JP3055017B2 - Fungi instant discrimination device - Google Patents

Fungi instant discrimination device

Info

Publication number
JP3055017B2
JP3055017B2 JP10331880A JP33188098A JP3055017B2 JP 3055017 B2 JP3055017 B2 JP 3055017B2 JP 10331880 A JP10331880 A JP 10331880A JP 33188098 A JP33188098 A JP 33188098A JP 3055017 B2 JP3055017 B2 JP 3055017B2
Authority
JP
Japan
Prior art keywords
light
fluorescent
bacteria
excitation light
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10331880A
Other languages
Japanese (ja)
Other versions
JP2000125845A (en
Inventor
美幸 徳田
慶泰 石山
Original Assignee
株式会社日本水処理技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本水処理技研 filed Critical 株式会社日本水処理技研
Priority to JP10331880A priority Critical patent/JP3055017B2/en
Publication of JP2000125845A publication Critical patent/JP2000125845A/en
Application granted granted Critical
Publication of JP3055017B2 publication Critical patent/JP3055017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は特に衛生管理が強く求め
られる食品類に混在し若しくは付着する細菌や黴菌等の
菌類の生菌数や死菌数或いは菌種を、簡便且正確に而も
即時に判別しえる判別装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for easily and accurately determining the number of viable or dead bacteria or species of bacteria such as bacteria and fungi that are mixed or adhered to foods that are particularly required to be hygienically controlled. The present invention relates to a discriminating device that can be immediately discriminated.

【0002】[0002]

【従来技術】近年においては高齢化や少子化の社会的背
景に伴って健康指向が富みに高まっており、これより食
生活においても減塩食品の選択購買や、鮮度保持剤や発
色剤を用いた生鮮食品や保存料或いは着色剤の使用され
た加工食品の購買忌避が一段と強まっている。他方細菌
や黴菌類の菌類は栄養源、水分、温度及び酸素を繁殖条
件とするものであるから、食品類は恰好の繁殖条件を具
備するもので而も近年の食品類は減塩化や制菌若しくは
抗菌に係る保存料等の不使用とも相俟って、食品の原材
料に原初から混在し、若しくは加工段階或いは流通段階
で付着や混入すると短時間に繁殖し、食品の変敗や腐敗
はもとより食中毒等の重大事故を招来する結果となるば
かりか、かかる結果の発生は商取引の不能やPL法に則
した莫大な損害賠償を訴求される結果ともなる。これが
ため食品類の生産者においては原材料の段階や加工出荷
の段階で、更には流通業者においてもその受入れ段階或
いは販売段階での衛生管理の徹底が一段と要請されるに
至っている。
2. Description of the Related Art In recent years, there has been an increasing trend toward health with the social background of aging and a declining birthrate. Purchase refusals of fresh foods and processed foods containing preservatives or coloring agents have been further strengthened. On the other hand, bacteria and fungi are cultivated under nutrient sources, moisture, temperature and oxygen, so foods have favorable breeding conditions. Or, combined with the non-use of preservatives related to antibacterial, mixed with the raw materials of food from the beginning, or propagated in a short time if attached or mixed at the processing stage or distribution stage, not only deterioration of food and spoilage Not only will this result in a serious accident such as food poisoning, but the occurrence of such a result will also result in the inability to commerce and the demand for enormous damages in accordance with the PL Act. For this reason, producers of foods have been required to further improve sanitary control at the stage of raw materials and processing and shipping, and also at distributors at the stage of receiving or selling them.

【0003】従来食品類の衛生管理所謂菌類の検査につ
いては、所望の検体より採取した菌類を生理的食塩水等
で希釈し適宜の培地に植菌のうえ略24乃至48時間程
度培養し拡大視認判別するものであるから、判別に多大
な時間を要するばかりかその判別結果も信頼性が低く、
且この判別結果が判明するまで生産や出荷を中断せねば
ならぬ実情にある。更に近年に至っては発光酵素を用い
て菌類細胞を発光させて目視判別の信頼性を高める手段
が提案されているが、該手段も培養に多大な時間を要す
るばかりか、魚介類や肉類が検体の場合には菌類の採取
に伴い混在する肉片や肉汁等も発光するため、却って菌
類との判別が難しくなる問題も内在する。
[0003] Conventionally, regarding the hygiene management of foods, which is a so-called fungus test, fungi collected from a desired specimen are diluted with physiological saline or the like, inoculated in an appropriate medium, cultured for about 24 to 48 hours, and then visually enlarged. Because it is a judgment, not only takes a lot of time for the judgment, but also the judgment result is low in reliability,
In addition, production and shipping must be interrupted until the discrimination result is found. Furthermore, recently, means for increasing the reliability of visual discrimination by emitting light from fungal cells using a luminescent enzyme has been proposed. In the case of (1), meat chips and meat juice mixed in with the collection of fungi also emit light, so that there is an inherent problem that it is difficult to distinguish them from fungi.

【0004】かかる実情に鑑み発明者等は、適宜手段で
採取した菌類の生菌細胞及び死菌細胞内に選択的にその
螢光波長の異る螢光染料を浸透染色せしめた螢光染色菌
液に中心波長が488nmの励起光を照射せしめて、生
菌細胞内の螢光染料及び死菌細胞内の螢光染料からのス
トークス則に従って発光される螢光発光を拡大させて視
認判別し、以って菌類を即時に判別する方法及び装置を
開発し、既に先願として特願平8−125218号でそ
の内容を開示している。
In view of such circumstances, the present inventors have developed a fluorescent-stained bacterium in which viable cells and dead cells of fungi collected by appropriate means are selectively penetrated with fluorescent dyes having different fluorescent wavelengths. The liquid is irradiated with excitation light having a center wavelength of 488 nm, and the fluorescent light emitted according to the Stokes law from the fluorescent dye in the viable cell and the fluorescent dye in the dead cell is enlarged and discriminated visually. Accordingly, a method and apparatus for immediately discriminating fungi have been developed, and the contents thereof have already been disclosed in Japanese Patent Application No. 8-125218 as a prior application.

【0005】然るに該先願発明を用いて広範囲の検体に
亘って多くの実用使用を重ねた結果、更なる新規技術の
採用が要請されるに至った。即ち螢光染色菌液の作成に
際して適宜手段で採取される菌類には、各種の油脂分を
初め肉汁や果汁、水分等に加えて食品自体の微片や滓、
塵埃等も混在し、而も検体により採取される菌類の濃度
も多様であるから、螢光染色が施された螢光染色菌液自
体の濁度も広範に亘り、反面予め特定波長の励起光を発
光する励起光源からの励起光はエネルギーが弱く、而も
螢光染料の励起光による発光強度は照射直後が最も強く
且極めて瞬時の内に発光強度が低下するため励起光源か
らの連続光による励起光照射では螢光染色菌液の濁度と
も相俟って十分な螢光発光が得られにくく、而も濁度の
比較的高い螢光染色菌液中で螢光発光した螢光光線に
は、該螢光染色菌液を透過するに際して回折現象により
螢光光線に所謂ぼやけが生ずるため、仮令かかる螢光光
線を拡大してみても生菌数や死菌数の正確な判別には未
だ難点があり、特に螢光発光の光線像で菌種を判別する
ことも一段と至難であり、而も生菌では視認判別時にも
遊動しているため正確な判別がなされにくく、従って鮮
明な螢光光線となしたるうえ電気信号に変換し数値処理
若しくは画像処理による判別が強く望まれる。
[0005] However, as a result of many practical uses over a wide range of specimens using the prior invention, the adoption of further new technologies has been demanded. That is, the fungi collected by appropriate means at the time of preparing the fluorescent stained bacterial solution include various oils and fats in addition to meat juice, fruit juice, water, etc.
Dust, etc. are also mixed, and the concentration of fungi collected by the specimen is also diverse, so that the turbidity of the fluorescent stained bacterial solution itself that has been subjected to fluorescent staining is also wide, while the excitation light of a specific wavelength is previously determined. The excitation light from the excitation light source that emits light has low energy, and the emission intensity of the fluorescent dye by the excitation light is the strongest immediately after irradiation and decreases very quickly. Excitation light irradiation makes it difficult to obtain sufficient fluorescence emission due to the turbidity of the fluorescent stained bacterial solution, and the fluorescent light emitted in the fluorescent stained bacterial solution having a relatively high turbidity is not affected. However, since the so-called blurring occurs in the fluorescent light beam due to the diffraction phenomenon when passing through the fluorescent stained bacterial solution, even if the fluorescent light beam is temporarily expanded, it is still not possible to accurately determine the number of viable and dead bacteria. There are difficulties, and it is especially difficult to distinguish bacterial species from fluorescent light images. In addition, it is difficult to make an accurate determination because live bacteria move during the visual recognition, so that it is strongly desired to make a clear fluorescent light beam and convert it into an electric signal and perform numerical processing or image processing. .

【0006】[0006]

【発明が解決しようとする課題】本発明はかかる問題を
解決するためになされたものであって、本発明は強い光
エネルギーと所要の波長及びパルス間隔を有するパルス
励起光でセル内の螢光染色菌液を照射し、強い発光エネ
ルギーの螢光発光をなさしめ且この螢光光線中より特定
波長のみを高い精度で透過させ、更にぼやけの補整によ
り鮮明な螢光光線として倍増電子管に入光させて電気信
号に変換し、以って生菌数並びに死菌数及び菌種を簡便
且正確に而も即時に判別しえる装置を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and the present invention has been made to solve the above-mentioned problems by using fluorescent light in a cell with strong light energy and pulsed excitation light having a required wavelength and pulse interval. By irradiating the stained bacterial solution, it emits fluorescent light with strong luminescence energy, transmits only a specific wavelength from the fluorescent light with high precision, and further enters a doubled electron tube as a clear fluorescent light by adjusting for blur. Accordingly, it is an object of the present invention to provide a device which can easily and accurately determine the number of viable bacteria, the number of dead bacteria, and the type of bacteria in a simple and immediate manner.

【0007】[0007]

【課題を解決するための手段】上述の課題を解決するた
めに本発明が用いた技術的手段は、適宜手段で採取した
菌類の生菌細胞並びに死菌細胞内に、それぞれ選択的に
浸透染色される螢光染料により螢光染色された螢光染色
菌液が適宜量注入されたセルに、その一方側が開口され
た電磁波シールド管体内に、そのパルス間隔が螢光発光
及び減衰時間内に強い螢光発光をパルス励起光の照射毎
に螢光発光させて電気信号として捉えること、並びにセ
ルの螢光染色菌液中に遊動する生菌の時間毎の挙動を捉
えて正確な生菌数を掴むうえから0.2乃至5パルス/
秒、即ち1秒間に5パルスから5秒間に1パルスの間隔
で強力な発光エネルギーを有する白色パルス光源が設け
られ、且この白光パルス光源からの白色パルス光よりセ
ル内の生菌細胞並びに死菌細胞内に浸透染色された螢光
染料を励起発光させるための特定波長を透過させるバン
ドパスフィルター、及びパルス発光に伴い発生する電気
ノイズを除去する導電性フィルターが設けられた励起光
発生管によりエネルギー強度の高いパルス励起光を照射
させるとともに、該パルス励起光により高い発光強度に
発光させた螢光発光をパルス励起光の照射光軸と直交す
る二方向において、その一方側では生菌細胞からの螢光
発光を他方側では死菌細胞からの螢光発光に係る特定波
長のみをそれぞれ高波長領域カットフィルター及び低波
長領域カットフィルターによる透過間隙を設けて高い精
度で透過させ、且回折格子を介在させて螢光光線中の回
折に伴うぼやけを補整して鮮明な螢光光線として倍増電
子管に入力させ、電気信号に変換のうえ数値処理や画像
処理を施す菌類の即時判別装置に存する。
The technical means used by the present invention to solve the above-mentioned problems is to selectively penetrate viable fungal cells and dead bacterial cells collected by appropriate means, respectively. The cell is filled with an appropriate amount of a fluorescent stained bacterium solution that has been fluorescently stained with the fluorescent dye to be prepared, and the pulse interval is strong within the fluorescence emission and decay time in an electromagnetic shield tube having one side opened. Fluorescence is emitted every time the pulsed excitation light is irradiated, and it is captured as an electrical signal. In addition, by capturing the time-dependent behavior of the live bacteria moving in the fluorescence stained bacterial solution of the cell, an accurate viable count can be obtained. 0.2 to 5 pulses /
A white pulse light source having a strong luminous energy is provided at intervals of seconds, that is, 5 pulses per second to 1 pulse every 5 seconds, and viable cells and dead cells in a cell are obtained from the white pulse light from the white light pulse light source. Energy is generated by an excitation light generating tube equipped with a band-pass filter that transmits a specific wavelength for exciting and emitting fluorescent dyes that have been dyed by penetration into cells, and a conductive filter that removes electric noise generated by pulse emission. While irradiating the pulse excitation light with high intensity, the fluorescent light emitted at a high luminous intensity by the pulse excitation light in two directions orthogonal to the irradiation optical axis of the pulse excitation light. On the other side, only the specific wavelength related to the fluorescent emission from the killed cells is used for the high wavelength region cut filter and the low wavelength region cut filter on the other side. A transparent gap is provided by a light source to transmit light with high precision, and a diffraction grating is interposed to compensate for the blur caused by diffraction in the fluorescent light and input to the doubled electron tube as a clear fluorescent light to convert it into an electric signal. In addition, the present invention resides in a fungus real-time discriminating device for performing numerical processing and image processing.

