JP3056917B2 - Granulation control device using fluidized bed - Google Patents

Granulation control device using fluidized bed

Info

Publication number
JP3056917B2
JP3056917B2 JP5158434A JP15843493A JP3056917B2 JP 3056917 B2 JP3056917 B2 JP 3056917B2 JP 5158434 A JP5158434 A JP 5158434A JP 15843493 A JP15843493 A JP 15843493A JP 3056917 B2 JP3056917 B2 JP 3056917B2
Authority
JP
Japan
Prior art keywords
granulation
fluidized bed
height
gas ejection
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5158434A
Other languages
Japanese (ja)
Other versions
JPH078783A (en
Inventor
広行 辻本
豊和 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP5158434A priority Critical patent/JP3056917B2/en
Publication of JPH078783A publication Critical patent/JPH078783A/en
Application granted granted Critical
Publication of JP3056917B2 publication Critical patent/JP3056917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、流動層利用の造粒制御
装置に関し、詳述すると、気体噴出口を形成した回転盤
を造粒容器の底部に設け、その気体噴出口から噴出され
る気流により、供給部からの造粒原料を流動層状態にし
て、前記造粒容器の上方空間に設けた結合剤噴出機構か
ら結合剤を噴霧して造粒する流動層利用の造粒装置にお
ける造粒制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a granulation control apparatus utilizing a fluidized bed, and more particularly, to a rotary disk having a gas ejection port provided at the bottom of a granulation vessel and ejected from the gas ejection port. The granulation raw material from the supply unit is made into a fluidized bed state by an air flow, and a binder is sprayed and granulated by a binder ejecting mechanism provided in an upper space of the granulation container to form a granulation apparatus using a fluidized bed. It relates to a grain control device.

【0002】[0002]

【従来の技術】従来、流動層での上面高さを検出する超
音波センサ等でなる層高検出手段を設けて、造粒過程に
おいて、その層高検出手段により検出された上面高さを
一定に維持するように、気体噴出口からの送風量を調節
する気体噴出量調節手段を制御する造粒制御手段を設け
ていた。
2. Description of the Related Art Conventionally, a bed height detecting means such as an ultrasonic sensor for detecting the height of a top surface in a fluidized bed is provided, and the top height detected by the bed height detecting means is kept constant in a granulation process. Granulation control means for controlling the gas ejection amount adjusting means for adjusting the amount of air blown from the gas ejection port so as to maintain the air flow rate.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の従来の
流動層利用の造粒制御装置では、噴霧された結合剤によ
り造粒原料が結合して粒が成長する過程における最適な
流動状態を、その造粒過程において直接に把握すること
ができなかったために、図4に示すように、造粒の最終
段階における粒径の造粒物に対して最適であろうと思わ
れる流動層(造粒物が衝突等により破壊されることのな
い流動層状態)を維持するために必要な量の気体噴出を
行った場合の層高を基準として、その層高を初期段階か
ら常に維持するように気体噴出量を調節していたので、
最終段階に至るまでの造粒過程においては、最適な流動
状態を得るに必要な気体噴出量以上の量の気体が噴出さ
れていた。そのために、中間段階での造粒物の運動量が
造粒に必要な運動量以上となり、造粒物同士が衝突した
際等に、成長した造粒物が逆に破壊等されて、造粒速度
が低下するばかりか最終の造粒物の粒径のばらつきが大
となるというおそれがあった。そこで、予め、造粒の初
期段階から最終段階に至る流動層の最適状態を実験等に
より把握して、そのパターンに従って気体噴出量を自動
的に変更するコンピュータ利用のプログラム制御を行う
ことが提案されているが、その場合、結合剤噴出機構の
故障等で結合剤の噴霧量や噴霧状態が変動し、或いは、
その他の要因で粒子の成長度合いが乱れた場合に対応が
とれなくなるという欠点がある。本発明の目的は、結合
剤噴出機構からの結合剤の噴霧量や噴霧状態に多少の変
動があった場合であっても、造粒速度を増し、しかも、
最終の造粒物の粒径のばらつきを小さくして製品の収率
を上げるためのより優れた流動層利用の造粒制御装置を
提供する点にある。
However, in the above-mentioned conventional granulation control device utilizing a fluidized bed, the optimum fluidized state in the process of growing the granules by combining the granulated raw materials by the sprayed binder, Since it was not possible to grasp directly in the granulation process, as shown in FIG. 4, a fluidized bed (granulated material) which seems to be optimal for the granulated material having a particle size in the final stage of granulation is used. The gas is blown out so that the bed height is always maintained from the initial stage, based on the bed height when the necessary amount of gas is blown out to maintain the fluidized bed state in which the bed is not destroyed by collision etc. Since the amount was adjusted,
In the granulation process up to the final stage, the gas was ejected in an amount equal to or greater than the gas ejection amount necessary to obtain an optimal flow state. Therefore, the momentum of the granulated material at the intermediate stage becomes equal to or more than the momentum required for granulation, and when the granulated materials collide with each other, the grown granulated material is destroyed in reverse, and the granulation speed is reduced. In addition to the decrease, there is a fear that the dispersion of the particle size of the final granulated product becomes large. Therefore, it has been proposed that the optimum state of the fluidized bed from the initial stage to the final stage of granulation is grasped in advance by experiments and the like, and computer-controlled program control for automatically changing the gas ejection amount according to the pattern is proposed. However, in this case, the spray amount and the spray state of the binder fluctuate due to failure of the binder ejection mechanism or the like, or
If the degree of particle growth is disturbed due to other factors, there is a drawback that it is impossible to respond. An object of the present invention is to increase the granulation speed even when there is some variation in the spray amount or spray state of the binder from the binder ejection mechanism, and
An object of the present invention is to provide a more excellent granulation control device using a fluidized bed for reducing the variation in the particle size of the final granulated product and increasing the product yield.

【0004】[0004]

【課題を解決するための手段】本発明に係る流動層利用
の造粒制御装置の特徴構成は、流動層での上面高さを検
出する層高検出手段と、前記気体噴出口からの気体噴出
量を調節する気体噴出量調節手段と、流動層での圧損値
を検出する圧力検出手段とを備え、前記造粒原料が流動
層状態となる前の上面高さと前記流動層の上面高さとの
差である層膨張高さと前記圧損値との積を一定値に維持
するように前記気体噴出量調節手段を制御する造粒制御
手段とからなる点にある。
According to the present invention, a granulation control apparatus using a fluidized bed is characterized by a bed height detecting means for detecting the height of the upper surface of the fluidized bed, and gas ejection from the gas ejection port. A gas ejection amount adjusting means for adjusting the amount, and a pressure detecting means for detecting a pressure loss value in the fluidized bed, wherein the granulated raw material has an upper surface height before the fluidized bed state and an upper surface height of the fluidized bed. Granulation control means for controlling the gas ejection amount adjusting means so as to maintain the product of the difference between the layer expansion height and the pressure loss value at a constant value.

【0005】[0005]

【作用】造粒原料が流動層状態となる前の上面高さと流
動層状態となった後の層の上面高さとの差である層膨張
高さをΔL〔m〕とし、流動層の上面と下面との間にお
ける圧損値をΔP〔Kg/m2 〕とし、流動床の底面積
をA〔m2 〕とすると、それらの積A・ΔP・ΔL〔K
g・m〕は、流動層を形成する粒子の運動エネルギー
〔J〕を表すものとなる。従って、造粒過程において、
粒子の運動エネルギー〔J〕を一定に維持するように、
つまり、ΔP・ΔLを一定に維持するように送風量を調
節すれば、例えば、造粒の初期には、質量の小さな粒子
を速い速度で運動させて粒子の成長を促し、造粒の終期
には、質量の大きな粒子を遅い速度で運動させて粒子間
の衝突による粒子破壊を抑えるといったように、何らか
の要因で粒子の成長度合いが乱れた場合であっても粒子
の成長段階に応じて適切に送風量の制御が行えるのであ
る。
The layer expansion height, which is the difference between the upper surface height before the granulated raw material enters the fluidized bed state and the upper surface height of the bed after the fluidized bed state, is defined as ΔL [m]. Assuming that the pressure loss value between the lower surface and the lower surface is ΔP [Kg / m 2 ] and the bottom area of the fluidized bed is A [m 2 ], the product A · ΔP · ΔL [K
g · m] represents the kinetic energy [J] of the particles forming the fluidized bed. Therefore, in the granulation process,
In order to keep the kinetic energy [J] of the particles constant,
In other words, if the blowing rate is adjusted so as to keep ΔP · ΔL constant, for example, in the early stage of granulation, small-mass particles are moved at a high speed to promote the growth of the particles, and at the end of granulation, Even if the degree of particle growth is disturbed by some factor, such as moving large particles at a slow speed to suppress particle destruction due to collision between particles, appropriate The air volume can be controlled.

【0006】[0006]

【発明の効果】本発明によれば、結合剤噴出機構からの
結合剤の噴霧量や噴霧状態の変動といった粒子の成長度
合いを乱すような事態が生じた場合であっても、最適の
造粒速度で、しかも、粒子の成長段階での衝突による破
壊を回避できるので、最終の造粒物の粒径のばらつきを
小さくして製品の収率を上げるためのより優れた流動層
利用の造粒制御装置を提供することができるようになっ
た。
According to the present invention, the optimum granulation can be achieved even when the degree of particle growth is disturbed, such as a change in the amount of the binder sprayed from the binder ejection mechanism or a change in the spraying state. Better granulation using a fluidized bed to reduce the variation in the particle size of the final granulated product and increase the product yield, because it can avoid the destruction due to collisions at the stage of particle growth at high speed. A control device can now be provided.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2に示すように、本発明に係る流動層利用の造
粒装置は、上部が下部よりも若干拡径した円筒状の造粒
容器1の底部に、上面が上向きに突出した円錐面に形成
された回転円盤10を、前記造粒容器1内において鉛直
方向の回転軸芯周りに回転自在に取り付けて、その回転
円盤10の上面円錐面の上方空間を造粒部3とし、その
造粒部3で、回転円盤10に形成した複数の気体噴出口
10aから噴出される気流により造粒原料を流動層状態
にするとともに、前記造粒容器1の上方空間に設けた結
合剤噴出機構8から結合剤を噴霧して造粒するように構
成してある。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 2, the granulating apparatus using a fluidized bed according to the present invention has a conical surface whose upper surface protrudes upward at the bottom of a cylindrical granulating container 1 whose upper part is slightly larger than its lower part. The rotating disk 10 thus mounted is rotatably mounted around the axis of rotation in the vertical direction in the granulation container 1, and the space above the conical surface of the upper surface of the rotating disk 10 is used as the granulating unit 3, and the granulating unit 3 is used. In step 3, the granulated raw material is made into a fluidized bed state by the air currents jetted from the plurality of gas jet ports 10a formed in the rotating disk 10, and the granulated raw material is combined from the binder jetting mechanism 8 provided in the space above the granulating container 1. It is configured to granulate by spraying the agent.

【0008】前記造粒容器1の中段(詳しくは、前記造
粒容器1の拡径部)には、前記造粒原料のうちの原料粉
体を供給するための供給機構15を設けてあり、供給機
構15からの原料粉体を前記造粒部3に一旦貯留し、そ
の貯留物を流動層状態にして造粒を行う。
A supply mechanism 15 for supplying a raw material powder of the granulated raw material is provided at a middle stage of the granulation container 1 (specifically, an enlarged portion of the granulation container 1). The raw material powder from the supply mechanism 15 is temporarily stored in the granulating unit 3, and the stored material is made into a fluidized bed state to perform granulation.

【0009】前記造粒容器1の側方に、気体噴出量調節
手段としての風量調節自在のダンパ機構21を設けたエ
アーフィルタ4a付きの送風装置4が設けてあり、ヒー
タ5にて適宜温度に加熱された後に、前記気体噴出口1
0aを介して前記造粒部3に給気される。
A blower 4 having an air filter 4a provided with a damper mechanism 21 capable of adjusting the air flow is provided on the side of the granulation container 1 as a gas blowing amount adjusting means. After being heated, the gas outlet 1
Air is supplied to the granulating unit 3 through the air inlet 0a.

【0010】前記結合剤噴出機構8は、前記造粒容器1
の最上部に冠着された濾過部2を貫通した状態に配置さ
れた上端供給部8a(その部分には、圧縮空気供給装置
6及び結合剤供給装置7からの配管の下流端が接続され
ている)と、前記造粒容器1内の下部下方に開口したノ
ズル8cにより前記造粒部3へ噴霧供給されるようにな
っている下端噴霧部8b(その部分は、前記造粒部3へ
向けて結合剤を噴霧する噴霧口として機能する)を、前
記造粒容器1内の中心部に鉛直姿勢で配置してある。即
ち、前記結合剤供給装置7から結合剤を供給しつつ、圧
縮空気供給装置6からの圧縮空気をキャリアガスとし
て、前記ノズル8cによって前記造粒部3へ噴霧供給す
る。
The binder jetting mechanism 8 is provided in the granulation container 1.
The upper end supply portion 8a (the downstream end of the pipe from the compressed air supply device 6 and the binder supply device 7 is connected to the upper end supply portion 8a disposed so as to pass through the filtration portion 2 attached to the uppermost portion of the ), And a lower end spraying portion 8b which is sprayed and supplied to the granulating portion 3 by a nozzle 8c opened at a lower part in the granulating container 1 (the portion is directed toward the granulating portion 3). Functioning as a spray port for spraying a binder) is disposed in the center of the granulation container 1 in a vertical posture. That is, while supplying the binder from the binder supply device 7, the compressed air from the compressed air supply device 6 is sprayed and supplied to the granulation section 3 by the nozzle 8c as the carrier gas.

【0011】更に、前記濾過部2には、前記造粒容器1
内からの吸引排気を濾過するためのフィルタ2aを設け
て、その吸引排気を装置外へ排出するための排気装置9
へ通じる配管を接続してあり、前記濾過部2内には、前
記フィルタ2aを洗浄するために圧縮空気を前記フィル
タ2aに吹き付けるブローチューブ2bを設けてある。
Further, the filtration unit 2 includes the granulation container 1
An exhaust device 9 for providing a filter 2a for filtering suction / exhaust air from the inside and discharging the suction / exhaust gas to the outside of the apparatus;
The filter 2 is provided with a blow tube 2b for blowing compressed air to the filter 2a for cleaning the filter 2a.

【0012】前記回転円盤10は、前記造粒容器1の下
部に配置したモータ13の駆動力によって鉛直方向の回
転軸芯周りに回転自在に取り付けてあり、前記造粒容器
1の給気口1aを経由して導入される前記送風装置4か
らの給気が、前記気体噴出口10aを介して前記造粒部
3へ噴出される。
The rotating disk 10 is rotatably mounted around a vertical axis of rotation by a driving force of a motor 13 disposed below the granulating container 1, and is provided with an air supply port 1 a of the granulating container 1. The air supplied from the blower 4 introduced through the gas outlet is blown out to the granulating unit 3 through the gas outlet 10a.

【0013】上述の造粒装置には、目標とする粒径に造
粒するために前記造粒部3へ噴出すべき最適な風量を調
節する造粒制御装置を設けてある。前記造粒制御装置
は、図1に示すように、流動層での上面高さLを検出す
る超音波センサを用いた層高検出手段20と、前記気体
噴出口10aからの気体噴出量を調節する気体噴出量調
節手段21と、流動層での圧損値ΔPを検出する圧力検
出手段23とを備え、前記造粒原料が流動層状態となる
前の上面高さL0 と前記流動層の上面高さLとの差であ
る層膨張高さΔLと圧損値ΔPとの積を一定値に維持す
るように前記気体噴出量調節手段21を調節して造粒制
御するコンピュータ利用の造粒制御手段22とからな
る。
The above-mentioned granulating apparatus is provided with a granulating control device for adjusting an optimum air volume to be blown to the granulating section 3 in order to granulate to a target particle diameter. As shown in FIG. 1, the granulation control device adjusts a bed height detecting means 20 using an ultrasonic sensor for detecting an upper surface height L in a fluidized bed, and a gas ejection amount from the gas ejection port 10a. And a pressure detecting means 23 for detecting a pressure loss value ΔP in the fluidized bed, wherein the upper surface height L0 and the upper surface height of the fluidized bed before the granulated raw material enters a fluidized bed state. Computer-assisted granulation control means 22 for controlling granulation by adjusting the gas ejection amount adjustment means 21 so as to maintain the product of the layer expansion height ΔL, which is the difference between the pressure L, and the pressure loss value ΔP at a constant value. Consists of

【0014】前記造粒制御手段22は、コンピュータ2
2e、及び、前記層高検出手段20からの検出信号を入
力するバッファ回路22b、前記圧力検出手段23から
の検出信号を入力するバッファ回路22a、前記気体噴
出量調節手段21を駆動するドライバ回路22d、前記
結合剤噴出機構8を駆動するドライバ回路22c等の周
辺回路で構成してある。
The granulation control means 22 includes a computer 2
2e, a buffer circuit 22b for inputting a detection signal from the layer height detection means 20, a buffer circuit 22a for inputting a detection signal from the pressure detection means 23, and a driver circuit 22d for driving the gas ejection amount adjustment means 21 And a peripheral circuit such as a driver circuit 22c for driving the binder ejecting mechanism 8.

【0015】詳述すると、図1及び図2に示すように、
前記造粒制御手段22は、先ず、前記供給機構15から
原料粉体を前記造粒部3に注入し、その貯留物を流動層
状態にすべく前記気体噴出量調節手段21即ちダンパを
開く。ダンパの開度は、上述の層膨張高さΔLと圧損値
ΔPとの積が設定値に到達するまでとし、その後、前記
結合剤供給装置7から結合剤を噴霧供給しながら、層膨
張高さΔLと前記圧損値ΔPとの積を設定値に維持する
ようにダンパの開度を調節して造粒するのである。つま
り、造粒原料が流動層状態となる前の上面高さと流動層
状態となった後の層の上面高さとの差である層膨張高さ
をΔL〔m〕と、流動層の上面と下面との間における圧
損値をΔP〔Kg/m2 〕とし、流動床の底面積をA
〔m2 〕とすると、それらの積A・ΔP・ΔL〔Kg・
m〕は、流動層を形成する粒子の運動エネルギー〔J〕
を表すものとなる。そこで、造粒過程において、粒子の
運動エネルギー〔J〕を一定に維持するように、つま
り、ΔP・ΔLを一定に維持するように送風量を調節す
れば、例えば、造粒の初期には、質量の小さな粒子を速
い速度で運動させて粒子の成長を促し、造粒の終期に
は、質量の大きな粒子を遅い速度で運動させて粒子間の
衝突による粒子破壊を抑えるといったように、何らかの
要因で粒子の成長度合いが乱れた場合であっても粒子の
成長段階に応じて適切に送風量の制御を行うのである。
その結果、図3に示すように、造粒の各段階で必要以上
の量の送風を行うことがないので、粒子の衝突による破
壊等を回避しながら適切な速度で、しかも、粒径のばら
つきの小さな状態で造粒される。
More specifically, as shown in FIGS. 1 and 2,
The granulation control unit 22 first injects the raw material powder from the supply mechanism 15 into the granulation unit 3, and opens the gas ejection amount adjustment unit 21, that is, the damper, in order to bring the stored material into a fluidized bed state. The opening degree of the damper is set until the product of the above-mentioned layer expansion height ΔL and the pressure loss value ΔP reaches a set value, and then, while spraying and supplying the binder from the binder supply device 7, the layer expansion height The granulation is performed by adjusting the opening degree of the damper so as to maintain the product of ΔL and the pressure loss value ΔP at a set value. That is, ΔL [m] is the bed expansion height, which is the difference between the top surface height before the granulated raw material enters the fluidized bed state and the top surface height of the bed after the fluidized bed state, and the upper and lower surfaces of the fluidized bed. And ΔP [Kg / m 2 ], and the bottom area of the fluidized bed is A
[M 2 ], their product A · ΔP · ΔL [Kg ·
m] is the kinetic energy of the particles forming the fluidized bed [J]
Is represented. Therefore, in the granulation process, if the blast energy is adjusted so as to maintain the kinetic energy [J] of the particles constant, that is, to maintain ΔP · ΔL constant, for example, at the beginning of granulation, Some factors, such as moving small particles at high speed to promote particle growth, and at the end of granulation, moving large particles at low speed to suppress particle destruction due to collision between particles. Thus, even if the degree of particle growth is disturbed, the air flow is appropriately controlled in accordance with the particle growth stage.
As a result, as shown in FIG. 3, an excessive amount of air is not blown at each stage of granulation. Granulated in a small state.

【0016】尚、前記造粒制御手段22による制御アル
ゴリズムとしては、層膨張高さΔLと圧損値ΔPを入力
データからダンパの開度を決定するPID制御、ファジ
ー制御、知識ベースを活用した推論制御等を適宜用いる
ことができる。また、前記層高検出手段20としては、
層上面から反射する超音波を検出する超音波センサ以外
に、対向する壁面に一対の発信受信装置を高さ方向に複
数個取り付けて、信号の検出の有無で層高を検出する光
や電磁波等を用いることもできる。
As the control algorithm by the granulation control means 22, the layer expansion height ΔL and the pressure loss value ΔP are determined by PID control for determining the opening degree of the damper from input data, fuzzy control, and inference control utilizing a knowledge base. Etc. can be used as appropriate. Further, as the layer height detecting means 20,
In addition to an ultrasonic sensor that detects ultrasonic waves reflected from the upper surface of the layer, a pair of transmission / reception devices are attached to the opposite wall in the height direction, and light or electromagnetic waves that detect the layer height based on the presence or absence of signal detection Can also be used.

【0017】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】造粒装置の要部を示す概略構成図FIG. 1 is a schematic configuration diagram showing a main part of a granulating apparatus.

【図2】造粒制御装置のブロック構成図FIG. 2 is a block diagram of a granulation control device.

【図3】制御特性図FIG. 3 is a control characteristic diagram

【図4】従来の制御特性図FIG. 4 is a conventional control characteristic diagram.

【符号の説明】[Explanation of symbols]

1 造粒容器 8 結合剤噴出機構 10a 気体噴出口 20 層高検出手段 21 気体噴出量調節手段 22 造粒制御手段 L0 上面高さ ΔL 層膨張高さ ΔP 圧損値 DESCRIPTION OF SYMBOLS 1 Granulation container 8 Binder ejection mechanism 10a Gas ejection port 20 Layer height detection means 21 Gas ejection amount adjustment means 22 Granulation control means L0 Upper surface height ΔL Layer expansion height ΔP Pressure loss value

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 造粒容器(1)の底部に設けた気体噴出
口(10a)から噴出される気流により、造粒原料を流
動層状態にして、前記造粒容器(1)の上方空間に設け
た結合剤噴出機構(8)から結合剤を噴霧して造粒する
流動層に対し、 その流動層での上面高さ(L)を検出する層高検出手段
(20)と、前記気体噴出口(10a)からの気体噴出
量を調節する気体噴出量調節手段(21)と、流動層で
の圧損値(ΔP)を検出する圧力検出手段(23)とを
備え、前記造粒原料が流動層状態となる前の上面高さ
(L0 )と前記流動層の上面高さ(L)との差である層
膨張高さ(ΔL)と前記圧損値(ΔP)との積を一定値
に維持するように前記気体噴出量調節手段(21)を制
御する造粒制御手段(22)とからなる流動層利用の造
粒制御装置。
1. A granulation raw material is made into a fluidized bed state by an air flow ejected from a gas ejection port (10a) provided at the bottom of a granulation container (1), and is placed in a space above the granulation container (1). A bed height detecting means (20) for detecting a height (L) of an upper surface of the fluidized bed for spraying and granulating a binder from a provided binder ejection mechanism (8); A gas ejection amount adjusting means (21) for adjusting the gas ejection amount from the outlet (10a); and a pressure detection means (23) for detecting a pressure loss value (ΔP) in the fluidized bed. The product of the bed expansion height (ΔL), which is the difference between the upper surface height (L0) before the formation of the layer and the upper surface height (L) of the fluidized bed, and the pressure loss value (ΔP) is maintained at a constant value. And a granulation control means (22) for controlling the gas ejection amount adjusting means (21) to perform the granulation control using a fluidized bed. Place.
JP5158434A 1993-06-29 1993-06-29 Granulation control device using fluidized bed Expired - Lifetime JP3056917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5158434A JP3056917B2 (en) 1993-06-29 1993-06-29 Granulation control device using fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5158434A JP3056917B2 (en) 1993-06-29 1993-06-29 Granulation control device using fluidized bed

Publications (2)

Publication Number Publication Date
JPH078783A JPH078783A (en) 1995-01-13
JP3056917B2 true JP3056917B2 (en) 2000-06-26

Family

ID=15671683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5158434A Expired - Lifetime JP3056917B2 (en) 1993-06-29 1993-06-29 Granulation control device using fluidized bed

Country Status (1)

Country Link
JP (1) JP3056917B2 (en)

Also Published As

Publication number Publication date
JPH078783A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
US4848673A (en) Fluidized granulating and coating apparatus and method
JP3031923B2 (en) Granulation coating apparatus and granulation coating method using the same
US6367165B1 (en) Device for treating particulate product
US4354450A (en) Jet layer granulator
US6159252A (en) Process and device for producing granulates by fluidized bed spray granulation
JP3228934B2 (en) Method and apparatus for minimizing sediment in a drying room
CA2096924C (en) Coating apparatus having opposed atomizing nozzles in a fluid bed column
JP2763806B2 (en) Granulation coating method and apparatus
WO1991009800A1 (en) Particulate delivery system
CN101432063A (en) Flocculation apparatus and method for producing flocculated particle
US5435945A (en) Method and apparatus for generating sulphur seed particles for sulphur granule production
JP3056917B2 (en) Granulation control device using fluidized bed
JP3056939B2 (en) Granulation control method and apparatus using fluidized bed
US6464737B1 (en) Production method and system for granulating powdered material
JPH1133386A (en) Method and apparatus for batchwise granulation-coating
JP2007229620A (en) Method for manufacturing heavy particle of small diameter and its apparatus
JP3056916B2 (en) Granulation control device using fluidized bed
JP3126023B2 (en) Continuous granulation and coating equipment
JP3059878B2 (en) Granulation control device using fluidized bed
JP4658652B2 (en) Manufacturing method of small-diameter heavy granules
JP3059879B2 (en) Granulation control device using fluidized bed
JPH10128098A (en) Granulation controller and granulation control method
JPH0994455A (en) Granulation controller and granulation control method
JPH09103668A (en) Powder particle treatment apparatus
JPH01284329A (en) Method and device for granulating, coating, and drying fine grain