JP3058546B2 - Fusion device and its vacuum vessel - Google Patents

Fusion device and its vacuum vessel

Info

Publication number
JP3058546B2
JP3058546B2 JP5332198A JP33219893A JP3058546B2 JP 3058546 B2 JP3058546 B2 JP 3058546B2 JP 5332198 A JP5332198 A JP 5332198A JP 33219893 A JP33219893 A JP 33219893A JP 3058546 B2 JP3058546 B2 JP 3058546B2
Authority
JP
Japan
Prior art keywords
vacuum vessel
container
port
vessel
ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5332198A
Other languages
Japanese (ja)
Other versions
JPH07191163A (en
Inventor
昭 土居
忠憲 溝口
茂美 木下
道夫 大塚
興一 小泉
栄介 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5332198A priority Critical patent/JP3058546B2/en
Publication of JPH07191163A publication Critical patent/JPH07191163A/en
Application granted granted Critical
Publication of JP3058546B2 publication Critical patent/JP3058546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は核融合装置の真空容器に
係り、特に、トロイダル方向の圧縮応力の集中を防ぐ構
造を持ち、装置の大型化を図るのに好適な核融合装置と
その真空容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum vessel for a fusion device, and more particularly to a fusion device having a structure for preventing the concentration of compressive stress in the toroidal direction and suitable for increasing the size of the device and its vacuum. For containers.

【0002】[0002]

【従来の技術】図2は、トカマク型核融合装置の全体図
である。図2において、矢印30方向をト−ラスの主半
径方向とし、矢印31方向をトロイダル方向とし、矢印
32方向を上下方向と定める。トカマク型核融合装置
は、真空容器1、ポロイダル磁場コイル4、トロイダル
磁場コイル5などの導電性構造物で製作される。真空容
器1は、容器2と、この容器2内に設置される炉内構造
物6を交換したりプラズマ7の加熱や真空排気などを行
うために設けた複数のポ−ト3から構成される。トカマ
ク型核融合装置では、ト−ラス状の真空容器1内に強力
な磁場を発生させ、その磁場によってプラズマ7を閉じ
込める。図3は、トロイダル方向31に垂直な断面にお
ける磁気面8を示している。磁場は磁気面8に沿って発
生する。
2. Description of the Related Art FIG. 2 is an overall view of a tokamak-type fusion device. In FIG. 2, the direction of arrow 30 is defined as the main radial direction of the torus, the direction of arrow 31 is defined as the toroidal direction, and the direction of arrow 32 is defined as the vertical direction. The tokamak fusion device is made of a conductive structure such as a vacuum vessel 1, a poloidal magnetic field coil 4, and a toroidal magnetic field coil 5. The vacuum vessel 1 is composed of a vessel 2 and a plurality of ports 3 provided for exchanging an in-furnace structure 6 installed in the vessel 2 and for heating or evacuating the plasma 7. . In the tokamak-type fusion device, a strong magnetic field is generated in the torus-shaped vacuum vessel 1, and the plasma 7 is confined by the magnetic field. FIG. 3 shows the magnetic surface 8 in a cross section perpendicular to the toroidal direction 31. A magnetic field is generated along the magnetic surface 8.

【0003】このようなトカマク型核融合装置におい
て、生成されたプラズマが急速に消滅するディスラプシ
ョンと呼ばれる現象が発生する。ディスラプションは、
プラズマ中のある種の不安定性によって誘発されると考
えられており、現状の技術でディスラプションが起きな
いようにすることはできない。そのため、装置はディス
ラプションが発生しても健全性を保てるように設計する
必要がある。ディスラプションが発生すると、プラズマ
中に流れていた電流が急激に減衰し、プラズマ中の電流
によって保持されていた磁気エネルギを保存するように
真空容器等の導電性構造物に渦電流が流れる。この渦電
流は、プラズマを閉じ込めるための強力な磁場と相互作
用し、強大な電磁力を導電性構造物に加えることにな
る。
[0003] In such a tokamak-type fusion device, a phenomenon called disruption occurs in which generated plasma rapidly disappears. Disruption is
It is believed to be induced by certain instabilities in the plasma, and the state of the art cannot prevent disruption from occurring. Therefore, the device needs to be designed to maintain soundness even if a disruption occurs. When the disruption occurs, the current flowing in the plasma is rapidly attenuated, and an eddy current flows in a conductive structure such as a vacuum vessel so as to preserve the magnetic energy held by the current in the plasma. The eddy current interacts with a strong magnetic field for confining the plasma and applies a strong electromagnetic force to the conductive structure.

【0004】装置の大きさにもよるが、主半径6mの装
置では、20ms程度の時間でプラズマが消滅するディ
スラプションが発生する。四角断面のポ−トを持つ、主
半径6m,容器部厚さ40mm,ポ−ト部厚さ100m
mのステンレス製の装置において、22MAのプラズマ
電流が22msで消滅するディスラプションによって発
生する渦電流分布を、数値解析で求めた結果を図4に示
す。図4における渦電流流線9の密度が電流密度に比例
し、渦電流流線の方向が渦電流の方向と一致する。渦電
流は、主に真空容器1のインボ−ド側10及びアウトボ
−ド側11に発生し、トロイダル方向31に流れる。こ
の渦電流が、真空容器1のインボ−ド側10及びアウト
ボ−ド側11で発生している上下方向32の磁場12及
び磁場13と相互作用し、強力な電磁力14,15が発
生する。この電磁力の大きさは、最大2.2MPaにも
なる。その方向は、図中の矢印14,15が示す方向
で、主半径方向30に真空容器1を押しつぶす力とな
る。
[0004] Although it depends on the size of the device, in a device having a main radius of 6 m, a disruption occurs in which the plasma disappears in about 20 ms. With a square section port, main radius 6m, container thickness 40mm, port thickness 100m
FIG. 4 shows the results obtained by numerical analysis of an eddy current distribution generated by a disruption in which a 22 MA plasma current disappears in 22 ms in a stainless steel device of m. The density of the eddy current streamline 9 in FIG. 4 is proportional to the current density, and the direction of the eddy current streamline matches the direction of the eddy current. The eddy current mainly occurs on the inboard side 10 and the outboard side 11 of the vacuum vessel 1 and flows in the toroidal direction 31. This eddy current interacts with the magnetic field 12 and the magnetic field 13 in the vertical direction 32 generated on the inboard side 10 and the outboard side 11 of the vacuum vessel 1, and strong electromagnetic forces 14 and 15 are generated. The magnitude of this electromagnetic force reaches a maximum of 2.2 MPa. The direction is the direction indicated by arrows 14 and 15 in the figure, and is a force for crushing the vacuum vessel 1 in the main radial direction 30.

【0005】図5は、この電磁力14,15によって発
生する真空容器1の変形を示している。強い電磁力が発
生している真空容器1のインボ−ド側10及びアウトボ
−ド側11の変形が大きく、特に真空容器1のアウトボ
−ド側11では、主半径方向30に最大で1.2cm変
形する。この変形は、図5中に示されているように、ト
ロイダル方向31に円筒壁を有する真空容器1のアウト
ボ−ド側11を、中心方向に押し潰す変形である。その
変形によって発生する応力は、トロイダル方向31の圧
縮応力である。
FIG. 5 shows a deformation of the vacuum vessel 1 generated by the electromagnetic forces 14 and 15. The inboard side 10 and the outboard side 11 of the vacuum vessel 1 in which a strong electromagnetic force is generated are greatly deformed. In particular, on the outboard side 11 of the vacuum vessel 1, a maximum of 1.2 cm in the main radial direction 30. Deform. This deformation is a deformation in which the outboard side 11 of the vacuum vessel 1 having a cylindrical wall in the toroidal direction 31 is crushed in the center direction, as shown in FIG. The stress generated by the deformation is a compressive stress in the toroidal direction 31.

【0006】図6に、この変形によって発生する応力分
布を示す。図6には、図5で示した変形の大きい領域1
6のみを示している。発生する応力は、領域17で示さ
れるポ−ト3の角付近の容器部に集中している。ポ−ト
3の上部壁18及び下部壁19がトロイダル方向31の
補強板として働き、このため、上部壁18,下部壁19
と容器2との接続部の変形は少なくなるが、補強板の無
いポ−ト間の特にポ−ト3の角付近の容器部には応力が
強く発生し、変形が大きくなる。この応力の最大値は5
0kg/mm2以上となり、この値はステンレスの許容
応力の数倍である。このような設計の真空容器では、デ
ィスラプションによる変形によって破壊される可能性が
高いと考えられ、ディスラプションによって破壊されな
い強度を持つ構造又は変形を抑制する支持が必要であ
る。
FIG. 6 shows a stress distribution generated by this deformation. FIG. 6 shows a large deformation area 1 shown in FIG.
Only 6 is shown. The generated stress is concentrated in the container near the corner of the port 3 indicated by the region 17. The upper wall 18 and the lower wall 19 of the port 3 function as reinforcing plates in the toroidal direction 31, so that the upper wall 18, the lower wall 19
Deformation at the connection between the container and the container 2 is reduced, but strong stress is generated between the ports having no reinforcing plate, especially at the container near the corner of the port 3, and the deformation is increased. The maximum value of this stress is 5
0 kg / mm 2 or more, which is several times the allowable stress of stainless steel. It is considered that a vacuum vessel having such a design is likely to be broken by deformation due to disruption, and a structure having a strength not broken by the disruption or a support for suppressing deformation is required.

【0007】真空容器の支持として以下のような制約が
ある。不純物の少ないプラズマを生成するため、真空容
器を400℃程度まで加熱し、真空容器の内壁の不純物
を取り除くベ−キングという作業が行われる。このベ−
キングによる真空容器の熱膨張は主半径方向に大きく、
大型の装置では2cm以上になる。そのため真空容器の
支持は主半径方向に移動可能な構造とする必要があり、
図5に示されるような主半径方向の変形を支持によって
抑制することは困難である。
There are the following restrictions for supporting the vacuum vessel. In order to generate a plasma having a small amount of impurities, an operation of baking the vacuum vessel to about 400 ° C. to remove impurities on the inner wall of the vacuum vessel is performed. This base
The thermal expansion of the vacuum vessel by King is large in the main radial direction,
In a large device, it is 2 cm or more. Therefore, it is necessary to support the vacuum vessel in a structure that can move in the main radial direction,
It is difficult to suppress deformation in the main radial direction as shown in FIG. 5 by supporting.

【0008】真空容器の構造として以下のような制約が
ある。真空容器はプラズマを取り囲むト−ラス状の構造
物であるが、プラズマに電流を流すためにトロイダル方
向に電圧を発生すると、真空容器のトロイダル方向の一
周抵抗が小さければ、真空容器に電流が流れ、プラズマ
には電流がすぐには流れないなどの問題が起こる。その
ため、真空容器の補強としては真空容器の一周抵抗がで
きるだけ大きくなるような構造とする必要がある。また
その観点から、容器の板厚は真空容器の一周抵抗が大き
くなるようにポ−トと比べ薄くなっているのが一般的で
ある。
The structure of the vacuum container has the following restrictions. The vacuum vessel is a torus-like structure that surrounds the plasma, but if a voltage is generated in the toroidal direction in order to pass a current through the plasma, current flows through the vacuum vessel if the resistance in the toroidal direction of the vacuum vessel is small. However, there arises a problem that a current does not immediately flow through the plasma. Therefore, in order to reinforce the vacuum vessel, it is necessary to adopt a structure in which the resistance around the vacuum vessel becomes as large as possible. From that viewpoint, the plate thickness of the container is generally smaller than that of the port so that the resistance around the vacuum container is increased.

【0009】日本原子力研究所発行の核融合研究開発の
現状(1989)P36には、容器部が二重で、その間
にトロイダル方向に垂直な方向の補強板を持つ真空容器
構造について記載されている。
The present state of nuclear fusion research and development published by the Japan Atomic Energy Research Institute (1989) P36 describes a vacuum vessel structure having a double vessel section and a reinforcing plate between them in a direction perpendicular to the toroidal direction. .

【0010】[0010]

【発明が解決しようとする課題】上記従来技術では、ト
ロイダル方向に垂直な方向の補強板のみを持つ構造のた
め、ディスラプションによる主半径方向の変形と、その
変形によって発生するトロイダル方向の圧縮応力を減少
させることができないという問題がある。この変形や圧
縮応力は、核融合装置が小型であればあまり問題にはな
らないが、装置が大型化すると、装置自体の破壊を招い
てしまう。
In the above prior art, since the structure has only the reinforcing plate in the direction perpendicular to the toroidal direction, the deformation in the main radial direction due to the disruption and the compression in the toroidal direction caused by the deformation. There is a problem that the stress cannot be reduced. The deformation and the compressive stress do not cause much problem if the fusion device is small, but if the fusion device is enlarged, the device itself will be destroyed.

