness decreases during the sharpening of the abrasive grains immediately after the start of grinding. During this period, the wear rate of the abrasive grains is high and the difference in the wear rate due to the size of the particle size is large. For this reason, as shown in FIG. 2, since the initial wear amount is large for the soft portion grindstone 3 on which the abrasive grains of 100/120 shown in a are electrodeposited as shown in FIG. The amount of shaping (truing) shown in Ta is performed, while the initial wear amount is not large for the hard portion grindstone portion 2 electrodeposited with 140/170 abrasive grains shown in b. The amount of wear indicated by Tb corresponding to the amount of wear of the workpiece is synchronized, and the changes in the amount of wear after the start of machining are synchronized so that a and b are substantially equal to each other. The speed difference was further reduced. By shaping the amount of the abrasive particles electrodeposited on the hard portion grinding wheel portion 2 by the amount indicated by Tb, the sharpness of the abrasive particles is removed, and the surface roughness required for the W1 portion and the W2 portion can be satisfied.

【0013】[0013]

【発明の効果】以上の説明から明らかなように、発明
によれば、軟質部を研削する砥粒の摩耗速度と硬質部を
研削する砥粒の摩耗速度との差が縮まり、複合砥石とし
ての寿命を延ばすことができる。
As apparent from the foregoing description, according to the present invention, the difference between the abrasive wear rate of grinding the wear rate and the rigid portion of the abrasive grain for grinding soft quality unit's lead, composite grindstone Life can be extended.

【0014】また、初期摩耗に相当する所定寸法を予め
整形除去しておくので摩耗速度の差を更に縮めることが
できる。
Further, a predetermined dimension corresponding to the initial wear is set in advance.
The difference in wear rate can be further reduced by shaping and removing .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合研削用電着砥石による研削状態を
示す図
FIG. 1 is a view showing a state of grinding with an electrodeposited grinding wheel for composite grinding according to the present invention.

【図2】砥粒の粒径による摩耗量の推移の相違を示す図FIG. 2 is a view showing a difference in a change in a wear amount depending on a grain size of abrasive grains.

【図3】各粒径相互間の砥粒の摩耗速度差の相違を示す
FIG. 3 is a view showing a difference in abrasion speed difference of abrasive grains between respective particle diameters.

【符号の説明】[Explanation of symbols]

1 複合砥石 2 硬質部用砥石部 3 軟質部用砥石部 W 研削ワーク WH 高周波焼入れ範囲 a メッシュ100/120の砥粒の摩耗量の推移曲線 b メッシュ140/170の砥粒の摩耗量の推移曲線 c メッシュ200/230の砥粒の摩耗量の推移曲線 X a,c間の摩耗速度差の推移曲線 Y a,b間の摩耗速度差の推移曲線 DESCRIPTION OF SYMBOLS 1 Composite whetstone 2 Whetstone part for hard parts 3 Whetstone part for soft parts W Grinding work WH Induction hardening range a Transition curve of the amount of wear of abrasive grains of mesh 100/120 b Transition curve of the amount of wear of abrasive grains of mesh 140/170 c Transition curve of wear amount of abrasive grains of mesh 200/230 X Transition curve of wear rate difference between a and c Ya Transition curve of wear rate difference between a and b

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−33270(JP,A) 特開 昭62−94265(JP,A) 特開 平3−294182(JP,A) 実開 平2−47173(JP,U) (58)調査した分野(Int.Cl.7,DB名) B24D 5/14 B24D 3/06 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-56-33270 (JP, A) JP-A-62-94265 (JP, A) JP-A-3-294182 (JP, A) 47173 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) B24D 5/14 B24D 3/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軟質部と硬質部とを備える研削ワーク
を同時研削する複合研削用電着砥石であって軟質部を研
削する砥石部と硬質部を研削する砥石部とが一体に形成
されたものにおいて、上記軟質部を研削する砥石部に電
着される砥粒の粒径を100/120メッシュとし硬質
部を研削する砥石部に電着される砥粒の粒径を140/
170メッシュとし、研削開始から所定量の加工を行う
間に砥粒が摩耗する初期摩耗量に相当する寸法だけ各砥
石部について砥石母材の外径を大きくしておき、初期摩
耗量に相当する所定寸法だけ大径となるように両砥石部
に砥粒を電着し、該所定寸法を整形除去して各砥石部の
外径を所定の外径寸法に仕上げたことを特徴とする複合
研削用電着砥石。
Claims: 1. An electrodeposition grinding wheel for compound grinding for simultaneously grinding a grinding work having a soft part and a hard part, wherein a grinding part for grinding a soft part and a grinding part for grinding a hard part are integrally formed. The grinding wheel for grinding the soft part
The abrasive grains having a grain size that is electrodeposited abrasive grains having a grain size that is wear grinding wheel portion for grinding the hard portion and 100/120 mesh 140 /
Performing a predetermined amount of processing from the start of grinding with 170 mesh
Each abrasive has a size corresponding to the initial amount of
For the stone part, increase the outside diameter of the grindstone base material and
Both whetstone parts so that the diameter becomes large by the specified dimension corresponding to the amount of wear
The abrasive grains are electrodeposited, the predetermined dimensions are removed by shaping, and
An electrodeposited grinding wheel for compound grinding, wherein the outer diameter is finished to a predetermined outer diameter .
JP6320676A 1994-12-22 1994-12-22 Electroplated grinding wheel for compound grinding Expired - Fee Related JP3060154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6320676A JP3060154B2 (en) 1994-12-22 1994-12-22 Electroplated grinding wheel for compound grinding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6320676A JP3060154B2 (en) 1994-12-22 1994-12-22 Electroplated grinding wheel for compound grinding

Publications (2)

Publication Number Publication Date
JPH08174431A JPH08174431A (en) 1996-07-09
JP3060154B2 true JP3060154B2 (en) 2000-07-10

Family

ID=18124094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6320676A Expired - Fee Related JP3060154B2 (en) 1994-12-22 1994-12-22 Electroplated grinding wheel for compound grinding

Country Status (1)

Country Link
JP (1) JP3060154B2 (en)

Also Published As

Publication number Publication date
JPH08174431A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP3323827B2 (en) Manufacturing method of precision parts
JP4874121B2 (en) Grinding wheel
JP3004988B2 (en) Polishing tool
US5951378A (en) Method for grinding bimetallic components
CN100357062C (en) Abrasive tool having a unitary arbor
US6224473B1 (en) Abrasive inserts for grinding bimetallic components
CN106346378B (en) Grinding wheel
US6030277A (en) High infeed rate method for grinding ceramic workpieces with silicon carbide grinding wheels
JP3060154B2 (en) Electroplated grinding wheel for compound grinding
US20230390842A1 (en) Method for cutting a gear, gear-cutting tool and gear-cutting machine
JP4545100B2 (en) Compound tool
JP4428681B2 (en) Single crystal diamond tool
CN107486794A (en) A kind of ceramic grooving is turned a millstone composite wheel and its processing method
JP2002263937A (en) Milling tool
JPH08168966A (en) Electrodeposition grinding wheel for cast iron
JPH079349A (en) Compound abrasive grain tool
JP2003053672A (en) Grinding wheel with shaft
JP3072366B2 (en) Manufacturing method of multi-blade grinding tool
JPH08197431A (en) Manufacture of electrodeposition grinding wheel for compound gringing
JP2003236763A (en) Tool for finishing
JP2510464B2 (en) Grinding method for soft metal
JP3127493B2 (en) How to fix a whetstone
JP2868988B2 (en) Spiral wheel manufacturing method
JP2003053674A (en) Grinding wheel with shaft
JP2889658B2 (en) Groove grinding method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees