JP3058952B2 - Method of treating boric acid-containing liquid - Google Patents

Method of treating boric acid-containing liquid

Info

Publication number
JP3058952B2
JP3058952B2 JP3233085A JP23308591A JP3058952B2 JP 3058952 B2 JP3058952 B2 JP 3058952B2 JP 3233085 A JP3233085 A JP 3233085A JP 23308591 A JP23308591 A JP 23308591A JP 3058952 B2 JP3058952 B2 JP 3058952B2
Authority
JP
Japan
Prior art keywords
membrane module
stage
liquid
boric acid
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3233085A
Other languages
Japanese (ja)
Other versions
JPH0568974A (en
Inventor
綱昭 藤岡
隆 中原
曠世 松本
督 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3233085A priority Critical patent/JP3058952B2/en
Publication of JPH0568974A publication Critical patent/JPH0568974A/en
Application granted granted Critical
Publication of JP3058952B2 publication Critical patent/JP3058952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、原子力プラント(PW
R)における液体廃棄物のような硼酸含有廃液並びに使
用済燃料ピット水のような硼酸含有液の処理方法に関す
る。
The present invention relates to a nuclear power plant (PW).
R) and a method for treating a boric acid-containing liquid such as spent fuel pit water.

【0002】[0002]

【従来の技術】逆浸透膜(R/O膜)を利用した硼酸含有
液の処理方法の従来の技術として、図3に示すものが挙
げられる。この方法においては、硼酸含有液を逆浸透膜
モジュール(以下、R/O膜モジュールと記載する)(15)
にて処理する前に、R/O膜モジュールの膜の目詰まり
を防ぐために、フィルタにて前処理し、硼酸含有液中の
固形分が取り除かれる。この前処理は、硼酸含有液中の
大きな固形分をカートリッジフィルタ(11)によって除去
し、次に、限外濾過フィルタ給液ポンプ(12)によって、
圧力を数kg/cm2とし、限外濾過フィルタモジュー
ル(以下、UFモジュールと記載する)(13)に通水し、こ
のUFモジュール(13)による濾過で、小さな固形分が除
去される。 UFモジュール(13)の一次側は、固形分を多く含む濃縮
廃液となり、放射性廃棄物処理系へ流される。
2. Description of the Related Art FIG. 3 shows a conventional technique for treating a boric acid-containing liquid using a reverse osmosis membrane (R / O membrane). In this method, a boric acid-containing liquid is supplied to a reverse osmosis membrane module (hereinafter referred to as an R / O membrane module) (15)
Before the treatment, the solid content in the boric acid-containing liquid is removed by performing a pretreatment with a filter in order to prevent clogging of the membrane of the R / O membrane module. This pretreatment removes large solids in the boric acid-containing liquid by the cartridge filter (11), and then by the ultrafiltration filter liquid supply pump (12).
At a pressure of several kg / cm 2 , water is passed through an ultrafiltration filter module (hereinafter, referred to as a UF module) (13), and small solids are removed by filtration with the UF module (13). The primary side of the UF module (13) becomes a concentrated waste liquid containing a large amount of solids, and flows to the radioactive waste treatment system.

【0003】硼酸含有液は逆浸透膜モジュール給液ポン
プ(14)によって圧力を数十kg/cm2に加圧され、R
/O膜モジュール(15)のR/O膜の一次側に逆浸透圧を
掛ける。R/O膜モジュール(15)のR/O膜の一次側圧
力によって、硼酸含有液中の水は逆浸透圧の作用が生
じ、R/O膜を透過して二次側に移行するが、シリカ、
塩化物イオン、有機物等の不純物は、分子サイズが大き
いためにあまり浸透しないで一次側に残存し、放射性廃
棄物処理系に進む。硼酸含有液中の硼酸分はR/O膜モ
ジュール(15)のR/O膜の種類、運転条件を適宜設定す
ることにより二次側に透過する特性をもっている。従っ
て、R/O膜モジュール(15)の膜から透過した透過液
は、ある程度不純物が除去された状態の硼酸を含む水溶
液となる。すなわち、R/O膜モジュール(15)へ供給し
た硼酸含有液中の硼酸は、R/O膜の二次側へ透過し、
硼酸液として回収される。一方、R/O膜モジュール(1
5)のR/O膜の一次側に残存する液は、シリカ、塩化物
イオン等の不純物濃度が高くなり、高不純物濃度廃液と
して放射性廃棄物処理系へ流される。
[0003] The boric acid-containing solution is pressurized to several tens of kg / cm 2 by a reverse osmosis membrane module feed pump (14).
Reverse osmosis is applied to the primary side of the R / O membrane of the / O membrane module (15). Due to the pressure on the primary side of the R / O membrane of the R / O membrane module (15), the water in the boric acid-containing liquid has an effect of reverse osmotic pressure, and permeates through the R / O membrane and moves to the secondary side. silica,
Impurities such as chloride ions and organic substances do not penetrate much due to their large molecular size, remain on the primary side, and proceed to the radioactive waste treatment system. The boric acid content in the boric acid-containing liquid has a characteristic of transmitting to the secondary side by appropriately setting the type of the R / O film and the operating conditions of the R / O film module (15). Therefore, the permeate that has passed through the membrane of the R / O membrane module (15) becomes an aqueous solution containing boric acid from which impurities have been removed to some extent. That is, boric acid in the boric acid-containing liquid supplied to the R / O film module (15) permeates to the secondary side of the R / O film,
Collected as boric acid solution. On the other hand, the R / O membrane module (1
The liquid remaining on the primary side of the R / O film in 5) has a high impurity concentration such as silica and chloride ions, and flows into the radioactive waste treatment system as a high impurity concentration waste liquid.

【0004】[0004]

【発明が解決しようとする課題】本発明は、R/O膜を
利用して硼酸含有液の処理を行うものである。硼酸含有
液の処理を行う場合、固化装置まで考えたシステムを成
立させるための問題点は、硼酸含有液中の硼酸分の回収
率を上げながら、シリカに代表される不純物の除去率を
如何に向上させるかということと、廃液の減容化であ
る。
SUMMARY OF THE INVENTION In the present invention, a boric acid-containing solution is treated using an R / O film. When performing processing of a boric acid-containing liquid, the problem to establish a system that takes into consideration the solidification device is that while increasing the recovery rate of boric acid in the boric acid-containing liquid, the removal rate of impurities represented by silica is reduced. It is to improve it and to reduce the volume of waste liquid.

【0005】図3の方法は、R/O膜モジュール1段を
用いた処理方式であるため、シリカの除去率は、R/O
膜モジュールに使用されるR/O膜の性能で決まり、現
在の状況では、シリカ濃度を原子炉水再利用の基準値以
下にすることはできない。また、廃液の減容化も期待で
きない。
The method shown in FIG. 3 is a processing method using one stage of an R / O membrane module.
Determined by the performance of the R / O membrane used in the membrane module, the silica concentration cannot be reduced below the reference value for reactor water reuse in the current situation. In addition, the volume of waste liquid cannot be reduced.

【0006】従って、本発明の目的は、原子力プラント
(PWR)における液体廃棄物並びに使用済燃料ピット水
のような硼酸含有液を簡便な処理にて原子炉水再利用の
基準値以下にまで不純物含量を低減し、かつ廃棄物の減
容化を図ることにある。
Accordingly, an object of the present invention is to provide a nuclear power plant
Reduce the impurity content of liquid waste and liquid containing boric acid such as spent fuel pit water in the PWR to below the standard value for reactor water reuse by simple treatment, and reduce the volume of waste. It is to plan.

【0007】[0007]

【課題を解決するための手段】硼酸含有液を連続処理す
るために複数のROモジュールの組み合わせて使用する
本発明方法を図1に示す。硼酸含有液中の成分例えば硼
酸、シリカ及び塩素に対する分離率が異なる第1段目の
R/O膜モジュール(4)、第2段目のR/O膜モジュー
ル(5)、第3段目のR/O膜モジュール(6)をカスケード
に接続し、第1段目のR/O膜モジュール(4)の二次側
への透過回収液として回収し、第2段目のR/O膜モジ
ュール(5)の二次側への透過液と第3段目のR/O膜モ
ジュール(6)の透過液を未処理硼酸含有液へリサイクル
し、第3段目のR/O膜モジュール(6)の一次側に残存
する液を濃縮廃液として回収することにより、シリカ及
び塩素分の少ない硼酸を透過回収液として回収すると共
に濃縮廃液の減容化を図るものである。
FIG. 1 shows a method of the present invention in which a plurality of RO modules are used in combination to continuously process a boric acid-containing liquid. The first-stage R / O membrane module (4), the second-stage R / O membrane module (5), and the third-stage R / O membrane module (4) having different separation rates for components in the boric acid-containing liquid, for example, boric acid, silica, and chlorine. The R / O membrane module (6) is connected in a cascade and collected as a permeate to the secondary side of the first-stage R / O membrane module (4), and the second-stage R / O membrane module is recovered. The permeate to the secondary side of (5) and the permeate of the third stage R / O membrane module (6) are recycled to the untreated boric acid-containing solution, and the third stage R / O membrane module (6) is recycled. By recovering the liquid remaining on the primary side as a concentrated waste liquid, silica and boric acid containing a small amount of chlorine are recovered as a permeated recovery liquid, and the volume of the concentrated waste liquid is reduced.

【0008】[0008]

【作用】硼酸含有液Iはまず図1に示すようにR/O膜
循環液タンク(1)に貯えられ、ここで第2段目のR/O
膜モジュール(5)及び第3段目のR/O膜モジュール(6)
の二次側への透過液と併合にされ、次に、R/O膜高圧
供給ポンプ(2)により加圧され、次に、UFモジュール
(3)へ送られ、ここで、処理廃液中の固形分が除去され
る。
The boric acid-containing liquid I is first stored in the R / O membrane circulating liquid tank (1) as shown in FIG.
Membrane module (5) and third stage R / O membrane module (6)
And then pressurized by the R / O membrane high pressure supply pump (2), then the UF module
It is sent to (3), where the solid content in the processing waste liquid is removed.

【0009】次に、処理液は、第1段目のR/O膜モジ
ュール(4)に送られ、R/O膜を二次側へ透過した透過
回収液IIと第1段目R/O膜モジュールの一次側に残存
する濃縮廃液に分けられ、該濃縮廃液は第2段目のR/
O膜モジュール(5)に送られる。
Next, the processing solution is sent to the first stage R / O membrane module (4), and the permeated recovery solution II that has permeated the R / O membrane to the secondary side and the first stage R / O membrane module (4). The concentrated waste liquid remaining on the primary side of the membrane module is separated, and the concentrated waste liquid
It is sent to the O membrane module (5).

【0010】第1段目R/O膜モジュールで濃縮された
濃縮廃液は、第2段目のR/O膜モジュール(5)によっ
て、二次側へ透過した透過再処理液と第2段目R/O膜
モジュールの一次側に残存する濃縮廃液とに分離され、
透過再処理液はR/O膜循環液タンク(1)へリサイクル
され、第2段目のR/O膜モジュールの濃縮廃液は第3
段目のR/O膜モジュール(6)へ送られる。
The concentrated waste liquid concentrated in the first stage R / O membrane module is combined with the permeate reprocessing solution permeated to the secondary side by the second stage R / O membrane module (5). Separated into concentrated waste liquid remaining on the primary side of the R / O membrane module,
The permeate reprocessing liquid is recycled to the R / O membrane circulating liquid tank (1), and the concentrated waste liquid of the second-stage R / O membrane module is recycled to the third
It is sent to the R / O membrane module (6) of the stage.

【0011】第2段目のR/O膜モジュール(5)の濃縮
廃液は、第3段目のR/O膜モジュール(6)によって、
二次側へ透過した透過再処理液と濃縮廃液とに分離さ
れ、透過再処理液はR/O膜循環液タンク(1)へリサイ
クルされ、濃縮廃液は濃縮廃液IIIとして固化装置へ送
られる。
The concentrated waste liquid of the second-stage R / O membrane module (5) is removed by the third-stage R / O membrane module (6).
The permeated reprocessing liquid and the concentrated waste liquid that have permeated to the secondary side are separated, the permeated reprocessing liquid is recycled to the R / O membrane circulating liquid tank (1), and the concentrated waste liquid is sent to the solidification device as the concentrated waste liquid III.

【0012】なお、第3段目のR/O膜モジュール(6)
の濃縮廃液側には圧力調整弁が設けられており、R/O
膜高圧供給ポンプ(2)により各段のR/O膜モジュール
1次側の圧力を15〜60kg/cm2程度に設定でき
るようになっている。また、R/O膜モジュール(5)通
水時の圧力損失は、約1kg/cm2程度で、高圧ポン
プによる液圧力15〜60kg/cm2程度と比べてか
なり小さく、それぞれ第1段目のR/O膜モジュール
(4)、第2段目のR/O膜モジュール(5)、第3段目のR
/O膜モジュール(6)のR/O膜の一次側圧力は、ほと
んど低下せず、逆浸透圧が同程度確保でき、性能が落ち
ることもない。
The third stage R / O film module (6)
A pressure regulating valve is provided on the concentrated waste liquid side of R / O.
The pressure on the primary side of the R / O membrane module at each stage can be set to about 15 to 60 kg / cm 2 by the membrane high-pressure supply pump (2). Further, the pressure loss at the time of R / O membrane module (5) passing water, on the order of about 1 kg / cm 2, much smaller than the hydraulic force 15~60kg / cm 2 approximately by the high-pressure pump, the first stage, respectively R / O membrane module
(4), second stage R / O membrane module (5), third stage R
The primary pressure of the R / O membrane of the / O membrane module (6) hardly decreases, the same reverse osmosis pressure can be secured, and the performance does not decrease.

【0013】本発明方法において、R/O膜モジュール
の運転は、給液流量/濃縮流量比を1〜6程度としてお
り、給液流量/濃縮流量比が大きくなってくると、R/
O膜モジュールにて透過し易くなり、不純物の除去性能
が悪くなる。従って、第1段目のR/O膜モジュール
(4)の給液流量/濃縮流量比を比較的小さくして第1段
目のR/O膜モジュール(4)にて不純物すなわちシリ
カ、塩化物イオン等を高性能で除去する。次に、第2段
目のR/O膜モジュール(5)、第3段目のR/O膜モジ
ュール(6)を設け、比較的高い給液流量/濃縮流量比と
して不純物を二次側へ透過させず、水及び硼酸を選択的
に透過させる濃縮操作を行うことによって、最終的な濃
縮廃液量を少なくできる。
In the method of the present invention, the operation of the R / O membrane module is performed by setting the supply liquid flow rate / concentration flow rate ratio to about 1 to 6.
Oxygen is easily transmitted through the O film module, and the performance of removing impurities is deteriorated. Therefore, the first stage R / O membrane module
The ratio of the supply flow rate / concentration flow rate in (4) is made relatively small, and impurities, ie, silica, chloride ions, etc., are removed with high efficiency in the first stage R / O membrane module (4). Next, a second stage R / O membrane module (5) and a third stage R / O membrane module (6) are provided, and impurities are supplied to the secondary side at a relatively high supply flow rate / concentration flow rate ratio. By performing a concentration operation for selectively permeating water and boric acid without permeating, the final concentrated waste liquid amount can be reduced.

【0014】例えば、第1段目のR/O膜モジュール
(4)の給液流量/濃縮流量比を1〜2程度、第2段目の
R/O膜モジュール(5)の給液流量/濃縮流量比を5〜
6程度、第3段目のR/O膜モジュール(6)の給液流量
/濃縮流量比を5〜6程度とすれば、第1段目のR/O
膜モジュール(1)への供給廃液量を約100とすると、
第1段目のR/O膜モジュール(4)、第2段目のR/O
膜モジュール(5)、第3段目のR/O膜モジュール(6)通
水処理後の濃縮廃液側液量は約1〜4程度となり、第2
段目のR/O膜モジュール(5)、第3段目のR/O膜モ
ジュール(6)透過液はわずかな量であり、約1/100
〜約1/25の廃棄物減容化が図られることになる。
For example, the first stage R / O film module
The feed liquid flow rate / concentration flow rate ratio of (4) is about 1 to 2, and the feed liquid flow rate / concentration flow rate of the second stage R / O membrane module (5) is 5 to 5.
If the ratio of the supply flow rate / concentration flow rate of the third stage R / O membrane module (6) is about 5 to about 6, the first stage R / O
Assuming that the amount of waste liquid supplied to the membrane module (1) is about 100,
First stage R / O membrane module (4), second stage R / O
The membrane module (5), the third stage R / O membrane module (6), the concentrated waste liquid side liquid amount after the water passing treatment is about 1 to 4,
The R / O membrane module (5) in the third stage and the R / O membrane module (6) in the third stage have a small amount of permeate, about 1/100
The volume of waste is reduced by about 1/25.

【0015】従って、R/O膜モジュールの一次側の圧
力は、圧力調整弁(8)にて、その上流圧力を27〜30
kg/cm2程度に設定することにより可能である(二次
系は大気圧または数kg/cm2の背圧とする)。また、
各R/O膜モジュール(4)、(5)、(6)の流量は、圧力、
R/O膜性能により単位面積当たりの処理流量(R/O
膜透過流量/濃縮流量)が明らかなので、それぞれのR
/O膜の面積によって決まる。
Therefore, the pressure on the primary side of the R / O membrane module is increased by the pressure regulating valve (8) to 27-30
This can be achieved by setting the pressure to about kg / cm 2 (the secondary system is at atmospheric pressure or a back pressure of several kg / cm 2 ). Also,
The flow rate of each R / O membrane module (4), (5), (6) is
The processing flow rate per unit area (R / O
Since the membrane permeation flow rate / concentration flow rate) is clear, each R
It depends on the area of the / O film.

【0016】なお、本発明方法では、第2段目のR/O
膜モジュール(5)透過液、第3段目のR/O膜モジュー
ル(6)透過液を循環液タンクへ戻し、再循環使用するこ
とによって、第1段目のR/O膜モジュール(4)の給液
中の不純物濃度は処理廃液濃度より下がるので、第1段
目のR/O膜モジュール(4)透過回収液への不純物濃度
を更に低くすることができる。
In the method of the present invention, the second stage R / O
Membrane module (5) Permeate, third stage R / O membrane module (6) First stage R / O membrane module (4) by returning permeate to circulating fluid tank and recirculating Since the impurity concentration in the supply liquid is lower than the concentration of the processing waste liquid, the impurity concentration in the first-stage R / O membrane module (4) permeation recovery liquid can be further reduced.

【0017】また、第2段目のR/O膜モジュール(5)
透過液、第3段目のR/O膜モジュール(6)透過液を循
環液タンクへ戻し、再循環使用することによって第1段
目のR/O膜モジュール(4)の給液中の硼酸濃度は、処
理廃液濃度よりも上がるので、第1段目のR/O膜モジ
ュール(4)透過回収液への硼酸濃度を更に高くすること
ができる。
Further, the second stage R / O film module (5)
The permeated liquid, the third-stage R / O membrane module (6) The permeated liquid is returned to the circulating liquid tank, and is recycled so that boric acid in the supply liquid of the first-stage R / O membrane module (4) can be obtained. Since the concentration is higher than the concentration of the processing waste liquid, the concentration of boric acid in the permeation / recovery liquid of the first-stage R / O membrane module (4) can be further increased.

【0018】上述のような第1段目のR/O膜モジュー
ル(4)と、第2段目のR/O膜モジュール(5)と、第3段
目のR/O膜モジュール(6)をカスケードに接続した装
置を使用する本発明方法において、第1段目のR/O膜
モジュール(4)は供給流量/濃縮流量比が1〜2で、か
つ例えば塩化物イオン、シリカ等のような不純物の高除
去率を有する材質のR/O膜を使用することが好まし
い。また、第2段目のR/O膜モジュール(5)と第3段
目のR/O膜モジュール(6)のR/O膜の材質として
は、二次側に不純物を透過することがなく、高い供給流
量/濃縮流量比が得られるような材質のものを使用する
ことが好ましい。
The first-stage R / O film module (4), the second-stage R / O film module (5), and the third-stage R / O film module (6) as described above. In the method of the present invention using an apparatus in which cascades are connected, the first-stage R / O membrane module (4) has a supply flow rate / concentration flow rate ratio of 1 to 2 and, for example, chloride ion, silica or the like. It is preferable to use an R / O film made of a material having a high impurity removal rate. Further, as the material of the R / O films of the second-stage R / O film module (5) and the third-stage R / O film module (6), impurities do not permeate to the secondary side. It is preferable to use a material having a high supply flow rate / concentration flow rate ratio.

【0019】[0019]

【実施例】本発明の一実施例を図2に示す。本実施例に
おいて、第1段目のR/O膜モジュール(4)のR/O膜
には、供給流量/濃縮流量比が1〜2で、かつ不純物高
除去率が得られる東レ製SC−8100を使用し、第2
段目のR/O膜モジュール(5)及び第3段目のR/O膜
モジュール(6)のR/O膜には、高い供給流量/濃縮流
量比が得られる東レ製SC−1100を使用した。ま
た、R/O膜高圧供給ポンプ(2)と圧力調整弁(8)を制御
することにより液圧力を約30kg/cm2とした。各
々の膜面積の比は第1段目のR/O膜を1とすると、第
2段目のR/O膜は0.6、第3段目のR/O膜は0.1
程度となるようにした。
FIG. 2 shows an embodiment of the present invention. In the present embodiment, the R / O film of the first stage R / O film module (4) has a supply flow rate / concentration flow rate ratio of 1 to 2 and a high impurity removal rate obtained by SC-Toray. 8100 and the second
For the R / O membrane of the R / O membrane module (5) of the third stage and the R / O membrane module (6) of the third stage, Toray SC-1100 which can obtain a high supply flow rate / concentration flow rate ratio is used. did. The liquid pressure was set to about 30 kg / cm 2 by controlling the R / O membrane high-pressure supply pump (2) and the pressure regulating valve (8). Assuming that the ratio of the respective film areas is 1 for the first stage R / O film, the second stage R / O film is 0.6, and the third stage R / O film is 0.1.
It was about to be.

【0020】本実施例において、廃液硼酸Iは供給流量
2.1m3/時間、硼素濃度600ppm、シリカ6pp
m、塩化物イオン3ppmで、すなわち、処理廃液中の
硼素量は1.26kg/時間、シリカ量は12.6g/時
間、塩化物イオン量は6.3g/時間である。
In the present embodiment, the waste liquid boric acid I was supplied at a supply flow rate of 2.1 m 3 / hour, a boron concentration of 600 ppm, and silica of 6 pp.
m, 3 ppm of chloride ion, that is, the amount of boron in the treated waste liquid is 1.26 kg / hour, the amount of silica is 12.6 g / hour, and the amount of chloride ion is 6.3 g / hour.

【0021】透過回収液IIは供給流量2.0m3/時間、
硼素濃度481ppm、シリカ0.33ppm、塩化物
イオン0.15ppmとなるから、透過回収液中の硼素
量は0.962kg/時、シリカ量は0.66g/時、塩
化物イオン量0.3g/時間である。
The permeate recovery liquid II is supplied at a supply flow rate of 2.0 m 3 / hour,
Since the boron concentration is 481 ppm, silica is 0.33 ppm, and chloride ion is 0.15 ppm, the amount of boron in the permeated liquid is 0.962 kg / h, the amount of silica is 0.66 g / h, and the amount of chloride ion is 0.3 g / h. Time.

【0022】従って、この条件では、本発明方法の硼素
の回収率は(0.962kg/時間)/(1.26kg/時
間)×100=76%となる(硼素の分離率では、0.2
3)。また、本発明方法でのシリカの分離率は(12.6
g/時間−0.66g/時間)/(12.6g/時間)=0.
95となり、本発明方法の性能は、R/O膜モジュール
単体の性能0.89よりよくなる。
Therefore, under these conditions, the recovery rate of boron in the method of the present invention is (0.962 kg / hour) / (1.26 kg / hour) × 100 = 76% (at a boron separation rate of 0.2%).
3). The separation rate of silica in the method of the present invention is (12.6)
g / hr-0.66 g / hr) / (12.6 g / hr) = 0.
95, which is better than the performance of the R / O membrane module alone of 0.89.

【0023】また、本発明方法の性能の塩化物イオンの
分離率は(6.3g/時間−0.3g/時間)/(6.3g/
時間)=0.95となり、本発明方法の性能は、R/O膜
モジュール単体の性能0.90よりよくなる。
The chloride ion separation rate of the performance of the method of the present invention is (6.3 g / hour-0.3 g / hour) / (6.3 g / hour).
Time) = 0.95, and the performance of the method of the present invention is better than the performance of the R / O membrane module alone of 0.90.

【0024】本発明方法によって、脱塩塔等によって容
易に除去できないシリカを回収液の基準値0.5ppm
以下に除去できると共に他の不純物も高性能で除去でき
ることになる。
According to the method of the present invention, silica which cannot be easily removed by a desalting tower or the like is recovered at a standard value of 0.5 ppm.
It can be removed below and other impurities can be removed with high performance.

【0025】[0025]

【発明の効果】 PWR原子力プラントの液体廃棄物処理システムに、
本発明の硼酸含有液の処理方法を組み込むことによりコ
ストダウンが図れる。即ち、現在のPWR原子力プラン
トの液体廃棄物処理システムは廃液蒸発装置により廃液
硼酸水を濃縮した後、固化処理するシステムとなってい
るが、設置スペースが大きく、コストが高いという問題
がある。また、シリカなどの不純物を完全に取り除くこ
とができず、シリカが1次系ループ内に蓄積されるとい
う問題もある。これに対し、このR/O膜システムを組
み込むことにより、R/O膜システム自身は従来のR/
O膜方式と比べ、若干膜面積が増えるものの、液体廃棄
物処理システムの中の濃縮固化処理設備が不要となり、
大幅なコストダウンとなる。 R/O膜モジュールを3段組み合わせて循環ループを
有するシステムとすることにより、シリカなどの不純物
の除去性能に優れた設備となる。また、各々のR/O膜
モジュールの供給液流量/濃縮液流量の比を1〜6と小
さくすることができ、その結果、流量調整が容易とな
り、また、濃縮液側での硼酸やシリカの析出の可能性も
小さくなる。 連続処理方式であるため処理廃液流量を大きくとるこ
とができ、運転時間の短縮が図れる。また、R/O膜高
圧供給ポンプ起動後約10時間で一定濃度の透過回収液
及び濃縮廃液が得られ、次段での処理が有利となる。
EFFECTS OF THE INVENTION In a liquid waste treatment system of a PWR nuclear power plant,
The cost can be reduced by incorporating the method for treating a boric acid-containing liquid of the present invention. That is, the current liquid waste treatment system of the PWR nuclear power plant is a system in which waste liquid boric acid is concentrated by a waste liquid evaporator and then solidified. However, there is a problem that the installation space is large and the cost is high. Further, there is also a problem that impurities such as silica cannot be completely removed, and silica is accumulated in a primary loop. On the other hand, by incorporating this R / O membrane system, the R / O membrane system itself becomes a conventional R / O membrane system.
Although the membrane area is slightly increased as compared with the O membrane system, the concentration and solidification treatment equipment in the liquid waste treatment system is not required,
Significant cost reduction. By combining a three-stage R / O membrane module to form a system having a circulation loop, equipment having excellent performance of removing impurities such as silica can be obtained. Further, the ratio of the supply liquid flow rate / concentrated liquid flow rate of each R / O membrane module can be reduced to 1 to 6, so that the flow rate can be easily adjusted, and the concentration of boric acid or silica on the concentrated liquid side can be improved. The likelihood of precipitation is also reduced. Because of the continuous processing method, the flow rate of the processing waste liquid can be increased, and the operation time can be reduced. In addition, about 10 hours after the start of the R / O membrane high-pressure supply pump, a permeated recovery liquid and a concentrated waste liquid having a constant concentration are obtained, and the treatment in the next stage is advantageous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による硼酸含有液処理システムの概略図
である。
FIG. 1 is a schematic view of a boric acid-containing liquid treatment system according to the present invention.

【図2】実施例に示す硼酸含有液処理システムの概略図
である。
FIG. 2 is a schematic view of a boric acid-containing liquid treatment system shown in an example.

【図3】従来の硼酸再生システムの概略図である。FIG. 3 is a schematic diagram of a conventional boric acid regeneration system.

【符号の説明】[Explanation of symbols]

1 R/O膜循環液タンク 2 R/O膜高圧供給ポンプ 3 UFモジュール 4 第1段目のR/O膜モジュール 5 第2段目のR/O膜モジュール 6 第3段目のR/O膜モジュール 7 固化装置 8 圧力調整弁 11 カートリッジフィルタ 12 限外濾過フィルタ給液ポンプ 13 UFモジュール 14 逆浸透膜モジュール供給ポンプ 15 R/O膜モジュール I 硼酸含有廃液 II 透過回収液 III 濃縮廃液 1 R / O membrane circulating liquid tank 2 R / O membrane high pressure supply pump 3 UF module 4 First stage R / O membrane module 5 Second stage R / O membrane module 6 Third stage R / O Membrane module 7 Solidifier 8 Pressure regulating valve 11 Cartridge filter 12 Ultrafiltration filter feed pump 13 UF module 14 Reverse osmosis membrane module feed pump 15 R / O membrane module I Boric acid-containing waste liquid II Permeate recovery liquid III Concentrated waste liquid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 督 兵庫県神戸市兵庫区和田崎町一丁目1番 1号 三菱重工業株式会社 神戸造船所 内 (56)参考文献 特開 昭59−49898(JP,A) 特開 昭62−50697(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/44 B01D 61/58 G21F 9/06 511 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Osamu Murakami 1-1-1, Wadazakicho, Hyogo-ku, Kobe-shi, Hyogo Prefecture Inside Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (56) References , A) JP-A-62-50697 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/44 B01D 61/58 G21F 9/06 511

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硼酸含有液を固形分除去手段に送り、次
に、逆浸透膜モジュールにて処理し、逆浸透膜モジュー
ルの一次側を濃縮液として回収し、かつ二次側を透過回
収液として回収することからなる硼酸含有廃液の処理方
法において、該逆浸透膜モジュールを3段で設置し、第
1段目の逆浸透膜モジュール、第2段目の逆浸透膜モジ
ュール、第3段目の逆浸透膜モジュールをカスケードに
接続し、第1段目の逆浸透膜モジュールの二次側への透
過回収液として回収し、第2段目の逆浸透膜モジュール
の二次側への透過液と第3段目の逆浸透膜モジュールの
透過液を未処理硼酸含有液へリサイクルし、第3段目の
逆浸透膜モジュールの一次側に残存する液を濃縮廃液と
して回収することにより、シリカ及び塩素分の少ない硼
酸を透過回収液として回収すると共に濃縮廃液の減容化
することを特徴とする硼酸含有液の処理方法。
1. A boric acid-containing solution is sent to a solid content removing means, and then processed by a reverse osmosis membrane module. The primary side of the reverse osmosis membrane module is recovered as a concentrated solution, and the secondary side is recovered as a permeate. In the method for treating boric acid-containing waste liquid, the reverse osmosis membrane module is installed in three stages, the first stage reverse osmosis membrane module, the second stage reverse osmosis membrane module, and the third stage The reverse osmosis membrane module is connected in a cascade and recovered as a permeate recovery liquid to the secondary side of the first stage reverse osmosis membrane module, and the permeate to the secondary side of the second stage reverse osmosis membrane module is recovered. And recycling the permeate of the third-stage reverse osmosis membrane module into an untreated boric acid-containing solution, and collecting the liquid remaining on the primary side of the third-stage reverse osmosis membrane module as a concentrated waste liquid, whereby silica and silica are recovered. Boric acid with low chlorine content is used as the permeate recovery solution. A method for treating a boric acid-containing liquid, wherein the volume of the concentrated waste liquid is reduced while collecting the concentrated waste liquid.
JP3233085A 1991-09-12 1991-09-12 Method of treating boric acid-containing liquid Expired - Lifetime JP3058952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3233085A JP3058952B2 (en) 1991-09-12 1991-09-12 Method of treating boric acid-containing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3233085A JP3058952B2 (en) 1991-09-12 1991-09-12 Method of treating boric acid-containing liquid

Publications (2)

Publication Number Publication Date
JPH0568974A JPH0568974A (en) 1993-03-23
JP3058952B2 true JP3058952B2 (en) 2000-07-04

Family

ID=16949562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3233085A Expired - Lifetime JP3058952B2 (en) 1991-09-12 1991-09-12 Method of treating boric acid-containing liquid

Country Status (1)

Country Link
JP (1) JP3058952B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599803B2 (en) * 2002-04-05 2010-12-15 栗田工業株式会社 Demineralized water production equipment
JP2005147788A (en) * 2003-11-13 2005-06-09 Inst Nuclear Energy Research Rocaec Boric acid purification and reutilization system, and method, using reverse osmosis separation method
US7645387B2 (en) 2006-12-11 2010-01-12 Diversified Technologies Services, Inc. Method of utilizing ion exchange resin and reverse osmosis to reduce environmental discharges and improve effluent quality to permit recycle of aqueous or radwaste fluid
FR3089674B1 (en) * 2018-12-05 2021-06-25 Electricite De France Process and installation for treating aqueous effluents from the primary circuit of a nuclear power plant comprising boric acid
CN113830861B (en) * 2021-10-29 2023-02-21 三门核电有限公司 Reverse osmosis membrane replacement method for movable waste liquid treatment facility

Also Published As

Publication number Publication date
JPH0568974A (en) 1993-03-23

Similar Documents

Publication Publication Date Title
EP0709130B1 (en) Apparatus and method for the desalination of sea water by multistage reverse osmosis
CN114096342A (en) Desalination brine concentration system and method
CN111867705A (en) Solvent separation
US5269933A (en) Method for separating a fluid mixture
JP3058952B2 (en) Method of treating boric acid-containing liquid
JP2000093751A (en) Reverse osmosis separation device and reverse osmosis separation method
SI9110558A (en) Process for separating water from a diluted aqueous solution of n-methylmorphine-n-oxide, n-methylomorphine and/or morpholine
JP4187316B2 (en) Reverse osmosis membrane separation apparatus and reverse osmosis membrane separation method
Gupta et al. Liquid radwaste processing with crossflow microfiltration and spiral wound reverse osmosis
JP2006212540A (en) Treatment method of chemical-washing waste liquid
JPH1015356A (en) Water treatment
JP3231520B2 (en) Treatment of wastewater containing phenol
KR100345725B1 (en) A Method for Purifying Wastewater Using Reverse Osmosis and Nanofiltration System
Schoeman et al. Evaluation of reverse osmosis for electroplating effluent treatment
JP2001347142A (en) Reverse osmosis separation method
JPH10249340A (en) Production of pure water
Zakrzewska-Trznadel et al. Liquid low-level radioactive waste treatment by membrane processes
CN214243957U (en) Waste water recovery device
CN114790059B (en) Concentrating and filtering device and method for synthetic ammonia and ethylene glycol wastewater concentrated water
JPH05309372A (en) Apparatus for producing water of high purity
JPS61155898A (en) Treater for regenerated waste liquor of ion exchnage resin
JP3351127B2 (en) Reverse osmosis membrane separation device and fresh water producing method
JP2807856B2 (en) Treatment method for radioactive ultrasonic cleaning waste liquid
JP3190218B2 (en) Fresh water generator
JP2001347141A (en) Reverse osmosis separator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 12