【0011】本発明の目的は、ディスラプションによっ
て発生するトロイダル方向の圧縮応力が剛性の弱いポ−
ト間に集中するのを防ぎ、真空容器に発生する最大応力
を減少させ、ディスラプションに対して高い健全性を持
つ核融合装置とその真空容器を提供することにある。
[0011] It is an object of the present invention to reduce a compressive stress in a toroidal direction generated by a disruption in a port having a low rigidity.
It is an object of the present invention to provide a fusion device and a vacuum vessel thereof, which prevent concentration in a vacuum chamber, reduce the maximum stress generated in the vacuum vessel, and have high soundness against disruption.

【0012】[0012]

【課題を解決するための手段】上記目的は、トロイダル
方向の補強板でポ−ト間を接続し、その接続場所をポ−
トの長さ方向においてポ−トと容器の結合部付近とし、
或いはトロイダル方向に一周する補強板をポ−ト付近の
容器部に設けることで達成される。
SUMMARY OF THE INVENTION The object of the present invention is to connect the ports with a reinforcing plate in the toroidal direction, and to connect the connection locations to the ports.
Near the joint between the port and the container in the length direction of the port,
Alternatively, this can be achieved by providing a reinforcing plate that makes a round in the toroidal direction in the container near the port.

【0013】[0013]

【作用】トロイダル方向の補強板によってポ−ト間の容
器部の剛性が強くなり、ポ−ト間に集中していた応力が
減少し、真空容器のディスラプションに対する健全性が
向上する。
The rigidity of the container between the ports is increased by the reinforcing plate in the toroidal direction, the stress concentrated between the ports is reduced, and the soundness of the vacuum container against disruption is improved.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は、本発明の第1実施例に係る核融合装置
の真空容器の構造図である。ト−ラス状の容器2には、
四角断面の複数のポ−ト3がトロイダル方向31に並
び、各ポート3の容器2との接続部の角が隣接するポー
ト3の角と、トロイダル方向31に長手の補強板21で
接続され、補強板21の容器側端面は容器2に溶接され
ている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a structural diagram of a vacuum vessel of a nuclear fusion device according to a first embodiment of the present invention. In the torus-shaped container 2,
A plurality of ports 3 having a square cross section are arranged in the toroidal direction 31, and the corner of the connection portion of each port 3 with the container 2 is connected to the corner of the adjacent port 3 by the reinforcing plate 21 which is long in the toroidal direction 31. The container-side end surface of the reinforcing plate 21 is welded to the container 2.

【0015】ポ−ト3の板厚は容器2の板厚より大き
く、容器2と比べポ−ト3の剛性は強くなっている。こ
のため、ディスラプションによる応力は、容器2のポ−
ト3間において、四角断面を持つポ−ト3では特にポ−
トの角部付近に発生する。この応力を減少させるため、
本実施例では、ポ−トと比べ剛性が弱いポ−ト間の容器
部に剛性を持たせるようにポ−ト間をトロイダル方向の
補強板21で補強する。四角断面のポ−トでは、ポ−ト
の角同士を補強板で接続することにより、発生する応力
を大幅に減少することができる。
The thickness of the port 3 is larger than the thickness of the container 2, and the rigidity of the port 3 is higher than that of the container 2. For this reason, the stress caused by the disruption is
Port 3 having a square cross section particularly between ports 3
Occurs near the corners of the To reduce this stress,
In the present embodiment, the ports are reinforced by a toroidal reinforcing plate 21 so that the containers between the ports have lower rigidity than the ports. In the case of a port having a square cross section, the generated stress can be greatly reduced by connecting the corners of the port with a reinforcing plate.

【0016】図7は、補強板21を用いた実施例に係る
真空容器に発生する応力分布図である。図6に示した従
来の真空容器で発生する応力の数値解析結果と同一条件
で解析したものである。補強板21の板厚は200mm
で、主半径方向30の幅は100mmとしている。図7
では、図6で示したポ−トの角付近の容器部の応力が減
少しており、発生する応力の最大値は2分の1以下にな
る。図7では、最大応力は、ポ−トの上部18壁及び下
部壁19と容器2のと結合部付近の領域20で発生して
いる。最大応力位置が従来の真空容器と異なるのは、補
強板21の板厚をポ−ト3の2倍としたことによって、
ポ−ト間の容器部の剛性がポ−ト部の剛性より強くなっ
たためである。ポ−ト間の容器部をポ−ト部以上に剛性
を強くしても、領域20で発生する最大応力は減少しな
い。そのためポ−ト間の容器部をポ−ト部と同程度の剛
性を持たせるように補強することが望ましく、補強板の
板厚を最小限に押さえることで、真空容器のトロイダル
方向の一周抵抗を極力大きくすることができる。本実施
例の体系では、ポ−トの板厚と同程度の板厚の補強板を
入れ、一周抵抗を大きくしている。
FIG. 7 is a diagram showing the distribution of stresses generated in the vacuum vessel according to the embodiment using the reinforcing plate 21. This is an analysis under the same conditions as the results of numerical analysis of the stress generated in the conventional vacuum vessel shown in FIG. The thickness of the reinforcing plate 21 is 200 mm
The width in the main radial direction 30 is 100 mm. FIG.
In FIG. 6, the stress in the container near the corner of the port shown in FIG. 6 is reduced, and the maximum value of the generated stress is less than half. In FIG. 7, the maximum stress occurs in the region 20 near the junction between the upper and lower walls 18 and 19 of the port and the container 2. The reason why the maximum stress position is different from that of the conventional vacuum vessel is that the thickness of the reinforcing plate 21 is twice as large as that of the port 3.
This is because the rigidity of the container between the ports is stronger than the rigidity of the ports. Even if the container between the ports is made more rigid than the ports, the maximum stress generated in the region 20 does not decrease. Therefore, it is desirable to reinforce the container portion between the ports so as to have the same rigidity as the port portion. By minimizing the thickness of the reinforcing plate, the resistance of the vacuum container in one direction in the toroidal direction is reduced. Can be made as large as possible. In the system of the present embodiment, a reinforcing plate having a thickness approximately equal to the thickness of the port is provided to increase the resistance in one round.

【0017】本実施例では、補強板が容器部にも溶接さ
れているが、その必要は無い。重要なのは、ポート間を
接続する補強板21の先が、ポートと容器との連結領域
における角部あるいはその付近になるようにすることで
ある。
In this embodiment, the reinforcing plate is also welded to the container, but it is not necessary. What is important is that the tip of the reinforcing plate 21 connecting the ports is at or near a corner in the connection region between the port and the container.

【0018】本実施例では、長さ方向の断面が四角のポ
−トで、その四角の角と隣接するポートの角との容器側
を補強板21で接続しているが、角から多少ずれた位置
でも効果があり、断面が四角に類した角を丸めたポ−ト
でも、丸まった角付近を補強板で接続することでも効果
がある。
In this embodiment, the cross section in the longitudinal direction is a square port, and the container side of the square corner and the corner of the adjacent port is connected by the reinforcing plate 21, but it is slightly shifted from the corner. The effect is obtained even at a position where the corner is rounded, and the effect is obtained by connecting a rounded corner with a reinforcing plate around the rounded corner.

【0019】図8は、本発明の第2実施例に係る真空容
器の要部側面図である。本実施例での補強板21は、各
ポート3の上部壁18,下部壁19の若干外側に、トロ
イダル方向31に一周して設けられ、容器に溶接されて
いる。この補強構造でも、ポ−ト間を補強板で接続した
のと同様な効果が得られ、ディスラプションによるポ−
ト間の容器部で発生する応力は減少する。
FIG. 8 is a side view of a main part of a vacuum vessel according to a second embodiment of the present invention. The reinforcing plate 21 in the present embodiment is provided slightly outside the upper wall 18 and the lower wall 19 of each port 3 in the toroidal direction 31 and is welded to the container. With this reinforcing structure, the same effect as connecting the ports with a reinforcing plate can be obtained, and the port by the disruption can be obtained.
The stress generated in the container between the points is reduced.

【0020】本実施例では、断面が四角のポ−トについ
て示しているが、ポ−トの断面形状にかかわらず、トロ
イダル方向に一周した補強板をポ−トの上下部付近の容
器部に設けることで、ディスラプションによるポ−ト間
の容器部で発生する応力は減少する。
In this embodiment, a port having a square cross section is shown. However, regardless of the cross-sectional shape of the port, a reinforcing plate that goes around in the toroidal direction is attached to the container near the upper and lower portions of the port. With this arrangement, the stress generated in the container between the ports due to the disruption is reduced.

【0021】図9は、本発明の第3実施例に係る真空容
器の断面図である。本実施例に係る真空容器は、容器2
の壁が二重に構成され、内側壁と外側壁を接続するトロ
イダル方向の補強板21を設けている。このように、本
実施例では二重壁内に、トロイダル方向に垂直な補強板
の他に、トロイダル方向31に一周する補強板21をポ
−ト3と容器2の結合部付近に持つ。この補強構造で
も、ポ−ト間を補強板で接続したのと同様な効果が得ら
れるため、ディスラプションによるポ−ト間の容器部で
発生する応力は減少する。
FIG. 9 is a sectional view of a vacuum vessel according to a third embodiment of the present invention. The vacuum container according to the present embodiment is a container 2
Of the present embodiment is provided with a toroidal reinforcing plate 21 for connecting the inner side wall and the outer side wall. As described above, in this embodiment, in addition to the reinforcing plate perpendicular to the toroidal direction, the reinforcing plate 21 surrounding the port 3 in the toroidal direction 31 is provided near the joint between the port 3 and the container 2 in the double wall. Even with this reinforcing structure, the same effect as connecting the ports with a reinforcing plate is obtained, so that the stress generated in the container between the ports due to the disruption is reduced.

【0022】[0022]

【発明の効果】本発明によれば、ディスラプション時に
真空容器に発生するポ−ト間の容器部に発生する応力が
減少する。
According to the present invention, the stress generated in the container portion between the ports generated in the vacuum container during the disruption is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る真空容器の要部斜視
図である。
FIG. 1 is a perspective view of a main part of a vacuum vessel according to a first embodiment of the present invention.

【図2】トカマク型核融合装置の全体図である。FIG. 2 is an overall view of a tokamak fusion device.

【図3】トカマク型核融合装置断面での磁束分布であ
る。
FIG. 3 is a magnetic flux distribution in a cross section of a tokamak fusion device.

【図4】ディスラプションにおける真空容器に流れる渦
電流を数値解析によって求めた結果である。
FIG. 4 shows the result of numerical analysis of an eddy current flowing in a vacuum vessel during disruption.

【図5】従来の真空容器でのディスラプションによって
発生する変形を数値解析によって求めた結果である。
FIG. 5 shows a result obtained by numerical analysis of a deformation generated by a disruption in a conventional vacuum vessel.

【図6】従来の真空容器でのディスラプションによって
発生する応力分布を数値解析によって求めた結果であ
る。
FIG. 6 shows a result obtained by numerical analysis of a stress distribution generated by disruption in a conventional vacuum vessel.

【図7】図1に示す真空容器でのディスラプションによ
って発生する応力分布を数値解析によって求めた結果で
ある。
FIG. 7 is a graph showing a distribution of stress generated by disruption in the vacuum container shown in FIG. 1 obtained by numerical analysis.

【図8】本発明の第2実施例に係る真空容器の要部側面
図である。
FIG. 8 is a main part side view of a vacuum vessel according to a second embodiment of the present invention.

【図9】本発明の第3実施例に係る真空容器の要部断面
図である。
FIG. 9 is a sectional view of a main part of a vacuum vessel according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…真空容器、2…容器、3…ポ−ト、4…ポロイダル
磁場コイル、5…トロイダル磁場コイル、6…炉内構造
物、7…プラズマ、8…磁気面、9…渦電流流線、10
…インボ−ド側、11…アウトボ−ド側、12…磁場
(インボ−ド側)、13…磁場(アウトボ−ド側)、1
4…電磁力(インボ−ド側)、15…電磁力(アウトボ
−ド側)、18…ポ−ト上部、19…ポ−ト下部、21
…補強板、30…主半径方向、31…トロイダル方向、
32…上下方向。
DESCRIPTION OF SYMBOLS 1 ... Vacuum container, 2 ... Container, 3 ... Port, 4 ... Poloidal magnetic field coil, 5 ... Toroidal magnetic field coil, 6 ... Furnace structure, 7 ... Plasma, 8 ... Magnetic surface, 9 ... Eddy current streamline, 10
... inboard side, 11 ... outboard side, 12 ... magnetic field (inboard side), 13 ... magnetic field (outboard side), 1
4 ... electromagnetic force (inboard side), 15 ... electromagnetic force (outboard side), 18 ... port upper part, 19 ... port lower part, 21
... reinforcement plate, 30 ... main radial direction, 31 ... toroidal direction,
32 ... vertical direction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木下 茂美 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (72)発明者 大塚 道夫 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 エネルギー研究 所内 (72)発明者 小泉 興一 茨城県那珂郡那珂町大字向山801番地の 1 日本原子力研究所 那珂研究所内 (72)発明者 多田 栄介 茨城県那珂郡那珂町大字向山801番地の 1 日本原子力研究所 那珂研究所内 (56)参考文献 特開 昭62−112093(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21B 1/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigemi Kinoshita 3-1-1, Komachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Inside the Hitachi Plant (72) Inventor Michio Otsuka 7-2, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd. Energy Research Laboratory (72) Inventor Koichi Koizumi 801 Mukaiyama, Nakamachi, Naka-gun, Ibaraki Pref. 1 Inside the Japan Atomic Energy Research Institute Naka Research Laboratory (72) Inventor Eisuke Tada Nakamachi, Naka-gun, Ibaraki Pref. No. 801 Mukaiyama 1 Atomic Research Laboratory, Japan Atomic Energy Research Institute Naka Research Laboratory (56) References JP-A-62-112093 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G21B 1/00

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 トーラス状の容器と、その容器に設けら
れた筒状のポートからなる真空容器において、トロイダ
ル方向の補強板でポート間を接続し、その接続場所をポ
ートの長さ方向においてポートと容器の結合部付近とす
ることを特徴とする核融合装置の真空容器。
In a vacuum container comprising a torus-shaped container and a cylindrical port provided in the container, the ports are connected by a reinforcing plate in a toroidal direction, and the connection location is defined as a port in the length direction of the port. A vacuum vessel for a nuclear fusion device, wherein the vacuum vessel is near the joint between the vessel and the vessel.
【請求項2】 請求項1において、トロイダル方向の補
強板の容器側を容器に接続したことを特徴とする核融合
装置の真空容器。
2. A vacuum vessel for a nuclear fusion device according to claim 1, wherein the vessel side of the reinforcing plate in the toroidal direction is connected to the vessel.
【請求項3】 請求項1または請求項2において、ポー
トの長さ方向の断面を四角形状とし、補強板の接続場所
をポートの長さ方向の断面において四角形状の角付近と
したことを特徴とする核融合装置の真空容器。
3. The port according to claim 1, wherein the cross section in the length direction of the port is square, and the connecting position of the reinforcing plate is near a square corner in the cross section in the length direction of the port. Nuclear fusion device vacuum vessel.
【請求項4】 トーラス状の容器と、その容器に設けら
れた筒状ポートからなる真空容器において、前記トーラ
ス状容器の容器壁を二重構造とし、該二重壁内にトロイ
ダル方向に一周する補強板を設け、かつ、その位置をポ
ートと容器の結合部付近としたことを特徴とする核融合
装置の真空容器。
4. A torus-shaped container and a container provided in the container.
A vacuum vessel comprising
A container wall of the scan shaped container with double construction, only setting a reinforcing plate encircling Troy <br/> dull direction to the double wall, and that it has the position as near the junction of the port and the container Characteristic vacuum vessel of fusion device.
【請求項5】 請求項1乃至請求項のいずれかにおい
て、ポート間の容器部の剛性を、ポート部の剛性と同程
度とするような補強板を持つことを特徴とする核融合装
置の真空容器。
5. In any of claims 1 to 4, between the ports the rigidity of the container portion, the fusion device characterized by having a reinforcing plate as a rigid about the same ports Vacuum container.
【請求項6】 請求項1乃至請求項のいずれかに記載
の真空容器と、該真空容器内にプラズマを閉じ込める磁
力発生装置とを備えることを特徴とする核融合装置。
6. A vacuum vessel according to any one of claims 1 to 5, nuclear fusion apparatus, characterized in that it comprises a magnetic force generating device to confine the plasma in the vacuum vessel.
【請求項7】 外周囲のトロイダル方向に離散的に筒状
の複数のポートが接続されたトーラス状の真空容器にお
いて、前記トーラス状の真空容器の外周囲をトロイダル
方向に一周する補強板を前記各ポートを上下に挾む位置
に設けたことを特徴とする核融合装置の真空容器。
7. A torus-shaped vacuum vessel to which a plurality of cylindrical ports are connected discretely in an outer toroidal direction in a toroidal direction, wherein a reinforcing plate that circles around the outer circumference of the torus-shaped vacuum vessel in a toroidal direction is provided. A vacuum vessel for a nuclear fusion device, wherein each port is provided at a position sandwiching the ports up and down.
【請求項8】 外周囲のトロイダル方向に離散的に筒状
の複数のポートが接続されたトーラス状の真空容器にお
いて、該真空容器の容器壁を二重構造にすると共に該容
器壁内にトロイダル方向に長手の補強板を該容器壁に一
体に取り付けたことを特徴とする核融合装置の真空容
器。
8. A torus-shaped vacuum vessel to which a plurality of cylindrical ports are discretely connected in the toroidal direction of the outer periphery, wherein the vessel wall of the vacuum vessel has a double structure and the toroidal inside the vessel wall. A vacuum vessel for a fusion device, wherein a reinforcing plate elongated in the direction is integrally attached to the vessel wall.
【請求項9】 トーラス状の容器と、該容器の外周囲の
トロイダル方向に離散的に取り付けられた複数のポート
とを備える真空容器において、前記容器に加わる中心方
向の変形力に対抗するトロイダル方向に長手の補強板
を、隣接する前記ポート間であってそのポートの上部位
置と下部位置に溶接で接続したことを特徴とする核融合
装置の真空容器。
9. A vacuum vessel comprising a torus-shaped container and a plurality of ports discretely mounted in the toroidal direction around the outer periphery of the container, wherein a toroidal direction against a centrally-directed deformation force applied to the container is provided. 3. A vacuum vessel for a fusion device, wherein a longitudinal reinforcing plate is welded between adjacent ports at upper and lower positions of the ports.
JP5332198A 1993-12-27 1993-12-27 Fusion device and its vacuum vessel Expired - Fee Related JP3058546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5332198A JP3058546B2 (en) 1993-12-27 1993-12-27 Fusion device and its vacuum vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5332198A JP3058546B2 (en) 1993-12-27 1993-12-27 Fusion device and its vacuum vessel

Publications (2)

Publication Number Publication Date
JPH07191163A JPH07191163A (en) 1995-07-28
JP3058546B2 true JP3058546B2 (en) 2000-07-04

Family

ID=18252274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5332198A Expired - Fee Related JP3058546B2 (en) 1993-12-27 1993-12-27 Fusion device and its vacuum vessel

Country Status (1)

Country Link
JP (1) JP3058546B2 (en)

Also Published As

Publication number Publication date
JPH07191163A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
JP3566294B2 (en) Transport and storage barrels for spent nuclear fuel
Liu et al. Engineering design for the HL-2M tokamak components
US3424239A (en) Nuclear reactor pressure vessel
JP3058546B2 (en) Fusion device and its vacuum vessel
CN109448868A (en) One kind having the welded vacuum chamber sector of lower window eckband
JP3058547B2 (en) Nuclear fusion device
Koizumi et al. Design and development of the ITER vacuum vessel
Masaki et al. Design and manufacturing of JT-60SA vacuum vessel
US4534140A (en) Annular slab for closing the vessel of a fast neutron nuclear reactor
JP2001004767A (en) Fusion reactor blanket structure
JPH0511079A (en) Metallic port
Parker et al. Progress in the design of in-vessel components for ITER
JP3303537B2 (en) Vacuum container for fusion device
Yu et al. Structural analyses and preliminary design of HT-7U cryostat
Sviatoslavsky et al. Engineering design issues of a low aspect ratio tokamak volumetric neutron source
Tamura et al. Superconducting Magnet and Support Structure of the FFHR-d1
JP2001108778A (en) Reactor core barrel
Coppi et al. Highlights of the Columbus Concept
Sager et al. First wall-shield design considerations for ETF
JPH0648644B2 (en) Superconducting device
Nakamura et al. Design of port structure between vacuum vessel and cryostat in JT-60SA
Yu et al. Cryostat engineering design and manufacturing of the EAST superconducting Tokamak
JP2001004766A (en) Fusion reactor baffle blanket and its manufacture
JP2003315488A (en) Spent nuclear fuel housing container
Mantz et al. TPX poloidal limiter design

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees