JP3057389U - Condensing temperature controller for refrigeration and air conditioning equipment - Google Patents

Condensing temperature controller for refrigeration and air conditioning equipment

Info

Publication number
JP3057389U
JP3057389U JP1998007251U JP725198U JP3057389U JP 3057389 U JP3057389 U JP 3057389U JP 1998007251 U JP1998007251 U JP 1998007251U JP 725198 U JP725198 U JP 725198U JP 3057389 U JP3057389 U JP 3057389U
Authority
JP
Japan
Prior art keywords
water
temperature
pipe
air
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1998007251U
Other languages
Japanese (ja)
Inventor
豊 佐藤
Original Assignee
東洋装設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋装設株式会社 filed Critical 東洋装設株式会社
Priority to JP1998007251U priority Critical patent/JP3057389U/en
Application granted granted Critical
Publication of JP3057389U publication Critical patent/JP3057389U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】 【課題】 冷凍・空調機器の空冷式凝縮器が、夏期の高
温時に凝縮温度が上昇し、消費電力の増大や、製品寿命
低下等の問題の原因となっていた。 【解決手段】 凝縮器が収納された室外機上部に貯水タ
ンクを設け、凝縮温度の上昇を感知する感温筒等の温度
センサーによって、開閉する流量制御弁を用いて、貯水
タンク内の水を凝縮器のフィン・コイルに滴下給水し、
冷媒冷却能力を増やすことが可能となり、凝縮温度を外
気のみで冷媒冷却する場合よりも、低下させるようなシ
ステム構成とした。なお、この装置を駆動させるための
電力等は不要であるように構成した。
(57) [Summary] [PROBLEMS] The air-cooled condenser of refrigeration / air-conditioning equipment has a problem that the condensing temperature rises when the temperature is high in summer, which causes problems such as an increase in power consumption and a shortened product life. SOLUTION: A water storage tank is provided at an upper part of an outdoor unit in which a condenser is stored, and water in the water storage tank is opened and closed by a flow rate control valve which is opened and closed by a temperature sensor such as a temperature sensing tube for detecting an increase in condensation temperature. Water is dripped into the fin coil of the condenser,
The system configuration is such that the refrigerant cooling capacity can be increased, and the condensing temperature is reduced as compared with the case where the refrigerant is cooled only by the outside air. It should be noted that power and the like for driving this device are not required.

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、外気を用いて、圧縮機から吐出された高温・高圧の冷媒を冷却・ 凝縮させる冷凍・空調機器の空冷式凝縮器に関するもので、外気温度が高い時、 凝縮器のフィン等に滴下水を供給することによって、凝縮冷却能力を大きくし、 凝縮温度を低下させるように制御すると、冷凍・空調能力は増加し、消費電力は 減少させることが可能となるため、効率の良い冷凍・空調システムが提供できる ものである。また、圧縮機の負荷が軽減できるので、製品寿命の改善にも寄与す ることができるものである。 This invention relates to an air-cooled condenser for refrigeration and air-conditioning equipment that cools and condenses high-temperature and high-pressure refrigerant discharged from a compressor using outside air. If the condensing / cooling capacity is increased by supplying dropping water and the condensing temperature is controlled to decrease, the refrigeration / air conditioning capacity will increase and the power consumption will be reduced. An air conditioning system can be provided. Also, since the load on the compressor can be reduced, it can also contribute to the improvement of product life.

【0002】[0002]

【従来の技術】[Prior art]

従来、冷凍・空調機器の空冷式凝縮器は、図7に示すような部品要素及び構造 からなり、図において(1)は凝縮器、(2)はファン、(3)はファン(2) を回転させるモーター、(4)は外装構造体、(5)は機械電装品室を示す。 機械電装品室(5)の中に設置された圧縮機(図示せず)で、圧縮された冷媒 は、凝縮器(1)内部に導かれ、モーター(3)で回転するファン(2)によっ て凝縮器外部を通過する外気と熱交換し、冷却・凝縮させられる。外気の流れは 図中の矢印にて示すように、外装構造(4)の背面及び側面側より入り、凝縮器 (1)を通りながら熱交換して、モーター(3)とファン(2)を通過し、外装 構造体(4)の正面へ出る。 また、凝縮器(1)は、図8に示すように、冷媒が通るコイル(6)とコイル (6)に密着したフィン(7)から構成され、通常、フィン(7)は鉛直方向に 配置されており、コイル(6)はフィン(7)に対して垂直に配置されて、外気 はこれらコイル(6)とフィン(7)の間を通過する時に、冷媒から熱を奪い、 外気自体の温度が上昇することで、熱交換を行う。また、(8)はフィン(7) やコイル(6)を保護する保護ネットである。 図9は、正面から見た一般的な業務用空冷式凝縮器の外観を示す。ファン(2 )が2つ設置され、ファンカバー(9)によって保護されている。図中の矢印は 、熱交換後、凝縮器から吹き出す外気の流れを示す。また、外装構造体(4)は 上蓋(4a)・側面部材(4b)・底板(4c)等からなっている。 図10は、図9を背面側より見た空冷式凝縮器の外観を示す。凝縮器(1)は 保護ネット(8)により、フィン(7)等を保護されている。図中の矢印は、熱 交換前、凝縮器に流入する外気の流れを示す。 Conventionally, an air-cooled condenser of refrigeration / air-conditioning equipment has components and structures as shown in FIG. 7, in which (1) is a condenser, (2) is a fan, and (3) is a fan (2). A motor to be rotated, (4) is an exterior structure, and (5) is a mechanical electrical equipment room. Refrigerant compressed by a compressor (not shown) installed in the mechanical electrical equipment room (5) is guided into the condenser (1) and is sent to the fan (2) rotated by the motor (3). As a result, it exchanges heat with the outside air passing outside the condenser, and is cooled and condensed. As shown by the arrows in the figure, the flow of the outside air enters from the back and side of the exterior structure (4), exchanges heat while passing through the condenser (1), and connects the motor (3) and the fan (2). Passes and exits in front of the exterior structure (4). As shown in FIG. 8, the condenser (1) is composed of a coil (6) through which a refrigerant passes and a fin (7) in close contact with the coil (6), and the fin (7) is usually arranged in a vertical direction. The coil (6) is arranged perpendicular to the fins (7), and the outside air takes heat from the refrigerant when passing between these coils (6) and the fins (7), and the outside air itself Heat exchange is performed by increasing the temperature. (8) is a protection net for protecting the fin (7) and the coil (6). FIG. 9 shows the appearance of a general commercial air-cooled condenser viewed from the front. Two fans (2) are installed and protected by a fan cover (9). The arrows in the figure indicate the flow of outside air blown out of the condenser after heat exchange. The exterior structure (4) includes an upper lid (4a), side members (4b), a bottom plate (4c), and the like. FIG. 10 shows the appearance of the air-cooled condenser when FIG. 9 is viewed from the rear side. The condenser (1) has its fins (7) and the like protected by a protection net (8). The arrows in the figure indicate the flow of outside air flowing into the condenser before heat exchange.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the invention]

従来の凝縮器は、常に外気だけによる熱交換にて、冷媒を冷却・凝縮させる方 式なので、夏期、外気温度が上昇すると、冷媒の凝縮温度も上昇してしまう結果 、冷凍能力の低下、消費電力の増加と言う問題点を有していた。また、凝縮温度 の上昇は、凝縮圧力の上昇を伴うため、圧縮機摺動部の負荷増大を招き、部品の 摩耗・摩滅が促進され、製品の寿命低下と言う問題点も有り、製品廃棄時のフロ ンガス処理問題の一因にもなっていた。 Conventional condensers always cool and condense the refrigerant by heat exchange only with the outside air, so when the outside air temperature rises in summer, the condensation temperature of the refrigerant also rises, resulting in a decrease in refrigeration capacity and consumption. There was a problem of an increase in power. In addition, an increase in condensing temperature is accompanied by an increase in condensing pressure, which causes an increase in the load on the sliding parts of the compressor, which leads to accelerated wear and abrasion of parts, resulting in a shortened product life. This also contributed to the problem of front gas treatment.

【0004】 本考案は、従来の空冷式凝縮器のこのような問題点を解決するために、凝縮温 度を従来より低下させた状態で運転できるように制御する装置を提供しようとす るものである。[0004] The present invention is intended to solve the above-mentioned problems of the conventional air-cooled condenser, and to provide an apparatus for controlling the condensing temperature so that the condenser can be operated at a reduced temperature. It is.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、本考案における冷凍・空調機器の凝縮温度制御装 置は、外気との熱交換だけでは、設定した凝縮温度より上昇する場合、外気に加 えて、凝縮器のフィン間に水を滴下させ、フィンと冷媒の通過するコイルを冷却 する手段を用いることにより、凝縮温度を外気のみの冷却時に比べて低い凝縮温 度に保って、運転できる冷凍・空調機器である。 In order to achieve the above object, the condensing temperature control device for refrigeration / air-conditioning equipment according to the present invention uses the heat exchange with the outside air alone to increase the condensing temperature above the set condensing temperature. This is a refrigeration / air-conditioning device that can operate by maintaining the condensation temperature at a lower condensation temperature than when only the outside air is cooled, by using a means for dripping water into the fin and cooling the coils through which the fins and refrigerant pass.

【0006】 また、家庭用の小型空調機のように、1日の所要水量が少ない凝縮器向けに、 断熱材で覆われた箱体状の給水装置を凝縮器上部に設置し、この箱体内に貯水す ることで、水道等からの配管工事を省略でき、かつ、電気による駆動・制御する 部分が無いため、電源配線工事も省略でき、取り付けやメンテナンス簡単にでき るようにしたものである。In addition, for a condenser such as a small-sized air conditioner for home use that requires a small amount of water per day, a box-shaped water supply device covered with a heat insulating material is installed at an upper portion of the condenser, and the inside of the box is provided. By storing water in the water, piping work from the water supply etc. can be omitted, and since there is no part to be driven and controlled by electricity, power supply wiring work can be omitted and installation and maintenance can be simplified. .

【0007】 しかも、この冷却に使用する水の量も無駄にしないように、サーモ流量弁によ って、凝縮温度の上昇具合に弁の開度が連動するように装置を構成し、供給水量 を最適化できるようにしたものである。また、止水栓の開閉が温度センサーによ ってなされるため、凝縮温度が上昇する周囲条件(外気温度や外装構造体温度) の時に給水が行われるようにしたものである。Further, in order not to waste the amount of water used for the cooling, the apparatus is configured by a thermo-flow valve so that the opening degree of the valve is linked to the degree of increase of the condensing temperature. Can be optimized. In addition, since the water stopcock is opened and closed by a temperature sensor, water is supplied when the ambient temperature (outside air temperature or exterior structure temperature) at which the condensation temperature rises.

【0008】 加えて、この冷却水が、フィン間に効率良く給水できるように滴下出水部形状 を刷毛状に形成したものである。[0008] In addition, the shape of the dripping water discharge portion is formed in a brush shape so that the cooling water can be efficiently supplied between the fins.

【0009】 また、大型の冷凍・空調機器のように多量の給水が必要な場合に、貯水タンク に給水弁を経て給水装置から直接給水することで、貯水タンクへの給水が自動的 になされ、水位変動が少ないので凝縮器への給水量も安定させられるようにした ものである。同様に、貯水タンクを省略し、給水装置から、ストレーナー・減圧 弁を経て止水栓に直接接続しても同じ効果が得られるものである。In addition, when a large amount of water is required, such as in large refrigeration / air conditioning equipment, water is automatically supplied to the water storage tank by directly supplying water to the water storage tank through a water supply valve from the water supply device. Since the water level fluctuation is small, the amount of water supplied to the condenser can be stabilized. Similarly, the same effect can be obtained by omitting the water storage tank and directly connecting the water supply device to the stopcock via a strainer and a pressure reducing valve.

【0010】 なお、サーモ止水栓かサーモ流量弁のどちらかひとつを、貯水タンクの継手口 からの配管に接続させるような装置構成とすると、制御の正確性やメンテナンス 性等が少々悪化するが、取り付けスペースや価格の節約になる。If one of the thermostatic stopcock and the thermostatic flow valve is connected to the piping from the joint port of the water storage tank, the control accuracy and the maintainability are slightly deteriorated. , Saving installation space and price.

【0010】[0010]

【考案の実施の形態】[Embodiment of the invention]

考案の実施の形態について図面を参照して説明する。なお、室外機は家庭用小 型空調機を用いた実施例である。 図1において、凝縮器(1)の外装構造体(4)の上蓋(4a)上部に設置さ れた給水タンク(10)は上蓋(10a)を有し、断熱材(10b)によって周 りを囲われている。給水タンク(10)の内部にはゴミ等を除去するストレーナ ー(図示せず)を具備し、外部には継手口(11)が設けられ、その継手口(1 1)には止水弁(12)とサーモ流量弁(13)が接続されている。サーモ流量 弁(13)出口には出水管(14)が取り付けられており、凝縮器(1)が配置 されている外装構造体(4)の上部に固定金具(15)とネジ(16)で係止さ れた滴下管(17)に連結されている。その滴下管(17)下部には小孔(図示 せず)が多数設けられており、その小孔には滴下出水管(18)が取り付けられ ている。また、滴下管(17)の終端側には水抜き栓(19)が付いている。給 水タンク(10)は、固定足(20)が備わっており、ネジ(16a)で外装構 造体上蓋(4a)に取り付けられている。サーモ流量弁(13)の下部からは、 温度を感知する感温筒(図示せず)に連なる毛細管(13a)が出ており、外装 構造体(4)内部に入っている。 An embodiment of the invention will be described with reference to the drawings. The outdoor unit is an embodiment using a small household air conditioner. In FIG. 1, a water supply tank (10) installed above an upper lid (4a) of an exterior structure (4) of a condenser (1) has an upper lid (10a), and is surrounded by a heat insulating material (10b). Is enclosed. A strainer (not shown) for removing dust and the like is provided inside the water supply tank (10), and a joint port (11) is provided outside, and a water shutoff valve (11) is provided at the joint port (11). 12) and the thermo-flow valve (13) are connected. A water pipe (14) is attached to the outlet of the thermo-flow valve (13), and a fixing bracket (15) and a screw (16) are mounted on the upper part of the exterior structure (4) in which the condenser (1) is arranged. It is connected to the locked drip tube (17). A number of small holes (not shown) are provided below the dropping pipe (17), and a dropping water pipe (18) is attached to the small hole. Further, a drain plug (19) is provided at the end side of the drip pipe (17). The water supply tank (10) has fixed feet (20) and is attached to the exterior structure upper lid (4a) with screws (16a). From the lower part of the thermo-flow valve (13), a capillary tube (13a) connected to a temperature-sensitive tube (not shown) for sensing temperature exits and enters the exterior structure (4).

【0011】 図2は、室外機を上面から見たところを示している。機械電装品室(5)内の 圧縮機(21)で圧縮された冷媒は、吐出管(22)から出て、凝縮器(1)に 入り、ファン(2)による外気と滴下出水管(18)からの給水によって冷却さ れて液化し、室内機へと導かれる。室内機で気化冷却した冷媒は、ガス状態で圧 縮機へ戻ってくる。凝縮温度が上昇すると、圧縮機から吐出される冷媒の温度も 上昇する関係があるので、サーモ流量弁(13)の感温筒(13b)を吐出管( 22)と凝縮器(1)の間の配管に取り付けてある例を示している。なお、貯水 タンク(10)の内部に破線でストレーナー(23)を示している。FIG. 2 shows the outdoor unit as viewed from above. The refrigerant compressed by the compressor (21) in the mechanical electrical equipment room (5) exits from the discharge pipe (22), enters the condenser (1), and is connected to the outside air and the dripping water pipe (18) by the fan (2). Cooled and liquefied by the water supply from) and guided to the indoor unit. The refrigerant vaporized and cooled in the indoor unit returns to the compressor in a gaseous state. When the condensing temperature rises, the temperature of the refrigerant discharged from the compressor also rises. Therefore, the thermosensitive cylinder (13b) of the thermo-flow valve (13) is connected between the discharge pipe (22) and the condenser (1). The example attached to the piping of FIG. The strainer (23) is indicated by a broken line inside the water storage tank (10).

【0012】 図3から図4は、滴下出水管(18)の代わりに滴下管(17)下部に、刷毛 状の滴下出水部(24)を設けたもの一実施例で、この滴下出水部(24)の凝 縮器(1)側先端は、フィン(7)間に挿入されており、凝縮器(1)への給水 が広範囲に、かつ、効率的に行われ、刷毛状先端が変形するのでフィン(7)の 損傷を防止するこができる。FIG. 3 and FIG. 4 show an embodiment in which a brush-shaped dropping water outlet (24) is provided below the dropping pipe (17) instead of the dropping water pipe (18). The tip of the condenser (1) on the side 24) is inserted between the fins (7), and the water supply to the condenser (1) is performed in a wide range and efficiently, and the brush-like tip is deformed. Therefore, damage to the fin (7) can be prevented.

【0013】 図5は、貯水タンク(10)に水道等の給水装置から補給水が供給されるよう にし、止水栓(12)に代えて、サーモ止水栓(25)を用いた一実施例を示し ている。給水装置からの給水管(26)は、貯水タンク(10)内のボールタッ プ給水弁(27)(以下、給水弁と称す)に接続されており、貯水タンク(10 )内の水位が下がると、給水弁(27)のフロート(27a)も下がり、給水弁 (27)が開き、給水が行われる。大型の冷凍・空調機器や高負荷状態で使用さ れる場合のように、多量の冷却水が必要な時に有効である。 また、サーモ止水栓(25)には毛細管(25a)と温度を感知する感温筒( 25b)が備わっており、ここでは感温筒(25b)が外装構造体(4)の上蓋 (4a)に固定金具(28)で取り付けられている実施例を示している。このサ ーモ止水栓(25)は、高外気温度や直射日光による外装構造体(4)温度上昇 を感温筒(25b)で感知し、冷凍・空調機器の凝縮温度上昇が予想される時に のみサーモ止水栓(25)を開くために設置してあり、凝縮器(1)の周囲状況 から冷凍・空調機器の負荷が低いと予想される時には給水せず、負荷が高い時ま で貯水タンク(10)内の水を残しておくことができるようにしたものである。FIG. 5 shows an embodiment in which the water storage tank (10) is supplied with make-up water from a water supply device such as a tap, and a thermostatic stopcock (25) is used instead of the stopcock (12). An example is shown. A water supply pipe (26) from the water supply device is connected to a ball tap water supply valve (27) (hereinafter referred to as a water supply valve) in the water storage tank (10), and when the water level in the water storage tank (10) falls. Then, the float (27a) of the water supply valve (27) is also lowered, and the water supply valve (27) is opened to supply water. This is effective when large amounts of cooling water are required, such as when used in large refrigeration / air-conditioning equipment or under heavy load conditions. The thermostatic stopcock (25) is provided with a capillary tube (25a) and a temperature sensing tube (25b) for sensing temperature. In this case, the temperature sensing tube (25b) is provided with an upper lid (4a) for the exterior structure (4). ) Shows an embodiment mounted with a fixing bracket (28). The thermostatic stopcock (25) senses the temperature rise of the exterior structure (4) due to high outside air temperature or direct sunlight with the thermosensitive cylinder (25b), and the condensation temperature of the refrigeration / air conditioning equipment is expected to rise. It is installed only to open the thermostatic stopcock (25) only when the load on the refrigeration / air-conditioning equipment is expected to be low based on the surrounding conditions of the condenser (1). The water in the water storage tank (10) can be left.

【0014】 図6は、貯水タンク(10)が無く、水道等の給水装置からの給水管(26) にストレーナー(23a)と減圧弁(29)を取り付け、サーモ止水栓(25) に接続した実施例を示したもので、貯水タンクを設置できない場合や、多量の冷 却水が必要な大型の冷凍・空調機器などに使用するものである。FIG. 6 shows that there is no water storage tank (10), and a strainer (23a) and a pressure reducing valve (29) are attached to a water supply pipe (26) from a water supply device such as a water supply, and connected to a thermostatic stopcock (25). This is used for cases where a water storage tank cannot be installed, or for large refrigeration / air-conditioning equipment that requires a large amount of cooling water.

【0015】[0015]

【考案の効果】[Effect of the invention]

本考案は、上述のとおり構成されているので、次に記載する効果を奏する。 Since the present invention is configured as described above, it has the following effects.

【0016】 凝縮温度と省電力との関連を、圧縮機の理論圧縮動力を表す次式をもって説明 する。 W=Pe×Vs×C1×{(Pc/Pe)c2−1} ・・・・(a) C1=n/(n−1) ・・・・(b) C2=(n−1)/n ・・・・(c) W:理論圧縮動力(W)、Pe:冷媒蒸発圧力(N/m)、Vs:圧縮機吸 入冷媒容積(m/s)、Pd:冷媒凝縮圧力(N/m)、n:冷媒のポリト ロープ指数である。なお、(a)式はSI単位系で表されており、圧力はパスカ ルPa=(N/m)で示している。 冷凍・空調用冷媒フロン22(化学式:CHClF)を例に取り、式(a) から(c)について検証する。なお、運転条件等は、一般的な空調機の場合とし 、フロン22の物性値表から、各圧力と温度を求めている。 標準的な運転条件(条件1) Tc=50(℃)=323(゜K)、Te=10(℃)=283(゜K) Pc=19.81(kg/cm2abs)=20.2×10(N/m) Pe=6.94(kg/cm2abs)=7.08×10(N/m) Vs=7×10−(m/s)、n=1.186 高負荷的な運転条件(条件2) Tc=64(℃)=337(゜K)、Te=10(℃)=283(゜K) Pc=26.75(kg/cm2abs)=27.3×10(N/m) Pe=6.94(kg/cm2abs)=7.08×10(N/m) Vs=7×10−(m/s)、n=1.186 ここで、定数項は C1=n/(n−1)=6.376 C2=(n−1)/n=0.1568 となるから、条件1、条件2の理論圧縮動力は、それぞれ、 条件1:W1=565(W) 条件2:W2=745(W) となり、凝縮温度が14(℃)上昇すると、180(W)、比率にして約32 %理論圧縮動力が増加することが判かる。The relationship between the condensing temperature and the power saving will be described with reference to the following expression representing the theoretical compression power of the compressor. W = Pe × Vs × C1 × {(Pc / Pe) c2 −1} (a) C1 = n / (n−1) (b) C2 = (n−1) / n ··· (c) W: theoretical compression power (W), Pe: refrigerant evaporation pressure (N / m 2 ), Vs: compressor suction refrigerant volume (m 3 / s), Pd: refrigerant condensation pressure (N / M 2 ), n: polytropic index of the refrigerant. The expression (a) is expressed in SI units, and the pressure is expressed by Pascal Pa = (N / m 2 ). Taking the refrigerant Freon 22 for freezing and air conditioning (chemical formula: CHClF 2 ) as an example, the equations (a) to (c) will be verified. The operating conditions and the like are those of a general air conditioner, and the respective pressures and temperatures are obtained from the physical property value table of Freon 22. Standard operating conditions (condition 1) Tc = 50 (° C.) = 323 (ΔK), Te = 10 (° C.) = 283 (ΔK) Pc = 19.81 (kg / cm 2 abs) = 20.2 × 10 5 (N / m 2) Pe = 6.94 (kg / cm2abs) = 7.08 × 10 5 (N / m 2) Vs = 7 × 10- 4 (m 3 /s),n=1.186 high Load-like operation conditions (condition 2) Tc = 64 (° C) = 337 (ΔK), Te = 10 (° C) = 283 (ΔK) Pc = 26.75 (kg / cm2abs) = 27.3 × 10 5 (N / m 2) Pe = 6.94 (kg / cm2abs) = 7.08 × 10 5 (N / m 2) Vs = 7 × 10- 4 (m 3 /s),n=1.186 here And the constant term is C1 = n / (n-1) = 6.376 C2 = (n-1) /n=0.168 The theoretical compression power of Condition 2 is as follows: Condition 1: W1 = 565 (W) Condition 2: W2 = 745 (W) It can be seen that the theoretical compression power increases by 32%.

【0017】 水の蒸発潜熱は、約539(cal/g)=0.63(W/g)なので、約2 86(g){286(cc)}の水を蒸発させて冷媒を冷却してやれば、条件2 の高負荷時の凝縮温度が標準的運転条件の凝縮温度に下がり、その結果、圧縮動 力も約32%減少し、大幅に消費電力を節約することができる。つまり、少量の 給水で大きな省電力効果が得られるのである。Since the latent heat of vaporization of water is about 539 (cal / g) = 0.63 (W / g), about 286 (g) {286 (cc)} of water is evaporated to cool the refrigerant. The condensing temperature under the high load condition 2 is reduced to the condensing temperature under the standard operating conditions. As a result, the compression power is also reduced by about 32%, and the power consumption can be greatly reduced. In other words, a small amount of water supply can provide a significant power saving effect.

【0018】 また、運転条件の条件1と条件2で示したように、凝縮圧力(Pc)が上昇す ると、凝縮温度(Tc)も上昇する相関性があり、凝縮圧力(Pc)を感知して 、サーモ流量弁(13)やサーモ止水栓(25)を開閉させるシステム構成も考 え得るが、凝縮温度等の温度を感知するシステム構成の方が、既設の空冷式凝縮 器に、本考案の制御装置を改造・取り付けするような場合、簡単に設置でき、冷 媒漏洩等に対して、高い信頼性を得られる効果がある。Further, as shown in the condition 1 and the condition 2 of the operating condition, when the condensing pressure (Pc) increases, there is a correlation that the condensing temperature (Tc) increases, and the condensing pressure (Pc) is detected. Then, a system configuration that opens and closes the thermo-flow valve (13) and the thermostatic stopcock (25) can be considered, but a system configuration that senses the temperature such as the condensing temperature is more suitable for an existing air-cooled condenser. When the control device of the present invention is modified or installed, it can be easily installed, and has an effect of obtaining high reliability with respect to refrigerant leakage and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】家庭用空調機の室外機に本考案の凝縮温度制御
装置を設置した一実施例を示す要部外観図であり、凝縮
器への給水が滴下出水管を用いている例を示している。
FIG. 1 is an external view of a main part showing an embodiment in which a condensing temperature control device of the present invention is installed in an outdoor unit of a home air conditioner, and shows an example in which water supplied to a condenser uses a dripping water pipe. ing.

【図2】図1での実施例で、温度感知を行うサーモ流量
弁の感温筒が、圧縮機吐出管から凝縮器に冷媒を導く配
管の途中に取り付けられている例を示す室外機要部断面
図である。
FIG. 2 is a perspective view showing an example in which a thermo-sensitive cylinder of a thermo-flow valve for performing temperature sensing in the embodiment shown in FIG. 1 is installed in a pipe for guiding refrigerant from a compressor discharge pipe to a condenser. It is a fragmentary sectional view.

【図3】図1での実施例において、滴下出水管を刷毛状
の滴下出水部に変更した実施例を示した図である。
FIG. 3 is a view showing an embodiment in which the dripping water pipe is replaced with a brush-shaped dripping water discharge part in the embodiment in FIG.

【図4】図3での刷毛状の滴下出水部と凝縮器のフィン
部との接触状態を示す要部拡大図である。
FIG. 4 is an enlarged view of a main part showing a contact state between a brush-like dripping water discharge part in FIG. 3 and a fin part of a condenser.

【図5】図3の実施例において、貯水タンクへの給水を
水道等の給水装置から行った実施例で、かつ、止水栓を
サーモ止水栓に変更した実施例を示した図である。
5 is a diagram showing an embodiment in which water is supplied to a water storage tank from a water supply device such as a tap in the embodiment of FIG. 3, and a water stopcock is changed to a thermostatic water stopcock. .

【図6】図5の実施例において、貯水タンクを省略し、
給水装置からの給水管にストレーナーと減圧弁を連結
し、サーモ止水栓に接続した実施例を示した図である。
6 omits the water storage tank in the embodiment of FIG. 5,
It is the figure which showed the example which connected the strainer and the pressure reducing valve to the water supply pipe from the water supply apparatus, and was connected to the thermostatic stopcock.

【図7】本考案を実施する空冷式凝縮器の構成と、冷媒
冷却用外気の流れを示した室外機要部断面図である。
FIG. 7 is a cross-sectional view of a main part of an outdoor unit showing a configuration of an air-cooled condenser embodying the present invention and a flow of outside air for cooling a refrigerant.

【図8】空冷式凝縮器のフィンやコイルの配置状態を示
す要部拡大図である。
FIG. 8 is an enlarged view of a main part showing an arrangement state of fins and coils of the air-cooled condenser.

【図9】空冷式凝縮器を外気が流出するファン側から見
た外観を示し、ファンが2台ある業務用空調機の室外機
外観図である。
FIG. 9 is an external view of an air-cooled condenser as seen from the side of a fan through which outside air flows out, and is an outdoor unit of a commercial air conditioner having two fans.

【図10】図9を外気が流入する凝縮器側から、見た外
観図である。
10 is an external view of FIG. 9 as viewed from the side of the condenser into which outside air flows.

【符号の説明】 1 凝縮器 2 ファン 3 モ
ーター 4 外装構造体 6 コイル 7 フ
ィン 10 貯水タンク 10a 上蓋 10b
断熱材 11 継手口 12 止水栓 13 サーモ流量弁 13a 毛細管 13b
感温筒 14 出水管 15 固定金具 16
ネジ 17 滴下管 18 滴下出水管 19
水抜栓 23 ストレーナー 23a ストレーナー 24 刷毛状滴下出水部 25 サーモ止水栓 25a 毛細管 25b
感温筒
[Explanation of Signs] 1 condenser 2 fan 3 motor 4 exterior structure 6 coil 7 fin 10 water storage tank 10a top lid 10b
Insulation material 11 Joint port 12 Stopcock 13 Thermoflow valve 13a Capillary tube 13b
Temperature sensing tube 14 Water pipe 15 Fixing bracket 16
Screw 17 Dripping pipe 18 Dripping water pipe 19
Drainer 23 Strainer 23a Strainer 24 Brush-like dripping water outlet 25 Thermo stopcock 25a Capillary tube 25b
Temperature sensing tube

Claims (6)

【実用新案登録請求の範囲】[Utility model registration claims] 【請求項1】蒸気圧縮式冷凍・空調機器の中、冷媒を圧
縮する圧縮機、その圧縮された高温・高圧冷媒を通すコ
イルとそのコイル表面に設けられたフィンから形成され
る凝縮器、その凝縮器にモーター等の回転によって冷却
用外気を送風するファンが室外機内に配置されている空
冷式冷凍・空調機器において、室外機外装構造体上部
に、上蓋を有し、断熱材で囲まれた金属またはプラスチ
ック等の樹脂性の貯水タンクを設置し、この貯水タンク
出水口にゴミ等を除去するストレーナーを設け、そのス
トレーナーを経た貯水タンク外面部には継手口が配置さ
れ、止水栓が継手口に接続された構造となっており、そ
の止水栓の先が、感温筒等の温度センサーを有する流量
制御弁(以下、サーモ流量弁と称する)の入口に接続さ
れ、そのサーモ流量弁出口には出水管が取り付けられて
いる。サーモ流量弁の温度センサーは圧縮機から凝縮器
へ冷媒が導かれる配管部分、または、凝縮器本体のフィ
ン、コイルの部分、または、室外機外装構造体のいずれ
かの部分に取り付けられており、感温部温度がサーモ流
量弁の開度制御と連動するシステム構成となっている。
一方、凝縮器が配置されている側の室外機外装構造体上
部や保護ネット等に金具・ネジ等の固定器具で係止され
た金属・ゴム・樹脂類等の材質で形成された管(以下、
滴下管と称する)は、鉛直方向に配置された凝縮器フィ
ンに対して、直交方向に取り付けられており、その滴下
管下部に複数以上の小孔を有し、その小孔にフィン方向
に出水口部を向けた小口径管(以下、滴下出水管と称す
る)を配置した構造となっている。また、この滴下管の
片端はサーモ流量弁出口からの出水管と接続され、反対
側の片端は閉塞端、または、水抜き栓が取り付けられた
構造となっている。上記のように構成された装置は、サ
ーモ流量弁感温部温度センサーが設定温度以上の温度を
感知すると、サーモ流量弁が開き始め、感知温度が上昇
するに従って、弁の開度が大きくなるので、貯水タンク
内の水はストレーナー、止水栓、サーモ流量弁、出水
管、滴下管を通り、滴下出水管から出て、凝縮器のフィ
ン・コイルに滴下給水され、ファン送風による冷却用外
気と共に冷媒の冷却に用いられ、冷媒との熱交換による
熱によって蒸発し、外気冷却のみの場合よりも凝縮温度
を低下させることが可能となることを特徴とした冷凍・
空調機器の凝縮温度制御装置
A compressor for compressing a refrigerant in a vapor compression refrigeration / air-conditioning apparatus, a coil formed by passing a compressed high-temperature and high-pressure refrigerant, and a condenser formed by fins provided on a surface of the coil. In an air-cooled refrigeration / air-conditioning device in which a fan for blowing outside air for cooling by rotation of a motor or the like to a condenser is provided in an outdoor unit, the upper unit has an upper lid on an upper portion of the outdoor unit exterior structure, and is surrounded by a heat insulating material. A water storage tank made of resin such as metal or plastic is installed, a strainer for removing dust etc. is provided at the water tank outlet, and a joint port is arranged on the outer surface of the water tank through the strainer. The end of the water stopcock is connected to the inlet of a flow control valve (hereinafter referred to as a thermo-flow valve) having a temperature sensor such as a temperature-sensitive cylinder. Flood pipe is attached to the outlet. The temperature sensor of the thermo-flow valve is attached to the piping part where the refrigerant is guided from the compressor to the condenser, or the fin of the condenser body, the coil part, or any part of the outdoor unit exterior structure, The system has a system configuration in which the temperature of the temperature sensing section is linked with the opening control of the thermo-flow valve.
On the other hand, a pipe formed of a material such as metal, rubber, resin or the like (hereinafter referred to as “metal”, “rubber”, or “resin”) fixed to the upper part of the outdoor unit exterior structure on the side where the condenser is disposed, the protection net, or the like with a fixing device such as a bracket or a screw. ,
The dripping pipe is attached in a direction perpendicular to the condenser fins arranged vertically, and has a plurality of small holes at the lower part of the dripping pipe, and the small holes come out in the fin direction. It has a structure in which a small-diameter pipe (hereinafter, referred to as a dripping water pipe) facing the water port is disposed. One end of the drip pipe is connected to a water discharge pipe from the thermo-flow valve outlet, and the other end has a closed end or a drain plug attached. In the device configured as described above, when the thermo-flow valve temperature sensing part temperature sensor detects a temperature equal to or higher than the set temperature, the thermo-flow valve starts to open, and as the sensed temperature increases, the opening of the valve increases. The water in the water storage tank passes through a strainer, a water stopcock, a thermo-flow valve, a water outlet pipe, and a dropping pipe, exits from the dropping water pipe, and is supplied dropwise to the fin coil of the condenser. It is used for cooling the refrigerant and evaporates by heat generated by heat exchange with the refrigerant, and it is possible to lower the condensing temperature as compared with the case where only outside air is cooled.
Condensing temperature control device for air conditioning equipment
【請求項2】 上記第1項の凝縮温度制御装置におい
て、止水栓が感温筒等の温度センサーを有し、その温度
センサーは室外機外装構造体の表面に設置され、外気や
外装構造体の温度を感知し、設定温度以上の温度を感知
すると、栓が開き、設定温度以下の温度を感知すると、
栓が閉まるような構成となっているサーモ止水栓とした
ことを特徴とした実用新案登録請求の範囲第1項の冷凍
・空調機器の凝縮温度制御装置。
2. The condensing temperature control device according to claim 1, wherein the water stopcock has a temperature sensor such as a thermosensitive tube, and the temperature sensor is installed on a surface of the outdoor unit exterior structure, and the outside air and the exterior structure are provided. If the temperature of the body is sensed and the temperature above the set temperature is sensed, the stopper will open and if the temperature below the set temperature is sensed,
3. A condensing temperature control device for refrigeration / air-conditioning equipment according to claim 1, wherein the thermostatic water stopcock is configured to be closed.
【請求項3】 上記第1項の凝縮温度制御装置におい
て、滴下管の長手方向に刷毛状に形成した滴下出水部を
設け、刷毛部の先端が凝縮器フィン間に差し込まれ、刷
毛部の他端は滴下管内に挿入された構造で、給水がこの
刷毛状の滴下出水部から供給されるように構成されたこ
とを特徴とした実用新案登録請求の範囲第1項の冷凍・
空調機器の凝縮温度制御装置。
3. The condensing temperature control device according to claim 1, wherein a brush-shaped dripping water outlet is provided in the longitudinal direction of the dripping pipe, and the tip of the brush is inserted between the condenser fins. The utility model registration claimed in claim 1 wherein the end has a structure inserted into the drip pipe, and water is supplied from the brush-shaped drip outlet.
Condensing temperature control device for air conditioning equipment.
【請求項4】 上記第1項の凝縮温度制御装置におい
て、貯水タンク側面に水道等の給水装置に連結された入
水管を有し、その入水管の貯水タンク出口部にボールタ
ップ弁等の給水弁を配置したことを特徴とした実用新案
登録請求の範囲第1項の冷凍・空調機器の凝縮温度制御
装置。
4. The condensing temperature control device according to claim 1, further comprising a water inlet pipe connected to a water supply device such as tap water on a side surface of the water storage tank, and a water tap valve such as a ball tap valve at a water storage tank outlet of the water inlet pipe. 3. A condensing temperature control device for refrigeration / air-conditioning equipment according to claim 1, wherein a utility model is registered.
【請求項5】 上記第1項の凝縮温度制御装置におい
て、貯水タンクが無く、水道等の給水装置からの入水管
に直接ストレーナー・減圧弁を取り付け、止水栓に連結
したことを特徴とした実用新案登録請求の範囲第1項の
冷凍・空調機器の凝縮温度制御装置。
5. The condensing temperature control device according to claim 1, wherein a strainer and a pressure reducing valve are directly attached to a water inlet pipe from a water supply device such as a water supply tank, and are connected to a water stopcock. A condensing temperature control device for refrigeration / air-conditioning equipment according to claim 1 of the utility model registration.
【請求項6】 上記第1項の凝縮温度制御装置におい
て、貯水タンクの継手口から配管には、サーモ止水栓
か、サーモ流量弁のどちらかひとつが接続されたことを
特徴とした実用新案登録請求の範囲第1項の冷凍・空調
機器の凝縮温度制御装置。
6. The condensing temperature control device according to claim 1, wherein one of a thermostatic stopcock and a thermostatic flow valve is connected to the pipe from the joint port of the water storage tank. A condensing temperature control device for refrigeration / air-conditioning equipment according to claim 1.
JP1998007251U 1998-08-12 1998-08-12 Condensing temperature controller for refrigeration and air conditioning equipment Expired - Lifetime JP3057389U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1998007251U JP3057389U (en) 1998-08-12 1998-08-12 Condensing temperature controller for refrigeration and air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1998007251U JP3057389U (en) 1998-08-12 1998-08-12 Condensing temperature controller for refrigeration and air conditioning equipment

Publications (1)

Publication Number Publication Date
JP3057389U true JP3057389U (en) 1999-05-11

Family

ID=43191322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1998007251U Expired - Lifetime JP3057389U (en) 1998-08-12 1998-08-12 Condensing temperature controller for refrigeration and air conditioning equipment

Country Status (1)

Country Link
JP (1) JP3057389U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308962A (en) * 2003-04-03 2004-11-04 Daikin Ind Ltd Equipment control system, equipment control device, and equipment control method
JP2013536398A (en) * 2010-08-23 2013-09-19 ジュネイト アクスイェク, Cooling system and method for air-cooled chiller
JP2013217556A (en) * 2012-04-06 2013-10-24 Fuji Electric Co Ltd Refrigeration system
CN110186224A (en) * 2019-06-13 2019-08-30 南京佳力图机房环境技术股份有限公司 A kind of centralized condenser with spraying cooling
CN113745947A (en) * 2021-09-03 2021-12-03 南通温亨制冷设备有限公司 Dual-purpose laser water cooling machine suitable for adverse circumstances

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308962A (en) * 2003-04-03 2004-11-04 Daikin Ind Ltd Equipment control system, equipment control device, and equipment control method
JP2013536398A (en) * 2010-08-23 2013-09-19 ジュネイト アクスイェク, Cooling system and method for air-cooled chiller
JP2013217556A (en) * 2012-04-06 2013-10-24 Fuji Electric Co Ltd Refrigeration system
CN110186224A (en) * 2019-06-13 2019-08-30 南京佳力图机房环境技术股份有限公司 A kind of centralized condenser with spraying cooling
CN113745947A (en) * 2021-09-03 2021-12-03 南通温亨制冷设备有限公司 Dual-purpose laser water cooling machine suitable for adverse circumstances

Similar Documents

Publication Publication Date Title
US8261565B2 (en) Cooling system for high density heat load
WO2003084300A1 (en) Cooling device
JP4839406B2 (en) Cooling device for communication equipment and control method thereof
JPH1019305A (en) Cooling system
CN105805838A (en) Special precise air conditioner for full-sensible-heat energy-saving computer room/equipment cabinet
JP3057389U (en) Condensing temperature controller for refrigeration and air conditioning equipment
CN108119953A (en) Splitting heat pump air conditioner device
KR20070119833A (en) A package airconditioner
CN112944739B (en) Dual cycle refrigeration system using dew point temperature cooling and control method thereof
JP3244582U (en) Converter cabinet condensation prevention system
CN205641216U (en) Show special accurate air conditioner of heat energy -saving type computer lab / rack entirely
JP3307915B2 (en) Cooling device
CN215295169U (en) Outdoor unit of air conditioner
KR20070052547A (en) Air condition
CN209910047U (en) Temperature and humidity adjusting device
CN211128726U (en) Computer network cooling device
JP3307803B2 (en) Cooling device
JP2007057131A (en) Refrigerator
KR102113033B1 (en) An air conditioner
CN207124480U (en) Uninterrupted power source with heat abstractor
JP2001090990A (en) Dehumidifier
KR100750969B1 (en) A Package Airconditioner
CN205717817U (en) Low noise machine cabinet air-conditioner
CN110925913A (en) Mobile water chiller integrating refrigeration and water air conditioning
CN213955506U (en) Electrical cabinet air conditioner with temperature and humidity control function