JP3059185B2 - X-ray detection method and apparatus therefor - Google Patents

X-ray detection method and apparatus therefor

Info

Publication number
JP3059185B2
JP3059185B2 JP2845690A JP2845690A JP3059185B2 JP 3059185 B2 JP3059185 B2 JP 3059185B2 JP 2845690 A JP2845690 A JP 2845690A JP 2845690 A JP2845690 A JP 2845690A JP 3059185 B2 JP3059185 B2 JP 3059185B2
Authority
JP
Japan
Prior art keywords
ray
detector
detectors
incident
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2845690A
Other languages
Japanese (ja)
Other versions
JPH03233387A (en
Inventor
周作 三宅
Original Assignee
化成オプトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 化成オプトニクス株式会社 filed Critical 化成オプトニクス株式会社
Priority to JP2845690A priority Critical patent/JP3059185B2/en
Publication of JPH03233387A publication Critical patent/JPH03233387A/en
Application granted granted Critical
Publication of JP3059185B2 publication Critical patent/JP3059185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、X線の特性測定等のためにX線を検出する
方法及びその装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting X-rays for measuring X-ray characteristics and the like.

[従来の技術] 従来、X線管の管電圧やX線スペクトル等のX線の特
性を測定するためにX線検出装置が利用されている。こ
のX線検出装置の一例として、X線吸収板(X線フィル
ター)とX線検知素子との組合わせからなるX線検出部
にX線を照射してX線フィルターに対する透過率から照
射X線のX線管電圧やスペクトル等を測定するX線検出
装置(X線アナライザー)が知られている。該X線アナ
ライザーのX線検出部は、それぞれ入射するX線を蛍光
に変換するシンチレーターと該シンチレーターの前面に
配された厚さの異なるX線フィルター及び後面に配され
た光検出器との組合わせからなる複数のX線検出器を含
んで構成されている。そして、X線検出部に照射された
X線は各X線検出器ごとにそれぞれ独立に検出され、該
各光検出器の出力信号に所定の演算処理を施すことによ
り、照射X線の管電圧やスペクトル等の所望のX線に関
する情報が得られる(特開昭63−98583号公報及び特開
昭63−135885号公報等参照)。
[Related Art] Conventionally, an X-ray detector has been used to measure X-ray characteristics such as a tube voltage of an X-ray tube and an X-ray spectrum. As an example of the X-ray detecting device, an X-ray detecting unit composed of a combination of an X-ray absorbing plate (X-ray filter) and an X-ray detecting element is irradiated with X-rays, and the X-ray irradiation is performed based on the transmittance of the X-ray filter. An X-ray detection device (X-ray analyzer) for measuring an X-ray tube voltage, a spectrum, and the like of an X-ray is known. The X-ray detector of the X-ray analyzer includes a set of a scintillator that converts incident X-rays into fluorescence, an X-ray filter having a different thickness disposed on the front surface of the scintillator, and a photodetector disposed on the rear surface. It is configured to include a plurality of X-ray detectors that are combined. The X-rays radiated to the X-ray detector are detected independently for each X-ray detector, and the output signals of the respective photodetectors are subjected to a predetermined arithmetic processing so that a tube voltage of the irradiated X-rays is obtained. Information on desired X-rays such as spectrum and spectrum can be obtained (see JP-A-63-98583 and JP-A-63-135885).

[発明が解決しようとする課題] ところで、上記の様な従来のX線アナライザーにおい
ては、入射X線の照射線量や照射時間等の測定には支障
がないものの、入射X線の管電圧やスペクトル等を測定
する場合、X線検出部とX線の線源との距離が変わるこ
とによって測定結果に違いが生ずる場合があり精度の点
で不安定であるという問題があり、改良が望まれてい
た。
[Problems to be Solved by the Invention] In the conventional X-ray analyzer as described above, although there is no problem in measuring the irradiation dose and irradiation time of the incident X-ray, the tube voltage and spectrum of the incident X-ray are not affected. For example, when measuring the distance between the X-ray detecting unit and the X-ray source, there is a problem that the measurement result may be different, and there is a problem that the accuracy is unstable in terms of accuracy, and improvement is desired. Was.

そこで、本発明は、上記従来技術の問題点に鑑み、X
線アナライザーを用いてX線の特性測定を行うに際し、
そのX線検出部とX線源との距離に依存しないでX線特
性を精度良好に測定する方法及びその装置を提供するこ
とを目的とする。
Therefore, the present invention has been made in view of the above-mentioned problems of the prior art, and
When measuring X-ray characteristics using a X-ray analyzer,
An object of the present invention is to provide a method and an apparatus for accurately measuring X-ray characteristics without depending on the distance between the X-ray detection unit and the X-ray source.

[課題を解決するための手段] 本発明によれば、上記目的を達成するものとして、 入射X線を蛍光に変換するシンチレーターと該シンチ
レーターの後方に配された前記蛍光検出のための光検出
器と前記シンチレーターの前方に配されたそれぞれ厚さ
の異なるX線フィルターとを有する複数のX線検出器を
各X線検出器のX線入射面が実質上同一平面上に位置す
るようにして並列配置してなるX線検出部と、前記各X
線検出器からの出力を演算して入射X線の特性を求める
演算処理部とをもつX線検出装置を用いてX線を検出す
るに際し、前記入射X線のビームを前記複数のX線検出
器のうちで最も厚みの大なるX線フィルターを有するX
線検出器の前記X線入射面に対して垂直となるように入
射させることを特徴とする、X線検出方法、 が提供される。
[Means for Solving the Problems] According to the present invention, a scintillator for converting incident X-rays into fluorescence and a photodetector arranged behind the scintillator for detecting the fluorescence are provided as objects for achieving the above object. And a plurality of X-ray detectors each having an X-ray filter having a different thickness disposed in front of the scintillator so that the X-ray incidence planes of the respective X-ray detectors are located substantially on the same plane. An X-ray detection unit arranged and
When detecting an X-ray using an X-ray detection device having an arithmetic processing unit for calculating the output of the X-ray detector to obtain the characteristic of the incident X-ray, the plurality of X-rays are detected by detecting the beam of the incident X-ray. X having the thickest X-ray filter in the vessel
An X-ray detection method, wherein the X-ray is incident so as to be perpendicular to the X-ray incidence surface of the X-ray detector.

また、本発明によれば、上記目的を達成するものとし
て、 以上のようなX線検出方法に使用されるX線検出装置
であって、前記複数のX線検出器のうちで最も厚みの大
なるX線フィルターを有するX線検出器が最も中央より
に配置されていることを特徴とする、X線検出装置、 が提供され、更に、 以上のようなX線検出方法に使用されるX線検出装置
であって、前記複数のX線検出器のうちで最も厚みの大
なるX線フィルターを有するX線検出器の位置を示すマ
ークが付されていることを特徴とする、X線検出装置、 が提供される。
According to the present invention, there is provided an X-ray detection apparatus used in the above-described X-ray detection method, which achieves the above object, and has the largest thickness among the plurality of X-ray detectors. An X-ray detector having an X-ray filter having the X-ray filter disposed at the most central position, further comprising: an X-ray detector used in the above-described X-ray detection method. An X-ray detection device, wherein a mark indicating the position of the X-ray detector having the thickest X-ray filter among the plurality of X-ray detectors is attached. , Are provided.

[実施例] 以下、図面を参照しながら本発明の具体的実施例を説
明する。
EXAMPLES Hereinafter, specific examples of the present invention will be described with reference to the drawings.

第1図は本発明方法に使用されるX線アナライザーの
一実施例を示すブロック図であり、第2図は該装置のX
線検出部を説明するための概略図である。
FIG. 1 is a block diagram showing an embodiment of an X-ray analyzer used in the method of the present invention, and FIG.
It is a schematic diagram for explaining a line detection part.

X線アナライザーは、第1図に示す様に、入射X線を
検出するX線検出部1と、該X線検出部からの出力信号
を所望のX線特性値に変換する演算処理部2と、該X線
特性値を表示する表示部6とからなる。演算処理部2は
更に、X線検出部1からの信号を増幅する増幅部3と、
該増幅部で得られたアナログ情報信号をデジタル化する
AD変換部4と、ここでデジタル化された情報信号を演算
し記憶する、演算・記憶部5とから構成されている。
As shown in FIG. 1, the X-ray analyzer includes an X-ray detector 1 for detecting incident X-rays, and an arithmetic processor 2 for converting an output signal from the X-ray detector into a desired X-ray characteristic value. And a display unit 6 for displaying the X-ray characteristic value. The arithmetic processing unit 2 further includes an amplification unit 3 that amplifies a signal from the X-ray detection unit 1;
Digitizing the analog information signal obtained by the amplifying unit
It comprises an AD conversion unit 4 and a calculation / storage unit 5 for calculating and storing the information signal digitized here.

X線検出部1は、第2図に示す様に、隔壁により区画
された複数の小室を有する外囲器7の各小室内に、基準
X線検出器1s及び複数のX線検出器1a,1bが収容されて
構成されたものである。図示されている様に、X線検出
器1s,1a,1bは並列配置されている。基準X線検出器1s
は、入射X線Lをその入射量に比例する量の蛍光に変換
するシンチレーターたる蛍光板8sと、この蛍光板に密着
してX線入射面と反対の面に設けられ前記蛍光を検出す
る光検出器10sとからなる。X線検出器1a,1bは、それぞ
れ入射X線Lをその入射量に比例する量の蛍光に変換す
るシンチレーターたる蛍光板8a,8bと、これら蛍光板の
X線入射面の前にそれぞれ設けられた厚みの異なるX線
フィルター9a,9b(これらの厚さをそれぞれta,tbとすれ
ば、本実施例ではta<tb)と、前記蛍光板のX線入射面
と反対の面に密着させてそれぞれ設けられ前記蛍光を検
出する光検出器10a,10bとからなる。
As shown in FIG. 2, the X-ray detector 1 includes a reference X-ray detector 1s and a plurality of X-ray detectors 1a, 2a in a small chamber of an envelope 7 having a plurality of small chambers partitioned by partition walls. 1b is accommodated and configured. As shown, the X-ray detectors 1s, 1a, 1b are arranged in parallel. Reference X-ray detector 1s
Is a fluorescent plate 8s as a scintillator for converting incident X-rays L into an amount of fluorescent light proportional to the amount of incident light, and a photodetector provided on the surface opposite to the X-ray incident surface in close contact with the fluorescent plate and detecting the fluorescent light. 10s. The X-ray detectors 1a and 1b are respectively provided with fluorescent plates 8a and 8b serving as scintillators for converting incident X-rays L into fluorescent light in an amount proportional to the amount of incident light, and thicknesses provided in front of the X-ray incident surfaces of these fluorescent plates. X-ray filters 9a and 9b having different thicknesses (where t a and t b are respectively assumed to be t a and t b in this embodiment, t a <t b ) and the surface opposite to the X-ray incidence surface of the fluorescent plate. And photodetectors 10a and 10b for detecting the fluorescence.

尚、本実施例において、前記X線検出器は基準X線検
出器1sを含めて3個設けたが、X線アナライザーの機能
や精度を向上させるためにはX線検出部1に配設される
X線検出器の数は多いほどよい。本発明では、X線検出
器は最低2つ設ける必要があり、実用上は3個以上設け
るのが好ましい。X線管の管電圧を測定する場合には、
前記基準X線検出器1sは必ずしも必要ではない。また、
演算処理部2を構成する増幅部3及びAD変換部4はX線
検出部1に配置された各X線検出器1s,1a,1bに対してそ
れぞれ独立に設けられる。
In the present embodiment, three X-ray detectors including the reference X-ray detector 1s are provided. However, in order to improve the function and accuracy of the X-ray analyzer, they are provided in the X-ray detector 1. The greater the number of X-ray detectors, the better. In the present invention, it is necessary to provide at least two X-ray detectors, and in practice, it is preferable to provide three or more X-ray detectors. When measuring the tube voltage of an X-ray tube,
The reference X-ray detector 1s is not always necessary. Also,
The amplifying unit 3 and the AD converting unit 4 constituting the arithmetic processing unit 2 are independently provided for each of the X-ray detectors 1s, 1a, 1b arranged in the X-ray detecting unit 1.

外囲器7は各X線検出器1s,1a,1bの保護と外光の侵入
及び他の蛍光板からの蛍光の漏洩の防止のためのもので
あり、X線吸収が少なく、所望の硬度を有し、外光及び
蛍光を透過させない材質が選択され、例えば着色アクリ
ル板やベークライト板等のプラスチックスが用いられ
る。
The envelope 7 is for protecting each of the X-ray detectors 1s, 1a, 1b and for preventing invasion of external light and leakage of fluorescent light from other fluorescent screens. A material that does not transmit external light and fluorescence is selected, and for example, plastics such as a colored acrylic plate and a bakelite plate are used.

X線フィルター9a,9bとしては、X線吸収能が大き
く、数mm以下の厚さのものであっても厚さ変化に対して
X線透過率変化の大きい材質が好ましく、例えばCu,Al,
Sn,Pb等の金属板が好適に用いられる。
As the X-ray filters 9a and 9b, a material having a large X-ray absorption capacity and a large change in X-ray transmittance with respect to a change in thickness even if the thickness is several mm or less is preferable. For example, Cu, Al,
A metal plate such as Sn or Pb is preferably used.

蛍光板8s,8a,8bとしては、CaWO4,Bi4Ge3O12,ZnS:Ag,B
aFCl:Eu,LaOBr:Tm,(Zn,Cd)S:Ag,Y2O2S:Tb,Gd2O2S:Tb,
Gd2O2S:Pr等の、X線照射により高効率に発光するX線
用蛍光体を結合剤樹脂中に分散させてなる蛍光体塗布液
を紙やプラスチックス等の支持体上に塗布し乾燥させて
支持体上に蛍光体層を形成することによって得た蛍光
板、またはガラス等の基板上に蛍光体塗布液を塗布し乾
燥させて得られた蛍光体層を該基板から剥離して得た自
己支持型蛍光板が使用される。
As the fluorescent plates 8s, 8a, 8b, CaWO 4 , Bi 4 Ge 3 O 12 , ZnS: Ag, B
aFCl: Eu, LaOBr: Tm, (Zn, Cd) S: Ag, Y 2 O 2 S: Tb, Gd 2 O 2 S: Tb,
Gd 2 O 2 S: A phosphor coating solution made by dispersing an X-ray phosphor, such as Pr, which emits light with high efficiency by X-ray irradiation in a binder resin, is coated on a support such as paper or plastics. A phosphor layer obtained by forming a phosphor layer on a support by drying and drying, or a phosphor coating solution is applied to a substrate such as glass and dried, and the resulting phosphor layer is peeled off from the substrate. The obtained self-supporting fluorescent plate is used.

光検出器10s,10a,10bとしては、蛍光板8s,8a,8bが発
する蛍光を電気的信号に変換するフォトダイオードや光
電子増倍管等の光電変換素子が使用される。X線検出部
1の容量を小さくすることができ製造コストを低く押え
ることができる等の点から、フォトダイオードを用いる
のが好ましい。
As the photodetectors 10s, 10a, and 10b, photoelectric conversion elements such as photodiodes and photomultiplier tubes that convert fluorescent light emitted from the fluorescent plates 8s, 8a, and 8b into electric signals are used. It is preferable to use a photodiode from the viewpoint that the capacity of the X-ray detection unit 1 can be reduced and the manufacturing cost can be reduced.

上述のX線アナライザーを用いて特性測定のためX線
を検出するには被測定X線をX線アナライザーのX線検
出部1に照射するが、X線はX線管から放射状に放出さ
れるため、該X線管とX線検出部1との距離やX線の照
射野内におけるX線検出器の位置によって被測定X線の
X線ビームとX線検出部1の中に配置されている各X線
検出器1s,1a,1bとのなす角度が変化する。
To detect X-rays for characteristic measurement using the above-described X-ray analyzer, the X-rays to be measured are irradiated on the X-ray detector 1 of the X-ray analyzer, and the X-rays are radially emitted from the X-ray tube. Therefore, depending on the distance between the X-ray tube and the X-ray detection unit 1 and the position of the X-ray detector in the X-ray irradiation field, the X-ray beam of the measured X-ray and the X-ray detection unit 1 are arranged. The angle between each of the X-ray detectors 1s, 1a, and 1b changes.

そこで、X線アナライザーのX線検出部1のX線被照
射表面に、その内部に配置されている複数のX線検出器
のうちで厚みが最大のX線フィルターを有するX線検出
器(以下、これを「メインX線検出器」という:第2図
の例ではX線検出器1b)が配置されている位置をマーク
しておき、被測定X線を照射する際にX線検出部1のマ
ークが付された部分(メインX線検出器位置)の面が被
測定X線ビームの入射方向とほぼ直交する様に、X線検
出部1をセットする。
Therefore, an X-ray detector having a thickest X-ray filter among a plurality of X-ray detectors disposed inside the X-ray irradiated surface of the X-ray detector 1 of the X-ray analyzer (hereinafter referred to as “X-ray detector”). This is called a "main X-ray detector": in the example of FIG. 2, the position where the X-ray detector 1b) is arranged is marked, and the X-ray detector 1 The X-ray detector 1 is set such that the surface of the portion marked with the mark (main X-ray detector position) is substantially perpendicular to the incident direction of the measured X-ray beam.

尚、以上の様にマークを付する代わりに、またはそれ
と併用して、メインX線検出器を最も中央よりに配置し
ておき、被測定X線を照射する際にX線検出部1の面の
中央が被測定X線ビームの入射方向とほぼ直交する様
に、X線検出部1をセットすることもできる。
Instead of or in addition to the marking as described above, the main X-ray detector is arranged at the most central position, and the surface of the X-ray detector 1 is irradiated when the measured X-ray is irradiated. The X-ray detector 1 can be set so that the center of the X-ray is substantially orthogonal to the incident direction of the measured X-ray beam.

この場合、一般にはX線源から放射状に放射されるX
線の直進ビーム(照射野のほぼ中心を通るX線ビーム)
をX線検出部1内のメインX線検出器にほぼ垂直に入射
させる様セットするが、前記直進ビーム以外のX線ビー
ムであっても、これをX線検出部1内のメインX線検出
器にほぼ垂直に入射させる様セットすればよい。
In this case, generally, X radiated from the X-ray source
Straight beam of X-ray (X-ray beam passing through the center of irradiation field)
Is set so as to be substantially perpendicularly incident on the main X-ray detector in the X-ray detection unit 1. However, even if the X-ray beam is other than the straight beam, it is detected by the main X-ray detection unit in the X-ray detection unit 1. What is necessary is just to set so that it may be made to enter a vessel almost perpendicularly.

X線検出部1によって検出された被測定X線の情報信
号は、光源変換後に増幅部3で増幅され、更にAD変換部
4でデジタル化された後、演算・記憶部5において一旦
記憶されるとともに予めプログラミングされた手順に従
って所定の演算処理が施され、かくして被測定X線を発
生させているX線発生装置の管電圧や被測定X線のエネ
ルギー分布や半価層等の被測定X線に関する所望の情報
が求められ、表示部6に表示される。
The information signal of the measured X-ray detected by the X-ray detection unit 1 is amplified by the amplification unit 3 after light source conversion, digitized by the AD conversion unit 4, and temporarily stored in the calculation / storage unit 5. In addition, predetermined arithmetic processing is performed according to a procedure programmed in advance, and thus the X-ray to be measured, such as the tube voltage of the X-ray generator, the energy distribution of the X-ray to be measured, and the half-value layer, etc. Desired information regarding the information is obtained and displayed on the display unit 6.

尚、X線発生装置には、高電圧発生方式により、単相
整流方式、三相6パルス整流方式、平滑方式、インバー
ター方式等の多くの種類があり、高電圧発生方式の違い
に起因して、各装置から発生するX線の出力波形(X線
強度と時間との関係)がそれぞれ異なる。これら高電圧
発生方式の異なるX線発生装置における上記測定たとえ
ば管電圧の測定では、同一の管電圧がX線管に印加され
ても、検出されるX線管の管電圧の測定値が異なる場合
がある。
There are many types of X-ray generators, such as a single-phase rectification system, a three-phase six-pulse rectification system, a smoothing system, and an inverter system, depending on the high-voltage generation system. The output waveforms (relationship between X-ray intensity and time) of X-rays generated from each device are different from each other. In the above-described measurement, for example, the tube voltage measurement in the X-ray generators having different high voltage generation methods, even if the same tube voltage is applied to the X-ray tube, the detected tube voltage measurement values of the X-ray tube are different. There is.

そこで、この様な弊害を除去するため、各X線検出器
の光検出器で検出し、これを光電変換して増幅部3で増
幅する際、被測定X線の出力波形に対応する光検出器の
出力波形(光検出器から出力される光電流と時間との関
係)のなかの特定の周波数成分を取除く処理を施すこと
ができる。
Therefore, in order to eliminate such adverse effects, when the light is detected by the photodetector of each X-ray detector, and this is photoelectrically converted and amplified by the amplifier 3, the light detection corresponding to the output waveform of the measured X-ray is performed. A process for removing a specific frequency component from the output waveform of the detector (the relationship between the photocurrent output from the photodetector and time) can be performed.

このためには、例えば、第3図に示す様に、光検出器
10a,10bの各出力信号を増幅する増幅回路3a,3b中に特定
の高周波数成分をカットするローパスフィルター回路を
組込んでおき、それぞれの増幅回路3a,3b中のコンデン
サー容量CaとCbとの比(Ca/Cb)を変化させてみて、被
測定X線の出力波形の如何によらず、管電圧の測定値が
一定となる様な特定のCa/Cb値に設定する等の方法によ
り、被測定X線の出力波形に対応する各X線検出器の出
力周波数特性を調整する様にすればよい。尚、この調整
の際には、予め管電圧の判明している異種高電圧発生方
式のX線発生装置を用いる。
For this purpose, for example, as shown in FIG.
A low-pass filter circuit that cuts a specific high-frequency component is incorporated in the amplifier circuits 3a and 3b that amplify the respective output signals of 10a and 10b, and the capacitances Ca and Cb in the respective amplifier circuits 3a and 3b are included. By changing the ratio (Ca / Cb), regardless of the output waveform of the X-ray to be measured, by setting a specific Ca / Cb value such that the measured value of the tube voltage becomes constant, What is necessary is just to adjust the output frequency characteristic of each X-ray detector corresponding to the output waveform of the measured X-ray. At the time of this adjustment, an X-ray generator of a heterogeneous high voltage generation type whose tube voltage is known in advance is used.

第4図は銅板からなるX線フィルターと、ZnS:Ag蛍光
体からなる蛍光板を構成部材として使用した第1のX線
検出器(メインX線検出器)と、ZnS:Ag蛍光体からなる
蛍光板を構成部材として使用した(X線フィルターを用
いない)第2のX線検出器とを有するX線アナライザー
を用い、X線管とX線アナライザーのX線検出部との距
離を40cm〜150cmにわたって変化させて、同一条件で動
作しているX線発生装置の管電圧を測定した結果を示す
グラフである。第4図において、A群の曲線及びB群の
曲線は被測定X線を発生させているX線管の管電圧の設
定を異ならせた場合である。実線及び破線の曲線は被測
定X線のビームをX線検出部のメインX線検出器に対し
てそれぞれ垂直に入射させた場合及び約3度傾けて入射
させた場合である。
FIG. 4 shows an X-ray filter made of a copper plate, a first X-ray detector (main X-ray detector) using a phosphor plate made of ZnS: Ag phosphor as a constituent member, and a phosphor plate made of ZnS: Ag phosphor. Using a X-ray analyzer having a second X-ray detector (without using an X-ray filter) using as a constituent member, the distance between the X-ray tube and the X-ray detector of the X-ray analyzer over a range of 40 cm to 150 cm 9 is a graph showing the results of measuring the tube voltage of an X-ray generator operating under the same conditions while changing the tube voltage. In FIG. 4, the curve of the group A and the curve of the group B are obtained when the setting of the tube voltage of the X-ray tube generating the measured X-ray is changed. The solid and dashed curves represent the case where the beam of the X-ray to be measured is vertically incident on the main X-ray detector of the X-ray detector and the case where the beam is incident at an angle of about 3 degrees.

第4図から分かる様に、X線管にかかる管電圧がいず
れの場合にも、被測定X線のビームをX線検出部のメイ
ンX線検出器に対して斜めに入射させると(破線で示さ
れている曲線)X線管とX線アナライザーのX線検出部
との距離が変わると管電圧の測定値が変化するのに対
し、被測定X線のビームをX線検出部のメインX線検出
器に対して垂直に入射させると(実線で示されている曲
線)、X線管とX線アナライザーのX線検出部との距離
が変わっても管電圧の測定値が変化しない。
As can be seen from FIG. 4, regardless of the tube voltage applied to the X-ray tube, if the beam of the measured X-ray is obliquely incident on the main X-ray detector of the X-ray detection unit (indicated by a broken line). Curve shown) When the distance between the X-ray tube and the X-ray detector of the X-ray analyzer changes, the measured value of the tube voltage changes, whereas the beam of the X-ray to be measured is changed to the main X-ray of the X-ray detector. When the light is perpendicularly incident on the X-ray detector (the curve shown by the solid line), the measured value of the tube voltage does not change even if the distance between the X-ray tube and the X-ray detector of the X-ray analyzer changes.

図示はしていないが、更に管電圧の設定を種々変化さ
せた場合も同様の傾向が認められた。
Although not shown, the same tendency was observed when the tube voltage was further varied.

また、X線アナライザーを用いたX線管の管電圧測定
以外に被測定X線のスペクトル分布や半価層の測定の場
合も、被測定X線ビームをX線検出器のメインX線検出
器に対して垂直に入射する様にして測定すると、X線管
とX線アナライザーのX線検出部との距離が変化しても
測定値の変動が少ないことが認められた。
In addition to measuring the X-ray tube voltage using an X-ray analyzer, in addition to measuring the spectral distribution of the X-ray to be measured and the half-value layer, the X-ray beam to be measured is also used as the main X-ray detector of the X-ray detector. When the measurement was carried out so as to be perpendicular to the X-ray, it was recognized that the change in the measured value was small even if the distance between the X-ray tube and the X-ray detector of the X-ray analyzer was changed.

尚、本発明は、複数のX線検出器のうちの1つがX線
フィルターの厚さ0即ちX線フィルターなしである場合
をも含む。
The present invention also includes a case where one of the plurality of X-ray detectors has a thickness of the X-ray filter of 0, that is, no X-ray filter.

[発明の効果] 以上の様に、本発明によれば、X線フィルターとX線
検知素子との組合わせを複数有するX線検出部をもつX
線アナライザーを用いてX線の特性測定を行うに際し、
そのX線検出部とX線源との距離に依存しないでX線特
性を精度良好に測定することができる。
[Effects of the Invention] As described above, according to the present invention, an X-ray having an X-ray detection unit having a plurality of combinations of an X-ray filter and an X-ray detection element is provided.
When measuring X-ray characteristics using a X-ray analyzer,
The X-ray characteristics can be measured with good accuracy without depending on the distance between the X-ray detection unit and the X-ray source.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法に使用されるX線アナライザーの一
実施例を示すブロック図であり、第2図は該装置のX線
検出部を説明するための概略図である。 第3図は本発明のX線検出装置の回路構成例を示す図で
ある。 第4図はX線管とX線アナライザーのX線検出部との距
離変化に対するX線発生装置の管電圧変化を示すグラフ
である。 1s,1a,1b:X線検出部、 2:演算処理部、 3s,3a,3b:増幅回路、 8s,8a,8b:蛍光板、 9a,9b:X線フィルター、 10s,10a,10b:光検出器。
FIG. 1 is a block diagram showing an embodiment of an X-ray analyzer used in the method of the present invention, and FIG. 2 is a schematic diagram for explaining an X-ray detecting section of the apparatus. FIG. 3 is a diagram showing an example of a circuit configuration of the X-ray detection device of the present invention. FIG. 4 is a graph showing a change in the tube voltage of the X-ray generator with respect to a change in the distance between the X-ray tube and the X-ray detector of the X-ray analyzer. 1s, 1a, 1b: X-ray detection unit, 2: Operation processing unit, 3s, 3a, 3b: amplification circuit, 8s, 8a, 8b: fluorescent plate, 9a, 9b: X-ray filter, 10s, 10a, 10b: light detection vessel.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入射X線を蛍光に変換するシンチレーター
と該シンチレーターの後方に配された前記蛍光検出のた
めの光検出器と前記シンチレーターの前方に配されたそ
れぞれ厚さの異なるX線フィルターとを有する複数のX
線検出器を各X線検出器のX線入射面が実質上同一平面
上に位置するようにして並列配置してなるX線検出部
と、前記各X線検出器からの出力を演算して入射X線の
特性を求める演算処理部とをもつX線検出装置を用いて
X線を検出するに際し、前記入射X線のビームを前記複
数のX線検出器のうちで最も厚みの大なるX線フィルタ
ーを有するX線検出器の前記X線入射面に対して垂直と
なるように入射させることを特徴とする、X線検出方
法。
1. A scintillator for converting incident X-rays into fluorescence, a photodetector disposed behind the scintillator for detecting the fluorescence, and an X-ray filter having a different thickness disposed in front of the scintillator. Xs with
X-ray detectors in which the X-ray detectors are arranged in parallel so that the X-ray incidence surfaces of the X-ray detectors are located on substantially the same plane, and the outputs from the X-ray detectors are calculated. When detecting X-rays using an X-ray detection device having an arithmetic processing unit for calculating characteristics of incident X-rays, the beam of the incident X-rays is converted into an X-ray having the largest thickness among the plurality of X-ray detectors. An X-ray detection method, wherein the X-ray is incident so as to be perpendicular to the X-ray incidence surface of an X-ray detector having a line filter.
【請求項2】請求項1に記載のX線検出方法に使用され
るX線検出装置であって、前記複数のX線検出器のうち
で最も厚みの大なるX線フィルターを有するX線検出器
が最も中央よりに配置されていることを特徴とする、X
線検出装置。
2. An X-ray detection device used in the X-ray detection method according to claim 1, wherein the X-ray detection device has an X-ray filter having the largest thickness among the plurality of X-ray detectors. X is characterized in that the vessel is arranged most centrally,
Line detector.
【請求項3】請求項1に記載のX線検出方法に使用され
るX線検出装置であって、前記複数のX線検出器のうち
で最も厚みの大なるX線フィルターを有するX線検出器
の位置を示すマークが付されていることを特徴とする、
X線検出装置。
3. An X-ray detection device used in the X-ray detection method according to claim 1, wherein the X-ray detection device has an X-ray filter having the largest thickness among the plurality of X-ray detectors. Characterized by a mark indicating the position of the container,
X-ray detector.
JP2845690A 1990-02-09 1990-02-09 X-ray detection method and apparatus therefor Expired - Lifetime JP3059185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2845690A JP3059185B2 (en) 1990-02-09 1990-02-09 X-ray detection method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2845690A JP3059185B2 (en) 1990-02-09 1990-02-09 X-ray detection method and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH03233387A JPH03233387A (en) 1991-10-17
JP3059185B2 true JP3059185B2 (en) 2000-07-04

Family

ID=12249170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2845690A Expired - Lifetime JP3059185B2 (en) 1990-02-09 1990-02-09 X-ray detection method and apparatus therefor

Country Status (1)

Country Link
JP (1) JP3059185B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104207794B (en) * 2014-09-25 2017-01-18 中测测试科技有限公司 Mammography multi-parameter sensor array and measuring method thereof

Also Published As

Publication number Publication date
JPH03233387A (en) 1991-10-17

Similar Documents

Publication Publication Date Title
CA2309097C (en) A method and a device for planar beam radiography and a radiation detector
Moses et al. Cerium fluoride, a new fast, heavy scintillator
Yguerabide Fast and accurate method for measuring photon flux in the range 2500–6000 Å
JP2003248061A (en) Scintillator for detection neutron, and neutron detector using the same
JPS6052413B2 (en) Radiation image information reading device
KR100806068B1 (en) Radiation detection apparatus and method
US4937455A (en) Position-sensitive director
Doke et al. Scintillation yields by relativistic heavy ions and the relation between ionization and scintillation in liquid argon
Né et al. Characterization of an image-plate detector used for quantitative small-angle-scattering studies
US5171998A (en) Gamma ray imaging detector
US4363969A (en) Light switched segmented tomography detector
Marshall et al. The Photomultiplier X‐Ray Detector
JP3059185B2 (en) X-ray detection method and apparatus therefor
JP3894351B2 (en) Radiation measuring apparatus using stimulable phosphor and measuring method thereof
Kishimoto et al. Properties of a YAP: Ce detector for high-energy X-ray counting experiments
JP3139558B2 (en) X-ray tube voltage measuring device and adjustment method thereof
JPH07122670B2 (en) X-ray spectrum measuring device
JPH06176887A (en) X-ray tube voltage measuring device
JP3864387B2 (en) Radiation measurement method using photostimulable phosphor
Ku et al. Properties of an imaging gas scintillation proportional counter
Bonfiglioli et al. Apparatus for thermoluminescence measurements
Rowlands et al. Detective quantum efficiency of x‐ray image intensifiers: Comparison of scintillation spectrum and rms methods
JP3112192B2 (en) X-ray analyzer
Johnson et al. Quantitative assessment of a parallel detection system for energy‐loss spectrometry
JPS62222599A (en) X-ray tube voltage measuring unit