【0008】[0008]

【作用】本発明はかかる如き技術的手段を用いてなるた
め以下のような作用を有する。即ち一方側が開口された
電磁波シールド管体内に白色光源で且そのパルス間隔が
0.2乃至5パルス/秒でパルス発光する白色パルス光
源が設けられてなるから、強力な光エネルギーの白色パ
ルス光が発光されるとともに、この白色パルス光より特
定波長が透過されるバンドパスフィルターと導電性ガラ
スフィルターが設けられた励起光発生管でパルス励起光
が形成されるため、該パルス励起光もエネルギーが強く
且パルス発生に伴い混在する電気ノイズも導電性ガラス
フィルター及び電磁波シールド管体により除去され、所
要のパルス間隔と特定波長のパルス励起光の照射がなさ
れる。加えて光エネルギーの強いパルス励起光の照射に
より生菌細胞及び死菌細胞内に選択的に浸透染色されて
なる螢光染料がそれぞれストークス則に従った特定の波
長を以って且パルス間隔に対応して強く螢光発光するた
め、菌種によりその細胞の形状や大きさが微視的に異る
菌種毎の生菌細胞及び死菌細胞の螢光発光も鮮明な発光
をなし、加えて生菌細胞の如く遊動する細胞においても
パルス毎の螢光光線を任意数捉えることにより正確な把
握がなしえる。そしてパルス励起光の照射による強い螢
光発光は、該パルス励起光の照射光軸と直交する二方向
において、その一方側では生菌細胞からの螢光発光の、
更に他方側では死菌細胞からの螢光光線を波長領域カッ
ト勾配の鋭い高波長領域カットフィルター及び低波長領
域カットフィルターとの透過間隙を透過させるため螢光
光線が一段と特定波長のみに絞り込まれ、而も回折格子
を介在させるため、この絞り込まれた特定波長の螢光光
線中に潜む回折によるぼやけも補整され鮮明且信頼性の
高い螢光光線として倍増電子管に入力され電気信号に変
換されて処理されるため正確な生菌数並びに死菌数及び
菌種の判別ができる。
The present invention has the following functions since it uses such technical means. That is, a white pulse light source which emits pulses at a pulse interval of 0.2 to 5 pulses / sec is provided in an electromagnetic wave shield tube having one side opened, so that a white pulse light having a strong light energy is provided. The pulsed excitation light is emitted by the excitation light generating tube provided with the band-pass filter and the conductive glass filter provided with a band-pass filter and a conductive glass filter through which a specific wavelength is transmitted from the white pulsed light. Electric noise mixed with the generation of the pulse is also removed by the conductive glass filter and the electromagnetic wave shielding tube, and the pulse excitation light having a required pulse interval and a specific wavelength is irradiated. In addition, fluorescent dyes selectively penetrated into living cells and dead cells by irradiation with pulse excitation light having strong light energy have a specific wavelength in accordance with Stokes' rule and a pulse interval. Correspondingly strong fluorescence, the viable and dead cells of each microbial microscopically differ in shape and size depending on the microbial species. Even in the case of living cells such as live bacterial cells, accurate grasp can be achieved by capturing an arbitrary number of fluorescent light beams for each pulse. The strong fluorescent light emitted by the irradiation of the pulsed excitation light has two sides orthogonal to the irradiation optical axis of the pulsed excitation light.
Further, on the other side, the fluorescent light from the killed cells is transmitted through the transmission gap between the high wavelength region cut filter and the low wavelength region cut filter having a sharp wavelength region cut gradient, so that the fluorescent light is further narrowed down to only a specific wavelength, Since the diffraction grating is interposed, the blur caused by the diffraction lurking in the narrowed fluorescent light of a specific wavelength is corrected, and the fluorescent light is input to the doubled electron tube as a clear and highly reliable fluorescent light, converted into an electric signal, and processed. Therefore, the number of viable bacteria, the number of dead bacteria, and the type of bacteria can be accurately determined.

【0009】[0009]

【実施例】以下に本発明実施例を図とともに詳細に説明
すれば、図1は本発明の概略説明図、図2は励起光発生
管の断面説明図であって、本発明においては予め検体よ
り適宜手段で採取した菌類を、その生菌細胞及び死菌細
胞内に選択的に浸透染色され且それぞれ特定の螢光発光
を有する螢光染料で螢光染色を施してなる螢光染色菌液
1Aが適宜量注入されてなるセル1が使用される。この
螢光染色菌液1Aの作成に際して生菌細胞及び死菌細胞
内に選択的に浸透染色させる螢光染料としては多くのも
のが提案されるが、肝要なことは照射される励起光の波
長と螢光染料の螢光波長との間にはストークス則が成立
することから、使用する螢光染料により励起光の波長も
決定されてくる。本発明における螢光染色菌液1Aの作
成に好適な螢光染料としては、その生菌細胞内への浸透
染色に優れるものとしてフルオレセイン若しくはその誘
導体からなる螢光染料が挙げられ、且死菌細胞内への浸
透染色に優れるものとしてプロピデュームイオダイドか
ら螢光染料が挙げられ、かかる螢光染料の場合では励起
光の波長として488nmを使用することによりフルオ
レセイン若しくはその誘導体からなる螢光染料では螢光
波長として520nm、プロピデュームイオダイドから
なる螢光染料では螢光波長として625nmの螢光発光
がなされる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view of the present invention, and FIG. 2 is a cross-sectional explanatory view of an excitation light generating tube. A fluorescently stained bacterial solution obtained by selectively permeating the fungi collected by more appropriate means into the viable cells and the dead cells, and performing fluorescent staining with a fluorescent dye having a specific fluorescent emission. A cell 1 into which 1A is appropriately injected is used. Many fluorescent dyes have been proposed for selectively penetrating viable cells and dead cells when preparing the fluorescent stained bacterial solution 1A, but it is important to note that the wavelength of the excitation light to be irradiated is important. Since the Stokes law is established between the fluorescent dye and the fluorescent wavelength of the fluorescent dye, the wavelength of the excitation light is also determined by the fluorescent dye used. As a fluorescent dye suitable for preparing the fluorescent stained bacterial solution 1A in the present invention, a fluorescent dye composed of fluorescein or a derivative thereof is exemplified as a fluorescent dye excellent in permeation staining into living cells. Fluorescent dyes from propidium iodide are ones that are excellent in infiltration dyeing into the inside. In the case of such fluorescent dyes, by using 488 nm as the wavelength of excitation light, a fluorescent dye composed of fluorescein or a derivative thereof is used. A fluorescent dye consisting of 520 nm as a fluorescent wavelength and 625 nm as a fluorescent dye emits fluorescent light at 625 nm as a fluorescent wavelength.

【0010】そして螢光染色菌液1Aが適宜量注入させ
るセル1は、注入された螢光染色菌液1Aを励起発光さ
せるため照射される励起光が吸収や遮断されることなく
十分に透過され、且該励起光により励起発光した生菌細
胞や死菌細胞からの螢光発光を十分に透過させる必要上
から透光性に優れた素材で形成されるもので、通常はガ
ラス若しくはアクリル樹脂等の素材が用いられる。更に
生菌細胞や死菌細胞からの螢光発光により生菌数や死菌
数或いは菌種を判別するうえからは、該セル1内に螢光
染色菌液1Aが少なくとも1ml以上3ml程度で注入
されるようセル1の容量が形成されており、且励起光の
照射による螢光発光光線は該励起光の照射光軸と直交す
る二方向で受光させて電気信号に変換させるうえから、
セル1の形状は底部を有する円柱形や好ましくは角柱形
で形成されている。
In the cell 1 into which the fluorescent stained bacterial solution 1A is injected in an appropriate amount, the excitation light irradiated to excite the injected fluorescent stained bacterial solution 1A is sufficiently transmitted without being absorbed or blocked. It is made of a material having excellent translucency because it is necessary to sufficiently transmit fluorescent light emitted from live cells or dead cells excited by the excitation light, and is usually made of glass or acrylic resin. Material is used. Further, in order to determine the number of viable cells, the number of dead cells, or the type of bacteria by fluorescence emission from viable cells or dead cells, at least about 1 ml to about 3 ml of the fluorescent stained bacterial solution 1A is injected into the cell 1. The capacity of the cell 1 is formed so that the fluorescent light emitted by the irradiation of the excitation light is received in two directions orthogonal to the irradiation optical axis of the excitation light and converted into an electric signal.
The shape of the cell 1 is formed in a cylindrical shape having a bottom, or preferably in a prismatic shape.

【0011】而して本発明では螢光染色菌液1Aの生菌
細胞並びに死菌細胞内に浸透染色された螢光染料を高い
発光強度で螢光発光させるうえから、照射する励起光自
体の励起光強度を高めること、及び連続光からなる励起
光の照射に際しては螢光発光強度が短時間内に低下する
ものであるから、螢光発光強度の高い短時間内の螢光発
光を任意数捉えて処理することが、生菌数や死菌数或い
は菌種の正確な判別のうえからは望ましく、且生菌細胞
の如く常時遊動している場合にも一段と正確な判別がな
しえることとなる。
According to the present invention, the fluorescent dye which has been permeated and stained into the viable cells and the dead cells of the fluorescent-stained bacterial solution 1A emits fluorescent light at a high luminous intensity, and then the excitation light itself to be irradiated is irradiated. When increasing the intensity of the excitation light and irradiating the excitation light consisting of continuous light, the fluorescence emission intensity decreases within a short period of time. It is desirable from the viewpoint of accurate determination of the number of viable cells, the number of dead cells, or the type of bacteria, and that it can be more accurately determined even when the cells are always moving like live cells. Become.

【0012】本発明はかかる問題をパルス励起光20を
用いて解決するもので、該パルス励起光20は図2に示
す如く励起光発生管2により形成され且照射されるもの
であって、この励起光発生管2はその一方側が開口して
なる電磁波シールド管体2A内にそのパルス間隔が0.
2乃至5パルス/秒で且強力な発光強度を有する白色パ
ルス光源2Bが設けられてなるとともに、該白色パルス
光源2Bからの白色パルス光より螢光染色菌液1Aの生
菌細胞並びに死菌細胞内に浸透染色されてなる螢光染料
を励起発光させる特定波長を透過させるバンドパスフィ
ルター2Cが設けられてなり、更に白色パルス光発光に
際して混在する電気ノイズを除去するための導電性ガラ
スフィルター2Dが設けられた構成からなる。かかる場
合において、白色パルス光源2Bとしてはキセノンラン
プが通常用いられるものであって、この理由はその発光
波長が250nm乃至2μmの広範囲に亘る波長領域を
有し、且発光強度が極めて高いことによる。そして該白
色パルス光源2Bのパルス間隔は白色パルス光より形成
されるパルス励起光20が照射され、螢光染色菌液1A
の生菌細胞並びに死菌細胞内に浸透染色された螢光染料
が螢光発光し且減衰する時間は略200乃至250μ秒
程度であって、且パルス励起光20の照射と螢光発光の
最大発光までには略30μ秒のタイムラグが潜在するも
のであるから、判別のためにはこの最大発光時の螢光発
光を捉えれば良く、従ってパルス間隔としては最高でも
5パルス/秒以下に制限することが望ましく、反面生菌
細胞からの螢光発光は生菌細胞が遊動しているため刻々
と変動するため、時間経過毎の螢光発光を任意数捉えて
平均化処理することが正確な生菌数の判別に必要となる
が、余剰な時間は却って生菌の繁殖動態の影響が生ずる
恐れがあるため最低0.2パルス/秒以上で且螢光発光
の数としては5乃至10のパルスの平均値で十分に判別
できるものであって本発明の実用に際してのパルス励起
光20のパルス間隔は0.5若しくは1.0パルス/秒
で使用されている。
The present invention solves such a problem by using a pulsed excitation light 20. The pulsed excitation light 20 is formed and irradiated by an excitation light generating tube 2 as shown in FIG. The excitation light generating tube 2 has a pulse interval of 0.1 mm in an electromagnetic wave shielding tube 2A having one side open.
A white pulse light source 2B having a strong light emission intensity of 2 to 5 pulses / second is provided, and live and dead cells of the fluorescent stained bacterial solution 1A are obtained from white pulse light from the white pulse light source 2B. A band-pass filter 2C that transmits a specific wavelength that excites and emits a fluorescent dye that has been dyed by permeation dyeing is provided, and a conductive glass filter 2D for removing electric noise that is mixed when white pulse light is emitted is provided. It has a configuration provided. In such a case, a xenon lamp is generally used as the white pulse light source 2B because the emission wavelength has a wide wavelength range of 250 nm to 2 μm and the emission intensity is extremely high. Then, the pulse interval of the white pulse light source 2B is irradiated with the pulse excitation light 20 formed of the white pulse light, and the fluorescent dye solution 1A
The fluorescent dye, which has been penetrated and stained into live and dead cells, fluoresces and attenuates for about 200 to 250 μsec. Since there is a latent time lag of approximately 30 μs before the light emission, the fluorescent light emission at the time of the maximum light emission may be captured for discrimination. Therefore, the pulse interval is limited to a maximum of 5 pulses / second or less. On the other hand, the fluorescence emission from the viable bacterial cells fluctuates every moment due to the movement of the viable bacterial cells. Although it is necessary to determine the number of bacteria, the surplus time is at least 0.2 pulses / sec or more and the number of fluorescent light emission is 5 to 10 pulses since the extra time may adversely affect the propagation dynamics of live bacteria. Can be sufficiently determined by the average value of In the practical use of the present invention, the pulse interval of the pulse excitation light 20 is used at 0.5 or 1.0 pulse / second.

【0013】かくして白光パルス光源2Bから所要のパ
ルス間隔で発光される白色パルス光よりパルス励起光2
0を形成するためのバンドパスフィルター2Cは、螢光
染色菌液1Aの生菌細胞並びに死菌細胞内に選択的に浸
透染色される螢光染料の励起光に対するストークス則に
従った螢光波長との関係に基づく特定波長を透過させる
ものが用いられるもので、例えば生菌細胞内に選択的に
浸透染色されるフルオレセイン若しくはその誘導体から
なる螢光染料が用いられ、且死菌細胞内に選択的に浸透
染色されるプロピデュームイオダイドからなる螢光染料
が用いられる場合においては、該バンドパスフィルター
2Cはストークス則によりその波長が488nmの特定
波長を透過させるものが使用される。更に電磁波シール
ド管体2Aの開口側には導電性ガラスフィルター2Dが
設けられてなるもので、この導電性ガラスフィルター2
Dにより白色パルス光の発光に際して混在する電気ノイ
ズが導電除去されて、所要の発光強度と波長及びパルス
間隔を有するパルス励起光20が励起光発光管2より照
射される。かかる場合において導電性ガラスフィルター
2Dの具体的なものとしては透光性ガラスの一側面に酸
化インジウム若しくは酸化錫を塗着せしめて、その電気
抵抗が10Ω/cm程度のものが挙げられる。加えて
該導電性ガラスフィルター2Dは当然に導電性接着剤等
により電磁波シールド管体2Aと取付固定され且アース
されている。
Thus, the pulse excitation light 2 is converted from the white pulse light emitted from the white light pulse light source 2B at a required pulse interval.
The band-pass filter 2C for forming the fluorescent light of the fluorescent dye according to the Stokes law for the excitation light of the fluorescent dye which is selectively penetrantly stained into the viable cells and the dead cells of the fluorescent stained bacterial solution 1A. And a fluorescent dye composed of fluorescein or a derivative thereof that selectively penetrates and stains live cells, and is used for dead cells. When a fluorescent dye consisting of propidium iodide which is to be dyed by permeation is used, the band-pass filter 2C which transmits a specific wavelength of 488 nm according to the Stokes law is used. Further, a conductive glass filter 2D is provided on the opening side of the electromagnetic wave shield tube 2A.
By D, the electric noise mixed in the emission of the white pulse light is conductively removed, and the pulse excitation light 20 having the required emission intensity, wavelength and pulse interval is emitted from the excitation light emission tube 2. In such a case, a specific example of the conductive glass filter 2D is one in which indium oxide or tin oxide is applied to one side surface of a light-transmitting glass and has an electric resistance of about 10 Ω / cm 2 . In addition, the conductive glass filter 2D is naturally fixed to the electromagnetic wave shielding tube 2A with a conductive adhesive or the like and grounded.

【0014】而して高い発光強度で且所要の波長及びパ
ルス間隔を有するパルス励起光20が照射されることに
より、セル1内の螢光染色菌液1Aの生菌細胞並びに死
菌細胞内に浸透染色されてなる螢光染料がストークス則
に従って、そのパルス間隔毎に高い螢光強度で螢光発光
することとなり、且かかる螢光光線はパルス励起光20
の照射光軸と直交する二方向においてそれぞれ高い精度
と鮮明な螢光光線に補整させたうえ、倍増電子管で電気
信号に変換のうえ所要の処理がなされる。
By irradiating the cell with the pulsed excitation light 20 having a high emission intensity and a required wavelength and pulse interval, the viable cells and the dead cells of the fluorescently stained bacterium solution 1A in the cell 1 are scattered. The fluorescent dye, which has been subjected to penetration dyeing, emits fluorescent light with a high fluorescent intensity at each pulse interval according to the Stokes' law, and such fluorescent light is emitted by the pulse excitation light 20.
In each of the two directions perpendicular to the irradiation optical axis, the fluorescent light is corrected with high precision and clear, and then converted into an electric signal by a doubling electron tube and then subjected to necessary processing.

【0015】即ちパルス励起光20の照射により生菌細
胞並びに死菌細胞から発光される高い螢光強度の螢光光
線中には、ストークス則に従った特定波長を中心として
その前後に略15乃至25nmの範囲の波長領域内に、
最大螢光強度に比べて略1/2乃至1/3程度の螢光強
度を持つピーク、所謂半値幅が顕在するものであって、
かかる状態のままの螢光光線を電気信号に変換し所要の
処理を施した場合には、生菌数や死菌数に著るしい誤差
が発生するばかりか微細な形状や大きさも捉えにくく菌
種の判別も困難となる。そこで生菌細胞並びに死菌細胞
からの螢光光線の特定波長のみを高い精度で透過させて
信頼度の高い螢光光線となすため、図3に示す如く波長
領域カット勾配の鋭い高波長領域カットフィルター3並
びに低波長領域カットフィルター3Aとにより高い精度
の透過間隙30を設けて特定波長のみを限定透過させる
ものであって、例えば生菌細胞からの螢光光線の波長が
520nmの場合に、波長が521nm以上の高波長領
域に鋭いカット勾配を有する高波長領域カットフィルタ
ー3と、波長が519nm以下の低波長領域に鋭いカッ
ト勾配を有する低波長領域カットフィルター3Aを組合
せることにより形成される透過間隙30においては51
9乃至521nmの範囲の螢光光線のみを透過させるこ
とが可能となるもので、かかる透過間隙30を透過させ
る螢光光線の許容範囲は成可く小さく構成することが望
まれる。
That is, in the fluorescent light of high fluorescence intensity emitted from the viable cells and the dead cells by irradiation with the pulse excitation light 20, approximately 15 to 15 wavelengths before and after a specific wavelength according to the Stokes law are centered. Within the wavelength range of 25 nm,
A peak having a fluorescence intensity of about 1/2 to 1/3 of the maximum fluorescence intensity, a so-called half width,
When the fluorescent light in such a state is converted into an electric signal and subjected to a required process, not only a significant error occurs in the number of viable bacteria and the number of dead bacteria, but also it is difficult to capture even fine shapes and sizes. Species identification is also difficult. Therefore, in order to transmit only a specific wavelength of the fluorescent light from the viable cell and the dead cell with high precision and to obtain a highly reliable fluorescent light, a high wavelength region cut with a sharp wavelength region cut gradient as shown in FIG. The filter 3 and the low-wavelength region cut filter 3A are provided with a transmission gap 30 with high precision to limit transmission of only a specific wavelength. For example, when the wavelength of fluorescent light from live bacterial cells is 520 nm, Is formed by combining a high wavelength region cut filter 3 having a sharp cut gradient in a high wavelength region of 521 nm or more and a low wavelength region cut filter 3A having a sharp cut gradient in a low wavelength region of 519 nm or less. 51 in the gap 30
Only the fluorescent light in the range of 9 to 521 nm can be transmitted, and it is desired that the allowable range of the fluorescent light transmitted through the transmission gap 30 be as small as possible.

【0016】加えて重量なことは、かかる高波長領域カ
ットフィルター3及び低波長領域カットフィルター3A
により高い精度の螢光光線を限定的に透過させても、生
菌細胞や死菌細胞からの螢光光線は、螢光染色菌液1A
内の各種の混濁物中を透過し或いは狭い透過間隙30を
透過することにより回折現象が働き、螢光光線中にぼや
けは混在する。これがため透過間隙30を透過させた特
定波長の螢光光線を、更に回折格子を介在させて透過さ
せることにより螢光光線中の回折を補整して、正確且鮮
明な螢光光線となしたるうえ倍増電子管5に入光させて
電気信号に変換し、数値処理や画像処理をなすことが必
要となる。この回折格子4は透光ガラス板の表面に極細
の溝格子を形成させたもので溝格子の形成密度は透過さ
せる特定波長の具体的波長によっても異るが、その透過
波長が略520乃至620nm程度の場合では溝格子の
形成密度として920本/mm程度のものが回折の補整
に適合する。そして回折格子4で回折が補整された螢光
光線は、透過前の入光軸線に対し略30乃至36の角度
で偏光されるものであるから該回折補整された螢光光線
を入光させ電気信号に変換させる倍増電子管5は、該偏
光された螢光光線の軸光に対応するよう設けられる。
In addition, it is important that the high wavelength region cut filter 3 and the low wavelength region cut filter 3A
Fluorescent light from live cells and dead cells can be transmitted through the fluorescent stained bacterial solution 1A
When the light passes through various turbid substances in the inside or through the narrow transmission gap 30, a diffraction phenomenon acts, and blurs are mixed in the fluorescent light. For this reason, the fluorescent light of a specific wavelength transmitted through the transmission gap 30 is further transmitted through a diffraction grating, thereby compensating for diffraction in the fluorescent light, thereby providing an accurate and clear fluorescent light. In addition, it is necessary to make the light enter the doubled electron tube 5 and convert it into an electric signal to perform numerical processing and image processing. The diffraction grating 4 is formed by forming an extremely fine groove grating on the surface of a light-transmitting glass plate. The formation density of the groove grating varies depending on the specific wavelength of a specific wavelength to be transmitted, but the transmission wavelength is approximately 520 to 620 nm. In this case, a groove grating having a formation density of about 920 lines / mm is suitable for diffraction compensation. Since the fluorescent light whose diffraction has been corrected by the diffraction grating 4 is polarized at an angle of about 30 to 36 with respect to the light incident axis before transmission, the diffraction-corrected fluorescent light is incident on the fluorescent light. A doubling electron tube 5 for converting into a signal is provided so as to correspond to the axial light of the polarized fluorescent light beam.

【0017】倍増電子管5については特段の制約はなく
生菌細胞や死菌細胞からの螢光光線を適確に検知し生菌
数や死菌数及び菌種を判別しえる倍増能力を保持するも
のであれば良い。そして該倍増電子管5で螢光光線を電
気信号に変換させたる後所望の数値処理若しくは画像処
理をなす処理装置6にも特段の制約はないが、当然にパ
ルス励起光の照射トリガと螢光発光までのタイムラグの
除去と最大螢光発光強度をホールドするアルゴリズム、
並びにパルス励起光のパルス毎の最大螢光発光強度の任
意数のホールド値より平均値を求めるアルゴリズムが内
蔵されている。
The doubling electron tube 5 is not particularly limited, and has a doubling ability capable of accurately detecting fluorescent light rays from viable cells and dead cells and discriminating the number of viable cells, dead cells, and species. Anything is fine. There is no particular limitation on the processing unit 6 for performing desired numerical processing or image processing after converting the fluorescent light beam into an electric signal by the doubling electron tube 5, but of course the pulse excitation light irradiation trigger and the fluorescent light emission Algorithm to remove the time lag until and hold the maximum fluorescence intensity
In addition, an algorithm for obtaining an average value from an arbitrary number of hold values of the maximum fluorescence emission intensity for each pulse of the pulse excitation light is incorporated.

【0018】図4は本発明の切欠内部説明図であって、
本発明の使用方法を該図4により説明すれば、検体より
適宜手段で採取した菌類を生理的食塩水にその生菌細胞
内及び死菌細胞内にそれぞれ選択的に浸透し螢光染色す
る螢光染料が溶解されてなる染色液中に混合して螢光染
色菌液1Aとなしたるうえ該螢光染色菌液1Aを適宜量
注入してなるセル1を、本発明ケーシング7の上方に開
閉自在に設けた蓋7Aを開いて挿入保持させたうえ該蓋
7Aを閉めて暗室状態におく。而して励起光発生管2よ
り所要のパルス励起光20を該セル1に照射させること
により生菌細胞及び死菌細胞からは異る特定波長の螢光
発光がなされ、且この螢光光線をパルス励起光の照射光
軸と直交する二方向にそれぞれ設けてなる高波長領域カ
ットフィルター3及び低波長領域カットフィルター3A
の透過間隙30、並びに回折格子4を透過させて倍増電
子管5により生菌数及び生菌の菌種に係る螢光光線、及
び死菌数及び死菌の菌種に係る螢光光線を電気信号に変
換し、且処理装置6において数値処理若しくは画像処理
が施され表示部7Bに表示がなされる。
FIG. 4 is an explanatory view showing the inside of the notch according to the present invention.
The method of use of the present invention will be described with reference to FIG. 4. In this method, fungi collected from a specimen by appropriate means are selectively penetrated into a physiological saline solution into viable cells and dead cells, respectively, and fluorescently stained. A cell 1 which is mixed with a dye solution in which a light dye is dissolved to form a fluorescent stained bacterial solution 1A and into which a suitable amount of the fluorescent stained bacterial solution 1A is injected is placed above the casing 7 of the present invention. The lid 7A, which is provided to be openable and closable, is opened to be inserted and held, and then the lid 7A is closed to be in a dark room state. By irradiating the cell 1 with the required pulsed excitation light 20 from the excitation light generating tube 2, fluorescent cells of different specific wavelengths are emitted from live cells and dead cells, and this fluorescent light is emitted. High wavelength region cut filter 3 and low wavelength region cut filter 3A provided in two directions orthogonal to the irradiation optical axis of the pulse excitation light, respectively.
Through the transmission gap 30 and the diffraction grating 4 and the doubled electron tube 5 transmits a fluorescent light beam relating to the number of viable bacteria and the viable bacterial species, and a fluorescent light beam relating to the number of dead bacteria and the viable bacterial species to an electric signal. Then, numerical processing or image processing is performed in the processing device 6 and displayed on the display unit 7B.

【0019】[0019]

【発明の効果】本発明は以上述べたように、強力な発光
強度を有し且そのパルス間隔が0.2乃至5パルス/秒
の白色パルス光より特定波長を透過するバンドパスフィ
ルターを透過させてパルス励起光が形成されるため、光
エネルギーの高いパルス励起光が照射されるため、混濁
した螢光染色菌液においても生菌細胞や死菌細胞内に浸
透染色されてなる螢光染料を十分に励起させて高い螢光
発光がなしえる。而もパルス励起光によるためパルス毎
に最大の螢光発光が捉えられ、且極めて短時間内に任意
数の最大螢光発光を捉えることが出来るため、これの平
均化処理により極めて正確な生菌数や死菌数が把握でき
ることとなる。そしてパルス励起光により螢光発光した
螢光光線は、該パルス励起光の照射光軸と直交する二方
向でそれぞれ生菌細胞及び死菌細胞からの螢光光線を受
光するものであるからパルス励起光の影響を受けること
がなく、且この生菌細胞及び死菌細胞からのそれぞれ特
定波長の螢光光線は鋭い波長領域カット勾配を持つ高波
長領域カットフィルターと低波長領域カットフィルター
による高い精度の透過間隙内を透過させることにより極
めて限定された特定波長の螢光光線となり、而も回折格
子を透過させるため螢光光線中に混在する回折が除去さ
れて、正確且鮮明な螢光光線として倍増電子管に入光さ
れて電気信号に変換されたうえ処理がなされるため、正
確な生菌数や死菌数はもとより菌種の判別も確実になし
える。そして本発明ではセルを挿入保持させるのみであ
るから操作が簡単なうえ、せいぜい数分以内には数値化
若しくは画像化された生菌数、死菌数或いは菌種が判別
しえるため、食品生産工場はもとより流通されてなる食
品類の衛生管理が即時になしえる等、極めて特長の多い
菌類の即時判別装置といえる。
As described above, the present invention allows a band-pass filter, which has a strong luminous intensity and transmits a specific wavelength from white pulse light having a pulse interval of 0.2 to 5 pulses / second, to pass therethrough. Because pulse excitation light is formed, pulse excitation light with high light energy is applied, and even in turbid fluorescent stained bacterial solutions, fluorescent dyes that have been penetrated into live and dead cells can be used. High fluorescence emission can be achieved by sufficient excitation. Also, because of the pulse excitation light, the maximum fluorescent light emission can be captured for each pulse, and an arbitrary number of the maximum fluorescent light emission can be captured within a very short time. The number and the number of dead bacteria can be grasped. The fluorescent light emitted by the pulse excitation light receives the fluorescent light from live cells and dead cells in two directions perpendicular to the irradiation optical axis of the pulse excitation light. Fluorescent rays of specific wavelengths from the living and dead cells are not affected by light, and the high-precision and low-wavelength cut filters with sharp cut-off gradients in the wavelength range respectively provide high precision. By transmitting the light through the transmission gap, a fluorescent light having a very limited specific wavelength is obtained. Since the light is transmitted through the diffraction grating, diffraction mixed in the fluorescent light is removed, and the fluorescent light is doubled as an accurate and clear fluorescent light. Since the light is incident on the electron tube, converted into an electric signal, and then processed, the type of bacteria can be reliably determined in addition to the accurate number of viable and dead bacteria. In the present invention, the operation is simple because only the cells are inserted and held, and the number of viable bacteria, the number of dead bacteria, or the type of bacteria that have been quantified or imaged can be determined within at most several minutes. It can be said that it is an instantaneous discrimination device for fungi that has extremely many features, such as immediate hygiene control of foods distributed from factories as well as food products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の概略説明図である。FIG. 1 is a schematic explanatory diagram of the present invention.

【図2】励起光発生管の断面説明図である。FIG. 2 is an explanatory sectional view of an excitation light generating tube.

【図3】高波長領域カットフィルター及び低波長領域カ
ットフィルターの説明図である。
FIG. 3 is an explanatory diagram of a high wavelength region cut filter and a low wavelength region cut filter.

【図4】本発明の切欠内部説明図である。FIG. 4 is an explanatory view of the inside of the notch according to the present invention.

【符号の説明】[Explanation of symbols]

1 セル 1A 螢光染色菌液 2 励起光発生管 2A 電磁波シールド管体 2B 白色パルス光源 2C バンドパスフィルター 2D 導電性ガラスフィルター 20 パルス励起光 3 高波長領域カットフィルター 3A 低波長領域カットフィルター 30 透過間隙 4 回折格子 5 倍増電子管 6 処理装置 7 ケーシング 7A 蓋 REFERENCE SIGNS LIST 1 cell 1A Fluorescent staining bacteria solution 2 Excitation light generating tube 2A Electromagnetic wave shielding tube 2B White pulse light source 2C Bandpass filter 2D Conductive glass filter 20 Pulse excitation light 3 High wavelength region cut filter 3A Low wavelength region cut filter 30 Transmission gap 4 diffraction grating 5 double electron tube 6 processing unit 7 casing 7A lid

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C12M 1/34 G01N 21/64 G01N 33/48 G01N 21/76 - 21/78 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C12M 1/34 G01N 21/64 G01N 33/48 G01N 21/76-21/78

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 検体から適宜手段で採取した菌類を所要
の螢光染色液でその細胞内に浸透染色させてなる螢光染
色菌液に励起光を照射し、その螢光発光を電気信号に変
換して生菌数並びに死菌数及び菌種を判別する菌類の即
時判別装置において、その一方側が開口してなる電磁波
シールド管体内に、パルス間隔が0.2乃至5パルス/
秒で発光する白色パルス光源が設けられ、且この白色パ
ルス光線中の特定波長を透過させるバンドパスフィルタ
ーと、該白色パルス光線中に混在する電気ノイズを除去
する導電性ガラスフィルターが設けられた励起光発生管
と、この励起光が照射される螢光染色菌液セルの該励起
光照射光軸と直交する二方向に、生菌細胞並びに死菌細
胞からの螢光発光に係るそれぞれの特定波長のみを高波
長領域カットフィルター及び低波長領域カットフィルタ
ーによる透過間隙で高精度に透過させ、且回折格子を介
圧させて鮮明な螢光光線に補整のうえ倍増電子管に入力
して電気信号に変換し所要の処理を施すことにより、生
菌及び死菌数並びに菌種を簡便に且高精度で即時に判別
する菌類の即時判別装置。
1. A fluorescently stained bacterial solution obtained by penetrating a fungus, which has been collected from a specimen by a suitable means, into a cell with a required fluorescently stained solution, is irradiated with excitation light, and the fluorescence emission is converted into an electric signal. In an instant fungus discriminating apparatus for discriminating the number of viable bacteria, the number of dead bacteria and the type of bacteria by conversion, a pulse interval of 0.2 to 5 pulses /
Excitation provided with a white pulse light source that emits light in seconds, and a bandpass filter that transmits a specific wavelength in the white pulse light, and a conductive glass filter that removes electric noise mixed in the white pulse light. The light-generating tube and the fluorescence-stained bacterium solution cell irradiated with the excitation light are irradiated in two directions perpendicular to the excitation light irradiation optical axis, and each of the specific wavelengths related to the fluorescence emission from viable cells and dead cells is used. Is transmitted through the transmission gap of the high-wavelength region cut filter and the low-wavelength region cut filter with high precision, and is passed through a diffraction grating to compensate for a clear fluorescent light, input to a doubling electron tube, and convert it into an electric signal. A fungus instant discrimination device that discriminates the number of viable and dead bacteria and the type of bacteria easily and with high accuracy by performing required processing.
JP10331880A 1998-10-16 1998-10-16 Fungi instant discrimination device Expired - Fee Related JP3055017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10331880A JP3055017B2 (en) 1998-10-16 1998-10-16 Fungi instant discrimination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10331880A JP3055017B2 (en) 1998-10-16 1998-10-16 Fungi instant discrimination device

Publications (2)

Publication Number Publication Date
JP2000125845A JP2000125845A (en) 2000-05-09
JP3055017B2 true JP3055017B2 (en) 2000-06-19

Family

ID=18248666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10331880A Expired - Fee Related JP3055017B2 (en) 1998-10-16 1998-10-16 Fungi instant discrimination device

Country Status (1)

Country Link
JP (1) JP3055017B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102496A (en) * 2001-09-27 2003-04-08 Matsushita Ecology Systems Co Ltd Microorganism testing system
JP4198086B2 (en) * 2003-06-25 2008-12-17 オリンパス株式会社 Fluorescence observation equipment
WO2017115768A1 (en) * 2015-12-28 2017-07-06 合同会社日本理化学開発 Device for determining live/dead bacterial state, and method for determining live/dead bacterial state using said device
CN109470616B (en) * 2018-10-31 2021-11-23 重庆大学 Multifunctional seepage testing system for rock
CN111521471B (en) * 2020-05-12 2021-09-21 北京和谐伟业化学科技有限公司 Fluorescent staining solution for detecting fungi D-glucan and preparation method thereof

Also Published As

Publication number Publication date
JP2000125845A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
DE69812928T2 (en) DETERMINATION OF PARTICLES IN A LIQUID SAMPLE
JP3035698B2 (en) Apparatus and method for fast and sensitive detection and counting of microorganisms by fluorescence
US7947224B2 (en) Device for calibrating a microorganism quantifying apparatus
US8357915B2 (en) Method and device for measuring optical characteristics of an object
Becker et al. Picosecond fluorescence lifetime microscopy by TCSPC imaging
US20030148393A1 (en) Computer interfaced scanning fluorescence lifetime microscope applied to directed evolution methodologies and methods for light-mediated patterning in cell selection
JP6851668B2 (en) A method for determining the state of dead bacteria using a device for determining the state of dead bacteria
US4331759A (en) Composition suitable for testing biological tissues and/or liquids, and the method of use
WO2014162744A1 (en) Cell observation method, cell observation device, cell observation program, cell-sheet manufacturing method, and cell-sheet manufacturing device
DE102005051643A1 (en) Detection of microorganisms/chemically dangerous materials in e.g. a biological tissues, comprises irradiating a focus volume of the tissues by a laser pulse, and examining a radiation emitted by the tissues
Heskes et al. Multiphoton fluorescence lifetime imaging shows spatial segregation of secondary metabolites in Eucalyptus secretory cavities
JP3055017B2 (en) Fungi instant discrimination device
JP4868879B2 (en) Cell state detector
JP3113909B2 (en) Fungi instant discrimination device
DE2645959A1 (en) METHOD OF IDENTIFICATION OF FLUORESCENT SUBSTANCES
JP2979383B2 (en) Immediate identification method for fungi
US4458531A (en) Method of and apparatus for examining biological effects in cell-lots
WO2013189488A1 (en) Method, device and portable meter for detecting degradation products of biological molecules in layers of a layer system
JP2000316596A (en) Method and device for instant distinguishing fungi
Gerritsen et al. One-and two-photon confocal fluorescence lifetime imaging and its applications
DE102020001014A1 (en) Detection of plastics as foreign substances in food using the fluorescence decay time, in particular the detection of foreign substances in meat products
van der Oord et al. Fluorescence lifetime imaging module LIMO for CLSM
RU2170928C1 (en) Method for carrying out remote spectral quality control of meat
Murugkar et al. Chemically specific imaging of cryptosporidium oocysts using coherent anti‐Stokes Raman scattering (CARS) microscopy
JP2006081427A (en) Method for detecting bacterium and device for detecting bacterium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees